

Component: Mathematics 5N1833 – Trial Paper Solutions

Month:

2024

Course(s):

AA [Applied Science: Laboratory Techniques] AB [Applied Biology: Food Health & Nutrition]

Extra Maths

Total Marks: 800marks

Weighting: 40%

Time Allowed: 2 Hours

Section A (400 Marks) 10 short questions. Answer ALL 10 40 marks each

1. Determine the equation of a line in the form y = mx + c if the points (1,2) and (3,4) are on the line

40 marks

Slope m = $\frac{y^2 - y_1}{x^2 - x_1} = \frac{4 - 2}{3 - 1} = 1$ Equation = $y - y_1 = m(x - x_1)$ y - 2 = 1(x - 1) y - 2 = x - 1y = x + 1

2.

The age distribution of a group of people who wear glasses is shown on this histogram.

If there are 200 people in the 20 – 30 age-group, find

(i) The number of people in the 30-50 age group 150

20 marks 20 marks

- (ii) The total number of people wearing glasses = 75+50+50+200+150 = 525
- 20 marks
- **3.** How many different 3-digit numbers can be formed from the digits 1, 2, 3, 4

(i) (ii)	If no digit is repeated in the number? $= 4 * 3 * 2 = 24$ How many of these begin with 3? = $1 * 3 * 2 = 6$	20 marks 20 marks
	$b \frac{4cm}{4cm}$ c	
	In the given triangle abc, ad \perp bc.	
	If ad = 4cm, ∠abd = 55° and ∠acd = 40°,	
(i)	Find bc to 1 decimal place	20 marks
	$tan40 = \frac{4}{dc} \qquad dc = \frac{4}{tan40} = 4.8$ $tan55 = \frac{4}{bd} \qquad bd = \frac{4}{tan55} = 2.8$ bc = bd + dc = 4.8 + 2.8 = 7.6 cm	
(ii)	Find lacl to 1 decimal place	20 marks
()	$ac^{2} = ad^{2} + dc^{2}$ $ac^{2} = 4^{2} + 4.8^{2}$ = 39.04 ∴ $ac = \sqrt{39.04} = 6.2$	
	Using differentiation, calculate the slope of the tangent to the curve	40 marks
	$y = 2x^3 - x^2 + 5$ at $x = 3$	
	uy $(z^2 - 2z)$	

$$\frac{dy}{dx} = 6x^2 - 2x$$

Slope when $x = 3$, $= \frac{dy}{dx} = 6(3^2) - 2(3) = 48$

 $\frac{x-1}{4}$

20 marks

20 marks

(i) Find
$$f(6)$$

(ii) Find $f^{-1}(3)$

$$If f(x) = \frac{x-1}{4}$$

$$f(6) = \frac{6-1}{4} = \frac{5}{4}$$

$$x \to \frac{x-1}{4}$$

$$4x \to x-1$$

4.

5.

6.

$$x \rightarrow \frac{x-1}{4}$$

$$4x \rightarrow x-1$$

$$4x+1 \rightarrow x$$

$$f^{-1}(x) = 4x+1$$

$$f^{-1}(3) = 4(3)+1 = 13$$

7.		$y = 2sinx + 2e^{4x}$ find the derivative $\frac{dy}{dx}$ $\frac{dy}{dx} = 2cosx + 8e^{4x}$	40 marks
8.		Evaluate $\int (3x^3 - \cos 2x + e^{4x}) dx$	40 marks
		$=\frac{3x^4}{4} - \frac{\sin 2x}{2} + \frac{e^{4x}}{4} + c$	
9.		If $w = 3 - 5i$ and $z = 4 + 6i$ evaluate the following:	
	(i)	z - 3w	20 marks
		$\frac{4+6i-3(3-5i)=4+6i-9+15i}{=-5+21i}$	
	(ii)	$\frac{z}{2w}$	20 marks
		$=\frac{\frac{(4+6i)}{(6-10i)}\frac{(6+10i)}{(6+10i)}}{(6+10i)}$	
		$=\frac{24+76i+60i^2}{36-100i^2}$	
		$=\frac{24+76i-60}{36+100}$	
		$=\frac{-36+76i}{136}$	
		$=\frac{-36}{136}+\frac{76i}{136}$	
		$\frac{-9}{34} + \frac{19i}{34}$	

10.Calculate the size of the angle at vertex A (angle CAB) in40 marksthe triangle below. Give your answer correct to one
decimal place, if necessary.40 marks

$let \angle CAB = A$
a = 7, b = 6, c = 8
$a^2 = b^2 + c^2 - 2bc\cos A$
$7 = 6^2 + 8^2 - 2(6)(8)\cos A$
$49 = 36 + 64 - 96 \cos A$
$\cos A = \frac{36 + 64 - 49}{96} = 0.53125$
$4 - \cos^{-1} 0 53125 - 57.9^{\circ}$

Section B (200 Marks) 2 Structured Questions.

Answer ALL questions 100 marks each

- **1. (a)** The equation of the line l is y = 5x + 2
 - (i) Find the slope of a line perpendicular to line l 10 1 marks

$$n = -\frac{1}{5}$$
 mar

(ii) Find the equation of the line *m* perpendicular to line *l* and which **10** passes through the point (-2, 1) marks

$$y - y1 = m(x - x1)$$

$$y - 1 = -\frac{1}{5}(x - (-2))$$

$$y - 1 = -\frac{1}{5}(x + 2)$$

$$5y - 5 = -x - 2$$

$$x + 5y - 3 = 0$$

(b Draw a graph of $f(x) = x^3 + 3x^2 - 4x - 12$

in the domain $\{-3 \ll x \ll 2\}, x \in R$

х	x ³	3x ²	-4x	-12	f(x)
-3	-27	27	12	-12	0
-2	-8	12	8	-12	0
-1	-1	3	4	-12	-6
0	0	0	0	-12	-12
1	1	3	-4	-12	-12
2	8	12	-8	-12	0

х	f(x)
-3	0
-2	0
-1	-6
0	-12
1	-12
2	0

)

30 marks

Use the graph to write down the following

(i)	Roots of the equation $f(x) = 0$	10
	x = -3, -2, 2	marks
	Points: (-3,0), (-2,0), (2,0)	
(ii)	Find the coordinates of the local minimum point. (0.53,-13.1)	10
		marks
(iii	Find the coordinates of the local maximum point. (-2.53, 1.13)	10
		marks
(iv	The domain of values of x for which $f(x)$ is negative	10
	-2 < x < 2	marks
(v)	The domain of values of x for which $f(x)$ is negative and	10
	increasing.	marks
	0.53 < <i>x</i> <2	

2. (a)

Explain in your own words what is meant by the term 'mode' in 10 relation to statistics?
 Mode is the value that appears most often in a set of data values

(ii) Complete the cumulative frequency table below from the given grouped frequency distribution table.

Length in mm (x)	1-5	6-10	11-15	16-20	21-25	26-30	31-35	
Frequency (f)	4	8	10	12	11	6	4	
								_
Length in mm (x)	≤5	≤10	≤15	≤20	≤25	≤30	≤35	10
Frequency (f)	4	12	22	34	45	51	55	mark

Using the cumulative frequency table above, draw the **10** cumulative frequency curve(ogive) on graph paper and use your graph to provide answers for the following:

10 marks

(iii) Interquartile range

Upper quartile value at frequency of 41.25 (75% of 55) = approx. 23mm Lower quartile value at frequency of 13.75 (25% of 55 = approx. 10mm

Interquartile range = 23-10 = 13mm

- (iv) Median 10 Median – Value at middle frequency of 27.5 (50% of 55) – marks approx. 17.5mm
- **2. (b)** A card is selected at random from a pack of 52 and then replaced. A second card is then selected. What is the probability that

(i)	The first card is a heart = $\frac{13}{52} = \frac{1}{4}$	10 marks
(ii)	Both cards are hearts $=\frac{13}{52} \cdot \frac{13}{52} = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$	10 marks
(iii)	The first card is red and the second card is black $\frac{26}{52} \cdot \frac{26}{52} = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$	10 marks
(iv)	The first card is a queen and the second card is black $\frac{\frac{4}{52}}{\frac{26}{52}} = \frac{1}{13} \cdot \frac{1}{2} = \frac{1}{26}$	10 marks
(v)	Neither card is a heart $\frac{39}{52} = \frac{3}{52} = \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{16}$	10 marks

Section C (200 Marks) 2 structured questions. Answer ALL 2. 100 marks each

3. (a) Differentiate with respect to x

$$y = \frac{2x^2 - 2x + 5}{x - 3}$$
 30 marks

quotient rule:
$$u = 2x^2 - 2x + 5$$
 $v = x - 3$

$$\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$$

$$\frac{du}{dx} = 4x - 2$$
 $\frac{dv}{dx} = 1$

$$\frac{dy}{dx} = \frac{(x - 3) \cdot (4x - 2) - (2x^2 - 2x + 5) \cdot 1}{(x - 3)^2}$$

$$\frac{dy}{dx} = \frac{4x^2 - 14x + 6 - 2x^2 + 2x - 5}{x^2 - 6x + 9}$$

$$\frac{dy}{dx} = \frac{2x^2 - 12x + 1}{x^2 - 6x + 9}$$

(c) Find the turning points of the curve $y = \frac{x^3}{3} + \frac{x^2}{2} - 2x$ 20 and determine if they are minimum or maximum turning points 20

marks

$$y = \frac{x^3}{3} + \frac{x^2}{2} - 2x$$

$$\frac{dy}{dx} = x^2 + x - 2$$

$$\frac{dy}{dx} = 0$$

$$x^2 + x - 2 = 0$$

$$(x + 2)(x - 1) = 0$$

$$x = -2 \text{ or } x = 1$$
when $x = -2$ $y = \frac{10}{3}$

$$\therefore \left(-2, \frac{10}{3}\right) \text{ is a turning point}$$
when $x = 1$ $y = -\frac{7}{6}$

$$\therefore \left(1, -\frac{7}{6}\right) \text{ is also a turning point}$$

$$\frac{dy^2}{dx^2} = 2x + 1$$
At $x = -2$ $\frac{d^2y}{dx^2} = -3$ which is negative \therefore local max
$$\therefore \left(-2, \frac{10}{3}\right) \text{ is a maximum turning point}$$
At $x = 1$ $\frac{d^2y}{dx^2} = 3$ which is positive \therefore local min
$$\therefore \left(-2, \frac{10}{3}\right) \text{ is a minimum turning point}$$

4.	(a)	Solve for x and y in the following equation
		2(x + yi) = 4(2 + 3i) - 2(1 - 2i)

30 marks

$$2x + 2yi = 8 + 12i - 2 + 4i$$

$$2x + 2yi = 6 + 16i$$

$$2x = 6 \therefore x = 3$$

$$2y = 16 \therefore y = 8$$

(b)	Evaluate i^{8} = $\sqrt{-1}^{8}$ = $(\sqrt{-1}.\sqrt{-1}).(\sqrt{-1}.\sqrt{-1}).(\sqrt{-1}).(\sqrt{-1})$ = $(-1)(-1)(-1))(-1) = 1$	20 marks
(c)	Solve the complex equation $z^2 - 5z + 15 = 0$ Write your answers in the form a+bi $z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	50 marks
	$\frac{5 \pm \sqrt{-5^2 - 4(1)(15)}}{2(1)}$	
	$=\frac{5\pm\sqrt{25-60}}{2}$	
	$= \frac{5 \pm \sqrt{-35}}{2}$	
	$=\frac{5\pm\sqrt{35}i}{2}$	
	$z = \frac{5}{2} + \frac{\sqrt{35}}{2}i$ or $z = \frac{5}{2} - \frac{\sqrt{35}}{2}i$	