Integration – Volume

To find volume generated by rotating a shape about the x-axis

$$Vol = \int_{a}^{b} \pi y^2$$

Example 1

The graph of $y = x^2$ between x = 1 and x = 3 is rotated completely about the x-axis. Find the volume generated.

Example 2

Determine the volume of the solid generated by rotating the region bounded by $f(x) = x^2 - 4x + 5$, x = 1, x = 4 and the x-axis about the x-axis.

 $\int_{1}^{4} \pi \left(x^{2} - 4x + 5\right)^{2} dx = \pi \left(x^{4} - 8x^{3} + 26x^{2} - 40x + 25 + c\right) \text{ between 1 and 4} =$

$$= \pi \left(\left(\frac{(4)^5}{5} - \frac{8(4)^4}{4} + \frac{26(4)^3}{3} - \frac{40(4)^2}{2} + 25(4) + c \right) - \left(\frac{(1)^5}{5} - \frac{8(1)^4}{4} + \frac{26(1)^3}{3} - \frac{40(1)^2}{2} + 25(1) + c \right) \right)$$

$$= \pi \left(\left(\frac{1024}{5} - \frac{2048}{4} + \frac{1664}{3} - \frac{460}{2} + 100 + c - \frac{1}{5} + \frac{8}{4} - \frac{26}{3} + \frac{40}{2} - 25 - c \right) \right)$$

$$= \pi \left(\left(\frac{1024}{5} - 512 + \frac{1664}{3} - 130 + 100 + c - \frac{1}{5} + 2 - \frac{26}{3} + 20 - 25 - c \right) \right)$$

$$= \frac{78\pi}{5} \text{ units}^3$$

Integration – Area & Volume Exercises

Questions		Answers	
		4	
a)	$y = -x^2 + 2x + 8, y = 0$	a)	36
b)	$y = 16 - x^2$, $y = x^2 - 16$	b)	$18\sqrt{2} \doteq 25.456$
c)	$y = x^2 - 4x + 6, \ y = -2x^2 + 8x - 3$	C)	$\frac{1}{6}$
d)	$y = x^2 + 6x + 8, \ y = -x^2 - 10x - 16$	d)	$\frac{1}{3}$
e)	$y = -9 - x^2$, $5x + y + 9 = 0$	e)	$3 - e \doteq 0.282$
f)	$y = x^2$, $y = 2x^2$, $y = 1$	f)	1
g)	$y = 2x^3, y = \frac{x}{2}$	g)	$\frac{9}{2}$
h)	$y = x, y = 3\sqrt{x}$	h)	$\pi \doteq 3.142$
i)	$y = x^2 + 1$, $y = 0$, $x = -1$, $x = 2$	i)	$\frac{4}{3}$
j)	$y = -x^2 + 2x - 3$, $y = 0$, $x = 0$, $x = 3$	j)	$\frac{16}{3}$
k)	$y = \sin x, y = 0, x = 0, x = 2\pi$	k)	$\frac{\pi}{2} - \frac{1}{3} \doteq 1.237$

By using a definite integral find the area of the region bounded by the given curves:

5	By using a definite integral find the volume of t	the solid	obtained by rotating the region bounded by the given
	curves around the x-axis :		
a)	$y = x, y = \frac{1}{x}, y = 0, x = 2$	k)	$y = \sin x, \ y = 0, \ x \in \langle 0; \pi \rangle$
b)	$y = x^2, y = x$	l)	$y = \sin 2x, \ y = 0, \ x \in \left\langle 0; \frac{\pi}{2} \right\rangle$
C)	$y = x^3 + 3$, $y = 0$, $x = -1$, $x = 1$	m)	$y = \sin^2 x, y = 3\sin x, x \in \langle 0; \pi \rangle$
d)	$y = \frac{4}{x}, y = 0, x = 1, x = 4$	n)	$y = \sqrt{x} e^{-x}, y = 0, x = 1$
e)	$y = -x^2 + 1$, $y = -2x^2 + 2$	O)	$y = \frac{\ln x}{x}, y = 0, x = 1, x = e$
f)	$y = \frac{1}{1+x^2}, x = -1, x = 1$	p)	$y = e^{2x}, y = e^{-2x}, y = e^{2}$
g)	$y = x^2 - 6x + 9$, $y = x^2 - 4x + 7$, $x = 3$	r)	$x^2 + y^2 = 4, \ x \in \langle -2; 2 \rangle$
h)	$y = \sqrt{2x-3}, y = \sqrt{4x-7}, y = 0$	s)	$y^2 = 5x, x = 8$ Activate
i)	$y = 2^x$, $3x - 4y + 5 = 0$	t)	$y = x^2, \ x = y^3$

Answers

5

a)	$\frac{5}{6}\pi \doteq 2.618$	k)	$\frac{\pi^2}{2} \doteq 4.935$
b)	$\frac{\pi}{30} \doteq 0.105$	I)	$\frac{\pi^2}{4} \doteq 2.467$
c)	$\frac{128}{7}\pi \doteq 18.286$	m)	$\frac{33}{8}\pi^2 \doteq 40.712$
d)	$12\pi \doteq 37.699$	n)	$\frac{\pi}{4} - \frac{3\pi}{4e^2} \doteq 0.467$
e)	$\frac{16}{5}\pi \doteq 10.053$	0)	$2\pi - \frac{5\pi}{e} \doteq 0.505$
f)	$\frac{\pi}{4}(\pi+2) \doteq 4.038$	P)	$\frac{\pi}{2}(3e^4+1) \doteq 258.859$
g)	$16\pi \doteq 50.265$	r)	$16\pi \doteq 50.265$
h)	$\frac{\pi}{8} \doteq 0.393$	s)	$160\pi \doteq 502.655$
i)	$\frac{\pi}{2} \left(7 - \frac{15}{4\ln 2} \right) \doteq 2.497$	t)	$\frac{2}{5}\pi \doteq 1.257$

6	By using a definite integral find the volume of the curves around the y-axis :	ne solid o	btained by rotating the region bounded by the given
a)	$y = 4 - x^2, \ x = 0, \ x = 2$	k)	$y = x^2 - 6x + 9, \ x = 3, \ x = 5$
b)	$y = x^2 - x - 6, \ x = 3, \ x = 5$	I)	$y = x^2 - 3x, \ x = 3, \ x = 5$
c)	$y = \frac{3}{x^4}, x = 1, x = 4$	m)	$y = 4x - x^2, \ x = 0, \ x = 4$
d)	$y = e^{-x}, y = 0, x = 0, x = 1$	n)	$y = \frac{3}{x^2 + 1}, x = 0, x = 3$
e)	$y = \sin x, \ y = \frac{1}{2}, \ x = 0$	O)	$y = \frac{x^2}{2}, \ y = \frac{ x }{2}$
f)	$y = \ln x, y = 0, y = 1, x = 0$	p)	$y = x^2, \ x = y^2$
g)	$y = \frac{5}{x^3}, x = 1, x = 4$	r)	$4y = x^2, \ 4x = y^2$
h)	$y = e^{-2x}, y = 0, x = 0, x = 2$	s)	$y^2 = x^3, y = 0, x = 1$
i)	$y = 4x^3$, $y = x^2$, $x = 1$, $x = 5$	t)	$y^2 = 4 - x, x = 0$
j)	$y = \frac{5}{x^2}, x = 1, x = \frac{9}{2}$	u)	$y^2 = x^2 - x^3$

Answers

6

a)	$8\pi \doteq 25.133$	k)
b)	$\frac{332}{3}\pi \doteq 347.670$	I)
c)	$\frac{45}{16}\pi \doteq 8.836$	m)
d)	$2\pi \left(1 - \frac{2}{e}\right) \doteq 1.660$	n)
e)	$\frac{1}{72}\pi^3 + \frac{\sqrt{3}}{6}\pi^2 - \pi \doteq 0.138$	O)
f)	$\frac{\pi}{2}(e^2-1) \doteq 10.036$	p)
g)	$\frac{15}{2}\pi \doteq 23.562$	r)
h)	$\frac{\pi}{2} \left(1 - \frac{5}{e^4} \right) \doteq 1.427$	s)
i)	$\frac{23432}{5}\pi \doteq 14,722.760$	t)

a) $24\pi \doteq 75.398$ 76 $\pi \doteq 238.761$

m)
$$\frac{128}{3}\pi \doteq 134.041$$

a)
$$3\pi \ln 10 \doteq 21.701$$

$$\frac{\pi}{12} \doteq 0.262$$

(b)
$$\frac{3}{10}\pi \doteq 0.942$$

96

$$\frac{-\pi}{5} = 60.319$$

)
$$\frac{1}{7}\pi \doteq 1.795$$

512

$$\frac{512}{15}\pi \doteq 107.233$$

How do I find the volume of the solid generated by revolving the region bounded by $y=x^2$, y=0, and x=2 about the x-axis? The y-axis?

Explanation:

the rose region is revolving about the x-axis and y-axis

1) when the shaded region revolving a bout x-axis

$$Volume = \pi \int_{a}^{b} y^{2} \cdot dx$$
$$Volume = \pi \int_{0}^{2} y^{2} \cdot dx = \pi \int_{0}^{2} x^{4} \cdot dx = \pi \left[\frac{1}{5} \cdot x^{5}\right]_{0}^{2}$$
$$= \pi \left[\left(\frac{32}{5}\right) - 0\right] = \left(\frac{32}{5}\right) \pi (unite)^{3}$$

2) when the shaded region revolving about the y-axis

 $\begin{aligned} Volume &= \pi \int_{d}^{c} \left[\left(x^{2} \right)_{2} - \left(x^{2} \right)_{1} \right] \cdot dy \\ Volume &= \pi \int_{0}^{4} \left[\left(2^{2} \right)_{2} - \left(\sqrt{y}^{2} \right)_{1} \right] \cdot dy \\ &= \pi \int_{0}^{4} \left[4 - y \right] \cdot dy = \pi \left[4y - \frac{1}{2}y^{2} \right]_{0}^{4} \\ &= \pi [16 - 8] = 8\pi (unite)^{3} \end{aligned}$

Q4 a

 $y = -x^2 + 2x + 8$ 0 = (-n + 4)(x + 2)0 = -x + 4, x + 7 = 0x = 4= -2 (4,0) (-2,0) $f(0) = -(0)^2 + 2(0) + 8 = 8 \quad (0,8)$ y =0 $(-x^2+2x+8)dx = \frac{-x^3}{3} + \frac{2x^2}{2} + 8x + \frac{2x^2}{3} + \frac{2x^2}{2} + \frac{2x^2}{3} + \frac{2x^2}{2} + \frac{2x^2}{3} + \frac{2x^2}{$ $\frac{2(4)^{2}}{2} + 8(4) + c = \frac{-(-2)^{3}}{3} + (-2)^{2} + 8(-2) + c$ $-(4)^{3}$ $-\frac{64}{2} + \frac{16}{16} + \frac{32}{2} + \frac{6}{2} - \frac{4}{7} + \frac{16}{16}$ $60 - \frac{72}{3} = 60 - 24 = 36 \text{ units}^2$

y=0, = Z 5 (a) 4 U 20 y= 2 2 y2 dx $V = \pi$ $\frac{1}{3c^2 dx} = \frac{3}{3} + c$ = -17 $-\frac{(0)^{3}}{3}$ i, 3 - 6 113 + c π $\frac{-2}{2} + \frac{-2}{2} = \frac{-2}{2} = \frac{-1}{7} + \frac{-1}{7}$ -2+c -1 +c +'21 11 π 211+34 + 27 = 13 1

$$y = x^{3} + 3$$

$$y^{2} = (x^{3} + 3)(x^{3} + 3)$$

$$y^{2} = x^{6} + 3x^{3} + 3x^{3} + 3x^{3} + 9$$

$$y^{2} = x^{6} + 6x^{3} + 9$$

$$T \int_{-1}^{1} x^{6} + 6x^{2} + 9 = \pi \left(\frac{x^{3}}{7} + \frac{6x^{6}}{4} + \frac{9x}{7}\right)_{-1}^{1}$$

$$\pi \left(\left(\frac{1}{4} + \frac{6}{7} + 9\right) - \frac{1}{7} + \left(\frac{1}{7} + \frac{6}{7} - 9\right)\right)$$

$$\frac{1}{7} + \frac{6}{7} + 9 + \frac{1}{7} - \frac{6}{7} + 9$$

$$\frac{1}{8} \frac{7}{4} + \pi$$

$$\frac{128}{7} \pi$$

$$\begin{split} y &= -x^{2} + 1 \quad , \ y = -2x^{2} + 1 \\ y^{2} &= (x^{2} + 1)(x^{2} + 1), \ y^{2} &= (2x^{2} + 1)(2x^{2} + 1)(2x^{2} + 1) \\ y^{2} &= x^{2} + 2x^{2} \quad + 1 \\ \end{split}$$

$$\begin{aligned} T \int_{-1}^{11} 4x^{4} - Px^{2} + 4 \qquad - \pi \int_{-1}^{1} ((1 - 2x^{2} + 1)) \\ T \left(\frac{4x^{3}}{3} - \frac{9x^{2}}{3} + 4x \right) - T \left(\frac{x^{2}}{3} - \frac{2x^{2}}{3} + x \right) \\ \\ T \left(\left(\frac{4x^{3}}{3} - \frac{9x^{2}}{3} + 4x \right) - T \left(\frac{x^{2}}{3} - \frac{2x^{2}}{3} + x \right) \right) \\ \\ T \left(\left(\frac{4x^{3}}{3} - \frac{9x^{2}}{3} + 4x \right) - T \left(\frac{4(x)^{3}}{3} - \frac{9(x)^{2}}{3} + 4(x) \right) \right) \\ \\ T \left(\left(\frac{4x^{3}}{3} - \frac{9x^{2}}{3} + 7 + \frac{4x}{3} - \frac{8x}{3} + 4 \right) = \\ 8 + \frac{9}{3} - \frac{16}{3} = 2 \frac{100}{15} + \frac{224}{15} - \frac{80}{15} = \frac{44}{15} \\ \\ T \left(\left(\frac{0}{5} - \frac{2(0)^{3}}{3} + 1 + \frac{1}{3} - \frac{2x}{3} + 1 \right) \\ = 2 + \frac{2x}{3} - \frac{1}{3} = \frac{30}{15} + \frac{4}{15} - \frac{2x}{3} + 1 \\ \\ \end{array} \right) \\ \\ T \left(\frac{4x^{3}}{5} - \frac{16}{15} - \frac{2}{3} + 1 + \frac{1}{5} - \frac{2}{3} + 1 \\ \\ = 2 + \frac{2x}{5} - \frac{1}{3} = \frac{30}{15} + \frac{4}{15} - \frac{20}{15} = \frac{16}{15} \\ \\ T \left(\frac{4x^{3}}{5} - \frac{16}{15} - \frac{16}{15} \\ \\ \\ \end{array} \right) \\ \\ \end{array}$$

Q6 a

6(a) y=4-22 y = 0, x = 2About y saxis 22 dy TT -4 -712 4 0=4 =-u+4 2 = 4 special 70= 10 SALAN x2 = 4 -=+2 let 31 = 0 y=4-(0) = y=4, (0,4 (0,4) (4-y) dy = + (4y-y2+ π 4(0)-(0)2 + < te + - x + c - 0 - 0 - c 16 T BTT