Cork College of FET

Cork's Further Education \& Training Service

Component:

Month: 2024

Course(s):
AA [Applied Science: Laboratory Techniques]
AB [Applied Biology: Food Health \& Nutrition]
Extra Maths

Total Marks: 800marks

Weighting: 40\%

Time Allowed: 2 Hours

Section A (400 Marks)

10 short questions.
Answer ALL 10
40 marks each

1. Determine the equation of a line in the form

40 marks
$y=m x+c$ if the points $(1,2)$ and $(3,4)$ are on the line
Slope $\mathrm{m}=\frac{y 2-y 1}{x 2-x 1}=\frac{4-2}{3-1}=1$

$$
\begin{aligned}
& \text { Equation }=y-y 1=m(x-x 1) \\
& \qquad \begin{array}{c}
y-2=1(x-1) \\
y-2=x-1 \\
y=x+1
\end{array}
\end{aligned}
$$

2. The age distribution of a group of people who wear glasses is shown on this histogram.

If there are 200 people in the $20-30$ age-group, find
(i) The number of people in the 30-50 age group 150
(ii) The total number of people wearing glasses =
3. How many different 3-digit numbers can be formed from the digits 1, 2, 3, 4
(i) If no digit is repeated in the number? $=4 * 3 * 2=24$
(ii) How many of these begin with 3 ? $=1 * 3 * 2=6$
4.

In the given triangle abc, ad $\perp \mathrm{bc}$.
If $|\mathrm{ad}|=4 \mathrm{~cm},|\angle \mathrm{abd}|=55^{\circ}$ and $|\angle \mathrm{acd}|=40^{\circ}$,
(i)

$$
\text { Find }|b c| \text { to } 1 \text { decimal place }
$$

20 marks

$$
\begin{gathered}
\tan 40=\frac{4}{d c} \quad d c=\frac{4}{\tan 40}=4.8 \\
\tan 55=\frac{4}{b d} \quad b d=\frac{4}{\tan 55}=2.8 \\
b c=b d+d c \\
=4.8+2.8=7.6 \mathrm{~cm}
\end{gathered}
$$

(ii) Find $|\mathrm{ac}|$ to 1 decimal place

$$
\begin{gathered}
a c^{2}=a d^{2}+d c^{2} \\
a c^{2}=4^{2}+4.8^{2} \\
=39.04 \\
\therefore a c=\sqrt{39.04}=6.2
\end{gathered}
$$

5. Using differentiation, calculate the slope of the tangent to 40 marks the curve

$$
\begin{gathered}
y=2 x^{3}-x^{2}+5 \text { at } x=3 \\
\frac{d y}{d x}=6 x^{2}-2 x \\
\text { Slope when } x=3,=\frac{d y}{d x}=6\left(3^{2}\right)-2(3)=48
\end{gathered}
$$

6.

$$
\text { If } f(x)=\frac{x-1}{4}
$$

(i) Find $f(6)$

$$
f(6)=\frac{6-1}{4}=\frac{5}{4}
$$

(ii) Find $f^{-1}(3)$

$$
\begin{gathered}
x \rightarrow \frac{x-1}{4} \\
4 x \rightarrow x-1 \\
4 x+1 \rightarrow x \\
f^{-1}(x)=4 x+1 \\
f^{-1}(3)=4(3)+1=13
\end{gathered}
$$

7.

$$
\begin{gathered}
y=2 \sin x+2 e^{4 x} \text { find the derivative } \frac{d y}{d x} \\
\frac{d y}{d x}=2 \cos x+8 e^{4 x}
\end{gathered}
$$

8. Evaluate $\int\left(3 x^{3}-\cos 2 x+e^{4 x}\right) d x$

40 marks

$$
=\frac{3 x^{4}}{4}-\frac{\sin 2 x}{2}+\frac{e^{4 x}}{4}+c
$$

9. If $w=3-5 i$ and $z=4+6 i$ evaluate the following:
(i)

$$
z-3 w
$$

20 marks

$$
\begin{aligned}
4+6 i-3(3 & -5 i)=4+6 i-9+15 i \\
& =-5+21 i
\end{aligned}
$$

(ii)

$$
\begin{gathered}
\frac{z}{2 w} \\
=\frac{(4+6 i)}{(6-10 i)} \frac{(6+10 i)}{(6+10 i)} \\
=\frac{24+76 i+60 i^{2}}{36-100 i^{2}} \\
=\frac{24+76 i-60}{36+100} \\
=\frac{-36+76 i}{136} \\
=\frac{-36}{136}+\frac{76 i}{136} \\
\frac{-9}{34}+\frac{19 i}{34}
\end{gathered}
$$

10. Calculate the size of the angle at vertex A (angle $C A B$) in 40 marks the triangle below. Give your answer correct to one decimal place, if necessary.

$$
\begin{gathered}
\text { let } \angle C A B=A \\
a=7, \quad b=6, \quad c=8 \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
7=6^{2}+8^{2}-2(6)(8) \cos A \\
49=36+64-96 \cos A \\
\cos A=\frac{36+64-49}{96}=0.53125 \\
A=\cos ^{-1} 0.53125=57.9^{0}
\end{gathered}
$$

Section B (200 Marks)
 2 Structured Questions.

Answer ALL questions

 100 marks each1. (a) The equation of the line l is $y=5 x+2$
(i) Find the slope of a line perpendicular to line l

$$
m=-\frac{1}{5}
$$

(ii) Find the equation of the line m perpendicular to line l and which 10 passes through the point $(-2,1)$

$$
\begin{gathered}
y-y 1=m(x-x 1) \\
y-1=-\frac{1}{5}(x-(-2)) \\
y-1=-\frac{1}{5}(x+2) \\
5 y-5=-x-2 \\
x+5 y-3=0
\end{gathered}
$$

(b Draw a graph of $f(x)=x^{3}+3 x^{2}-4 x-12$
in the domain $\{-3 \ll x \ll 2\}, x \in R$

\mathbf{x}	$\mathbf{x}^{\mathbf{3}}$	$\mathbf{3 \mathbf { x } ^ { \mathbf { 2 } }}$	$\mathbf{- 4} \mathbf{x}$	$\mathbf{- 1 2}$	$\mathbf{f}(\mathbf{x})$
-3	-27	27	12	-12	0
-2	-8	12	8	-12	0
-1	-1	3	4	-12	-6
0	0	0	0	-12	-12
1	1	3	-4	-12	-12
2	8	12	-8	-12	0

\mathbf{x}	$\mathbf{f}(\mathbf{x})$
-3	0
-2	0
-1	-6
0	-12
1	-12
2	0

Use the graph to write down the following
(i) Roots of the equation $f(x)=0$

10

$$
x=-3,-2,2
$$

marks

$$
\text { Points: }(-3,0),(-2,0),(2,0)
$$

(ii) Find the coordinates of the local minimum point. (0.53,-13.1)

10 marks
(iii Find the coordinates of the local maximum point. $(-2.53,1.13)$
10
marks
(v) The domain of values of x for which $f(x)$ is negative and increasing.

$$
0.53<x<2
$$

2. (a)
(i) Explain in your own words what is meant by the term 'mode' in relation to statistics?

Mode is the value that appears most often in a set of data values
(ii) Complete the cumulative frequency table below from the given grouped frequency distribution table.

Length in $\mathrm{mm}(\mathrm{x})$	$1-5$	$6-10$	$11-15$	$16-20$	$21-25$	$26-30$	$31-35$
Frequency (f)	4	8	10	12	11	6	4

Length in $\mathrm{mm}(\mathrm{x})$	≤ 5	≤ 10	≤ 15	≤ 20	≤ 25	≤ 30	≤ 35
Frequency (f)	4	12	22	34	45	51	55

Using the cumulative frequency table above, draw the $\quad \mathbf{1 0}$ cumulative frequency curve(ogive) on graph paper and use your marks graph to provide answers for the following:

(iii) Interquartile range

Upper quartile value at frequency of 41.25 (75% of 55) = approx. 23 mm
Lower quartile value at frequency of 13.75 (25% of $55=$ approx. 10 mm

Interquartile range $=23-10=13 \mathrm{~mm}$
(iv) Median
Median - Value at middle frequency of 27.5 (50\% of 55) approx. 17.5 mm
2. (b) A card is selected at random from a pack of 52 and then replaced. A second card is then selected. What is the probability that
(i) The first card is a heart $=\frac{13}{52}=\frac{1}{4}$
(ii) Both cards are hearts $=\frac{13}{52} \cdot \frac{13}{52}=\frac{1}{4} \cdot \frac{1}{4}=\frac{1}{16}$
(iii) The first card is red and the second card is black $\frac{26}{52} \cdot \frac{26}{52}=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$
(iv) The first card is a queen and the second card is black
(v) Neither card is a heart
$\frac{39}{52} \cdot \frac{39}{52}=\frac{3}{4} \cdot \frac{3}{4}=\frac{9}{16}$

Section C (200 Marks) 2 structured questions. Answer ALL 2. 100 marks each

3. (a) Differentiate with respect to x

$$
y=\frac{2 x^{2}-2 x+5}{x-3}
$$

$$
\begin{gathered}
\text { quotient rule: } u=2 x^{2}-2 x+5 \quad v=x-3 \\
\frac{d y}{d x}=\frac{v \cdot \frac{d u}{d x}-u \cdot \frac{d v}{d x}}{v^{2}} \\
\frac{d u}{d x}=4 x-2 \frac{d v}{d x}=1 \\
\frac{d y}{d x}=\frac{(x-3) \cdot(4 x-2)-\left(2 x^{2}-2 x+5\right) \cdot 1}{(x-3)^{2}} \\
\frac{d y}{d x}=\frac{4 x^{2}-14 x+6-2 x^{2}+2 x-5}{x^{2}-6 x+9} \\
\frac{d y}{d x}=\frac{2 x^{2}-12 x+1}{x^{2}-6 x+9}
\end{gathered}
$$

(b) Using integration, find the area bound by the curve
$y=2 x^{2}-x+3$ the x axis and the lines $x=2$ and $x=4$

$$
\begin{aligned}
& \quad \int_{2}^{4}\left(2 x^{2}-x+3\right) d x \\
& =\left[\frac{2 x^{3}}{3}-\frac{x^{2}}{2}+3 x+c\right] 4 \\
& =\left[\frac{2\left(4^{3}\right)}{3}-\frac{(4)^{2}}{2}+3(4)+c\right]-\left\lfloor\frac{2\left(2^{3}\right)}{3}-\frac{\left(2^{2}\right)}{2}+3(2)+c\right] \\
& =\left[\frac{128}{3}-\frac{16}{2}+12+c\right]-\left[\frac{16}{3}-2+6+c\right] \\
& = \\
& =\frac{112}{3} \\
& =
\end{aligned}
$$

(c) Find the turning points of the curve $y=\frac{x^{3}}{3}+\frac{x^{2}}{2}-2 x$ and determine if they are minimum or maximum turning points

$$
\begin{gathered}
y=\frac{x^{3}}{3}+\frac{x^{2}}{2}-2 x \\
\frac{d y}{d x}=x^{2}+x-2 \\
\frac{d y}{d x}=0 \\
x^{2}+x-2=0 \\
(x+2)(x-1)=0 \\
x=-2 \text { or } x=1
\end{gathered}
$$

$$
\text { when } x=-2 \quad y=\frac{10}{3}
$$

$$
\therefore\left(-2, \frac{10}{3}\right) \text { is a turning point }
$$

$$
\text { when } x=1 \quad y=-\frac{7}{6}
$$

$$
\therefore\left(1,-\frac{7}{6}\right) \text { is also a turning point }
$$

$$
\frac{d y^{2}}{d x^{2}}=2 x+1
$$

At $x=-2 \quad \frac{d^{2} y}{d x^{2}}=-3 \quad$ which is negative $\quad \therefore$ local max $\therefore\left(-2, \frac{10}{3}\right)$ is a maximum turning point
At $x=1 \quad \frac{d^{2} y}{d x^{2}}=3 \quad$ which is positive $\quad \therefore$ local min $\therefore\left(-2, \frac{10}{3}\right)$ is a minimum turning point
4. (a) Solve for x and y in the following equation

$$
\begin{aligned}
& 2(x+y i)=4(2+3 i)-2(1-2 i) \\
& 2 x+2 y i=8+12 i-2+4 i \\
& 2 x+2 y i=6+16 i \\
& 2 x=6 \quad \therefore x=3 \\
& 2 y=16 \quad \therefore y=8
\end{aligned}
$$

(b) Evaluate i^{8}

$$
\begin{gathered}
=\sqrt{-1}^{8} \\
=(\sqrt{-1} \cdot \sqrt{-1}) \cdot(\sqrt{-1} \cdot \sqrt{-1}) \cdot(\sqrt{-1} \cdot \sqrt{-1}) \cdot(\sqrt{-1})(\sqrt{-1}) \\
=(-1)(-1)(-1))(-1)=1
\end{gathered}
$$

(c) Solve the complex equation $z^{2}-5 z+15=0$

Write your answers in the form a+bi

$$
\begin{aligned}
& z=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \begin{aligned}
& \frac{5 \pm \sqrt{-5^{2}-4(1)(15)}}{2(1)} \\
&=\frac{5 \pm \sqrt{25-60}}{2} \\
&=\frac{5 \pm \sqrt{-35}}{2} \\
&=\frac{5 \pm \sqrt{35} i}{2}
\end{aligned}
\end{aligned}
$$

$$
z=\frac{5}{2}+\frac{\sqrt{35}}{2} i \quad \text { or } \quad z=\frac{5}{2}-\frac{\sqrt{35}}{2} i
$$

