To find volume generated by rotating a shape about the x-axis

$$
\text { Vol }=\int_{a}^{b} \pi y^{2}
$$

Example 1

The graph of $y=x^{2}$ between $x=1$ and $x=3$ is rotated completely about the x-axis. Find the volume generated.

$$
\begin{aligned}
& \int_{1}^{3} \pi x^{4} d x \quad=\pi \frac{x^{5}}{5}+c \text { between } 1 \text { and } 3= \\
& =\pi\left(\frac{(3)^{5}}{5}-\frac{(1)^{5}}{5}\right)=\frac{243 \pi}{5}-\frac{\pi}{5}=\frac{242 \pi}{5}=48.4 \pi \text { units }^{3}
\end{aligned}
$$

Example 2

Determine the volume of the solid generated by rotating the region bounded by $f(x)=x^{2}-4 x+5, \mathrm{x}=1, \mathrm{x}=4$ and the x-axis about the x-axis.

$\int_{1}^{4} \pi\left(x^{2}-4 x+5\right)^{2} d x \quad=\pi\left(x^{4}-8 x^{3}+26 x^{2}-40 x+25+c\right)$ between 1 and $4=$
$=\pi\left(\left(\frac{(4)^{5}}{5}-\frac{8(4)^{4}}{4}+\frac{26(4)^{3}}{3}-\frac{40(4)^{2}}{2}+25(4)+c\right)-\left(\frac{(1)^{5}}{5}-\frac{8(1)^{4}}{4}+\frac{26(1)^{3}}{3}-\frac{40(1)^{2}}{2}+25(1)+c\right)\right)$
$=\pi\left(\left(\frac{1024}{5}-\frac{2048}{4}+\frac{1664}{3}-\frac{460}{2}+100+c-\frac{1}{5}+\frac{8}{4}-\frac{26}{3}+\frac{40}{2}-25-c\right)\right)$
$=\pi\left(\left(\frac{1024}{5}-512+\frac{1664}{3}-130+100+c-\frac{1}{5}+2-\frac{26}{3}+20-25-c\right)\right)$
$=\frac{78 \pi}{5}$ units 3

By using a definite integral find the area of the region bounded by the given curves:

Questions	Answers	
		a
a) $\quad y=-x^{2}+2 x+8, y=0$	a)	36
b) $\quad y=16-x^{2}, y=x^{2}-16$	b)	$18 \sqrt{2}=25.456$
c) $\quad y=x^{2}-4 x+6, y=-2 x^{2}+8 x-3$	c) $\frac{1}{6}$	
d) $\quad y=x^{2}+6 x+8, y=-x^{2}-10 x-16$	d) $\frac{1}{3}$	
e) $y=-9-x^{2}, 5 x+y+9=0$	e)	$3-e=0.282$
f) $y=x^{2}, y=2 x^{2}, y=1$	f)	1
g) $y=2 x^{3}, y=\frac{x}{2}$	g) $\frac{9}{2}$	
h) $y=x, y=3 \sqrt{x}$	h)	$\pi \doteq 3.142$
i) $y=x^{2}+1, y=0, x=-1, x=2$	i) $\frac{4}{3}$	
j) $y=-x^{2}+2 x-3, y=0, x=0, x=3$	j) $\frac{16}{3}$	
k) $y=\sin x, y=0, x=0, x=2 \pi$	k) $\frac{\pi}{2}-\frac{1}{3} \doteq 1.237$	

5 By using a definite integral find the volume of the solid obtained by rotating the region bounded by the given curves around the x -axis :
a) $\quad y=x, y=\frac{1}{x}, y=0, x=2$
b) $y=x^{2}, y=x$
c) $\quad y=x^{3}+3, y=0, x=-1, x=1$
d) $y=\frac{4}{x}, y=0, x=1, x=4$
e) $\quad y=-x^{2}+1, y=-2 x^{2}+2$
f) $y=\frac{1}{1+x^{2}}, x=-1, x=1$
g) $y=x^{2}-6 x+9, y=x^{2}-4 x+7, x=3$
k) $\quad y=\sin x, y=0, x \in\langle 0 ; \pi\rangle$

1) $y=\sin 2 x, y=0, x \in\left\langle 0 ; \frac{\pi}{2}\right\rangle$
m) $y=\sin ^{2} x, y=3 \sin x, x \in\langle 0 ; \pi\rangle$
n) $\quad y=\sqrt{x} e^{-x}, y=0, x=1$
o) $y=\frac{\ln x}{x}, y=0, x=1, x=e$
p) $y=e^{2 x}, y=e^{-2 x}, y=e^{2}$
r) $\quad x^{2}+y^{2}=4, x \in\langle-2 ; 2\rangle$
h) $\quad y=\sqrt{2 x-3}, y=\sqrt{4 x-7}, y=0$
s) $\quad y^{2}=5 x, x=8$
i) $\quad y=2^{x}, 3 x-4 y+5=0$
t) $\quad y=x^{2}, x=y^{3}$

Answers

5

a) $\frac{5}{6} \pi \doteq 2.618$
b) $\frac{\pi}{30} \doteq 0.105$
c) $\frac{128}{7} \pi \doteq 18.286$
d) $\quad 12 \pi \doteq 37.699$
e) $\frac{16}{5} \pi \doteq 10.053$
f) $\frac{\pi}{4}(\pi+2) \doteq 4.038$
g) $16 \pi \doteq 50.265$
h) $\frac{\pi}{8} \doteq 0.393$
i) $\quad \frac{\pi}{2}\left(7-\frac{15}{4 \ln 2}\right) \doteq 2.497$
k) $\quad \frac{\pi^{2}}{2} \doteq 4.935$
l) $\frac{\pi^{2}}{4} \doteq 2.467$
m) $\quad \frac{33}{8} \pi^{2} \doteq 40.712$
n) $\frac{\pi}{4}-\frac{3 \pi}{4 e^{2}} \doteq 0.467$
o) $2 \pi-\frac{5 \pi}{e} \doteq 0.505$
p) $\quad \frac{\pi}{2}\left(3 e^{4}+1\right)=258.859$

1) $16 \pi \doteq 50.265$
s) $\quad 160 \pi \doteq 502.655$
t) $\quad \frac{2}{5} \pi \doteq 1.257$
$6 \quad$ By using a definite integral find the volume of the solid obtained by rotating the region bounded by the given curves around the y-axis :
a) $y=4-x^{2}, x=0, x=2$
b) $y=x^{2}-x-6, x=3, x=5$
c) $y=\frac{3}{x^{4}}, x=1, x=4$
d) $\quad y=e^{-x}, y=0, x=0, x=1$
e) $y=\sin x, y=\frac{1}{2}, x=0$
f) $\quad y=\ln x, y=0, y=1, x=0$
g) $y=\frac{5}{x^{3}}, x=1, x=4$
h) $\quad y=e^{-2 x}, y=0, x=0, x=2$
i) $\quad y=4 x^{3}, y=x^{2}, x=1, x=5$
j) $y=\frac{5}{x^{2}}, x=1, x=\frac{9}{2}$
k) $\quad y=x^{2}-6 x+9, x=3, x=5$
2) $y=x^{2}-3 x, x=3, x=5$
m) $y=4 x-x^{2}, x=0, x=4$
n) $y=\frac{3}{x^{2}+1}, x=0, x=3$
o) $y=\frac{x^{2}}{2}, y=\frac{|x|}{2}$
p) $y=x^{2}, x=y^{2}$
3) $\quad 4 y=x^{2}, 4 x=y^{2}$
s) $\quad y^{2}=x^{3}, y=0, x=1$
t) $y^{2}=4-x, x=0$
u) $y^{2}=x^{2}-x^{3}$

Answers

a) $\quad 8 \pi \doteq 25.133$
k) $\quad 24 \pi \doteq 75.398$
b) $\frac{332}{3} \pi \doteq 347.670$

1) $\quad 76 \pi \doteq 238.761$
c) $\frac{45}{16} \pi \doteq 8.836$
m) $\frac{128}{3} \pi \doteq 134.041$
d) $2 \pi\left(1-\frac{2}{e}\right) \doteq 1.660$
n) $3 \pi \ln 10 \doteq 21.701$
e) $\frac{1}{72} \pi^{3}+\frac{\sqrt{3}}{6} \pi^{2}-\pi \doteq 0.138$
o) $\frac{\pi}{12} \doteq 0.262$
f) $\quad \frac{\pi}{2}\left(e^{2}-1\right)=10.036$
p) $\quad \frac{3}{10} \pi \doteq 0.942$
g) $\frac{15}{2} \pi \doteq 23.562$
r) $\frac{96}{5} \pi \doteq 60.319$
h) $\frac{\pi}{2}\left(1-\frac{5}{e^{4}}\right) \doteq 1.427$
s) $\frac{4}{7} \pi \doteq 1.795$
i) $\frac{23432}{5} \pi \doteq 14,722.760$
t) $\frac{512}{15} \pi \doteq 107.233$

How do I find the volume of the solid generated by revolving the region bounded by $y=x^{2}, y=0$, and $x=2$ about the x-axis? The y-axis?

Explanation:

the rose region is revolving about the x-axis and y-axis

1) when the shaded region revolving a bout x-axis

Volume $=\pi \int_{a}^{b} y^{2} \cdot d x$
Volume $=\pi \int_{0}^{2} y^{2} \cdot d x=\pi \int_{0}^{2} x^{4} \cdot d x=\pi\left[\frac{1}{5} \cdot x^{5}\right]_{0}^{2}$
$=\pi\left[\left(\frac{32}{5}\right)-0\right]=\left(\frac{32}{5}\right) \pi\left(\right.$ unite $^{3}{ }^{3}$
2) when the shaded region revolving about the y-axis

Volume $=\pi \int_{d}^{c}\left[\left(x^{2}\right)_{2}-\left(x^{2}\right)_{1}\right] \cdot d y$
Volume $=\pi \int_{0}^{4}\left[\left(2^{2}\right)_{2}-\left(\sqrt{y}^{2}\right)_{1}\right] \cdot d y$
$=\pi \int_{0}^{4}[4-y] \cdot d y=\pi\left[4 y-\frac{1}{2} y^{2}\right]_{0}^{4}$
$=\pi[16-8]=8 \pi(\text { unite })^{3}$

Q4 a

$$
\begin{array}{ll}
y=-x^{2}+2 x+8 & \\
0=(-x+4)(x+2) & \\
0=-x+4, & x+2=0 \\
x=4, & x=-2 \\
(4,0) & (-2,0)
\end{array}
$$

$$
\begin{equation*}
f(0)=-(0)^{2}+2(0)+8=8 \tag{0,8}
\end{equation*}
$$

$$
\int_{-2}^{4}\left(-x^{2}+2 x+8\right) d x=\left|-\frac{x^{3}}{3}+\frac{2 x^{2}}{2}+8 x+\right|_{-2}^{4}
$$

$$
\left[\begin{array}{l}
-\frac{(4)^{3}}{3}+\frac{2(4)^{2}}{2}+8(4)+c \\
-64+16+32+\left[-\frac{-(-2)^{3}}{3}+(-2)^{2}+8(-2)+c\right.
\end{array}\right]
$$

$$
\begin{aligned}
& -\frac{64}{3}+16+32+c-\frac{8}{3}-4+16 \\
& 60-\frac{72}{3}=60-24=36 \text { units }^{2}
\end{aligned}
$$

$5(a) \quad y=x, y=\frac{1}{x} \quad y=0, x=2$

$$
\begin{aligned}
& \pi \int_{0}^{1} x^{2} d x=\left|\frac{x^{3}}{3}+c\right|_{0}^{1}= \\
& \pi\left(\frac{(1)^{3}}{3}+c-\frac{(0)^{3}}{3}-c\right)=\pi \frac{1}{3} \\
& \pi \int_{1}^{2} \frac{1}{x^{2} d x}=\frac{x^{-2}}{3} \Rightarrow \frac{x^{-1}}{-1}+c \pi\left(\frac{1}{-x}+\left.c\right|_{1} ^{2}\right. \\
& \pi\left(\frac{1}{2}+c-\frac{1}{-1}-c\right)=+\frac{1}{2} \pi \\
& \frac{1}{3} \pi+\frac{1}{2} \pi=\frac{2}{6} \pi+\frac{3}{6} \pi=\frac{5}{6} \pi
\end{aligned}
$$

Q5c

$$
\begin{aligned}
& y=x^{3}+3 \\
& y^{2}=\left(x^{3}+3\right)\left(x^{3}+3\right) \\
& y^{2}=x^{6}+3 x^{3}+3 x^{3}+9 \\
& y^{2}=x^{6}+6 x^{3}+9
\end{aligned}
$$

Q5e

$$
\begin{aligned}
& y=-x^{2}+1 \quad, \quad y=-2 x^{2}+2 \\
& y^{2}=\left(-x^{2}+1\right)\left(-x^{2}+1\right), \quad y^{2}=\left(-2 x^{2}+2\right)\left(-2 x^{2}+2\right) \\
& y^{2}=x^{4}+2 x^{2}+1 \\
& \pi \int_{-1}^{1} 4 x^{4}-8 x^{2}+4-\pi \int_{-1}^{1}\left(4+2 x^{2}+1\right) \\
& \text { (I) } \\
& \text { (2) } \\
& \pi\left(4 \frac{x^{3}}{3}-\frac{8 x^{3}}{3}+4 x\right)-\pi\left(\frac{x^{5}}{5}-\frac{2 x^{3}}{3}+x\right) \\
& \pi\left(\left(\frac{4(1)^{5}}{5}-\frac{8(1)^{3}}{3}+4(1)\right)-\left(\frac{4(-1)^{5}}{3}-\frac{8(-1)^{3}}{3}+4(-1)\right)\right. \\
& \pi\left(\frac{4}{5}-\frac{8}{3}+4+\frac{4}{5}-\frac{8}{3}+4\right)= \\
& 8+\frac{8}{5}-\frac{16}{3} \Rightarrow \frac{120}{15}+\frac{24}{15}-\frac{80}{15}=\frac{64}{15} \pi \\
& \pi\left(\left(\frac{(1)^{5}}{5}-\frac{2(1)^{3}}{3}+(1)\right)-\left(\frac{(-1)^{5}}{3}-\frac{2(-1)^{3}}{3}+(-1)\right)\right) \\
& \pi\left(\frac{1}{5}-\frac{2}{3}+1+\frac{1}{5}-\frac{2}{3}+1\right) \\
& =2+\frac{2}{5}-\frac{\pi}{3}=\frac{30}{15}+\frac{6}{15}-\frac{20}{15}=\frac{16}{15} \pi \\
& \frac{64}{15} \pi-\frac{16}{15} \pi=\frac{48}{15} \pi=\frac{16}{5} \pi
\end{aligned}
$$

Q6 a

6(a) $\quad y=4-x^{2}, \quad x=0, \quad x=2$
About y saxis $\pi \int x^{2} d y$.

$$
\begin{array}{ll}
y=4-x^{2} & \\
y-4=-x^{2} & 0=4-x^{2} \\
x^{2}=-y+4 & x^{2}=4 \\
x^{2}=4-y & x=\sqrt{4} \\
& x= \pm 2
\end{array}
$$

$\log x=0, \quad y=4-(0)^{2}=y=4, \quad(0,4)$

$$
\pi \int(4-y) d y=\pi\left|4 y-\frac{y^{2}}{2}+\right|_{0}^{4}
$$

$$
\begin{aligned}
& \pi\left[\left(4(4)-\frac{(4)^{2}}{2}+c\right)-\left(4(0)-\frac{(0)^{2}}{2}+c\right)\right] \\
& \pi[16-8+c-0-0-c]
\end{aligned}
$$

8π

