Complex Numbers in Polar Form

$$
r(\cos \theta, i \sin \theta)
$$

Example:

Express the complex number in polar form.
$5+2 i$
The polar form of a complex number $z=a+b i$ is $z=r(\cos \theta+i \sin \theta)$.
So, first find the absolute value of r.

$$
\begin{aligned}
r & =|z|=\sqrt{a^{2}+b^{2}} \\
& =\sqrt{5^{2}+2^{2}} \\
& =\sqrt{25+4} \\
& =\sqrt{29} \\
& \approx 5.39
\end{aligned}
$$

Now find the argument θ.
Since $a>0$, use the formula $\theta=\tan ^{-1}\left(\frac{b}{a}\right)$.

$$
\begin{aligned}
\theta & =\tan ^{-1}\left(\frac{2}{5}\right) \\
& \approx 0.38
\end{aligned}
$$

Note that here θ is measured in radians.
Therefore, the polar form of $5+2 i$ is about $5.39(\cos (0.38)+i \sin (0.38))$.

Complex Numbers in General Polar Form

$$
r(\cos (\theta+2 n \pi), i \sin (\theta+2 n \pi))
$$

Exercises

Write each of the following in Polar and General Polar
Express each of these complex numbers in the form $r(\cos \theta+i \sin \theta)$, where $i^{2}=-1$:
(i) $-1+i$
(ii) $-\sqrt{3}-i$
(iii) $\frac{1}{2}+\frac{\sqrt{3}}{2} i$
(iv) $-6 i$.

Solutions on next page

Solution:

(iv) $-6 i=0-6 i=(0,-6)$

$$
r=|0-6 i|=\sqrt{0^{2}+(-6)^{2}}=\sqrt{0+36}=\sqrt{36}=6
$$

$$
\theta=\frac{3 \pi}{2}
$$

$\therefore \quad-6 i=6\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right)$

Exercise

Express $4\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$ in the form $x+y i$.

Express $4\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$ in the form $x+y i$.

Solution:

$\frac{5 \pi}{6}$ is in the 2nd quadrant, so:

$$
\cos \frac{5 \pi}{6}=-\cos \frac{\pi}{6}=-\frac{\sqrt{3}}{2}
$$

$\sin \frac{5 \pi}{6}=\sin \frac{\pi}{6}=\frac{1}{2}$
$\therefore \quad 4\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)=4\left(-\frac{\sqrt{3}}{2}+\frac{1}{2} i\right)=-2 \sqrt{3}+2 i$

More Exercises

Express each of the following complex numbers in the form $r(\cos \theta+i \sin \theta)$, where $i^{2}=-1$:

1. $1+i$
2. $\sqrt{3}+i$
3. -5
4. $3 i$
5. $-2 i$
6. $-1-\sqrt{3} i$
7. $1-i$
8. $2-2 i$
9. $-\sqrt{2}-\sqrt{2} i$
10. $-3+\sqrt{3} i$
11. $\frac{1}{2}-\frac{\sqrt{3}}{2} i$
12. $-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$

Express each of the following in the form $a+b i$:
13. $\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}$
14. $\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)$
15. $6\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$
16. $2 \sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
17. $10\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)$
18. $2\left(\cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}\right)$

