Area under a Curve

Calculating the area under a curve.

Definite Integrals

So far when integrating, there has always been a constant term left. For this reason, such integrals are known as indefinite integrals. With definite integrals, we integrate a function between 2 points, and so we can find the precise value of the integral and there is no need for any unknown constant terms [the constant cancels out].

$$
\int_{4}^{8} x+3 x^{2} d x
$$

This means the integral of $x+3 x^{2}$ with respect to x, between $x=8$ and $x=4$.

Integrating:

$$
\left[\frac{x^{2}}{2}+\frac{3 x^{3}}{3}+c\right]_{4}^{8}
$$

$$
\begin{aligned}
& =\left(\frac{8^{2}}{2}+\frac{3(8)^{3}}{3}+c\right)-\left(\frac{4^{2}}{2}+\frac{3(4)^{3}}{3}+c\right) \\
& =(32+512+c)-(8+64+c) \\
& =544+c-72-c \\
& =\underline{=}
\end{aligned}
$$

The Area Under a Curve

The area under a curve between two points can be found by doing a definite integral between the two points.
To find the area under the curve $y=f(x)$ between $x=a$ and $x=b$, integrate $y=f(x)$ between the limits of a and b.

Example: What is the area between the curve $y=x^{2}-4$ and the x axis?

The shaded area is the area that we want.
We can easily work out that the curve crosses the x axis when $x=-2$ and $x=2$. To find the area, therefore, we integrate the function between -2 and 2.

$$
\int_{-2}^{2}\left(x^{2}-4\right) d x=\left[\frac{x^{3}}{3}-4 x\right]_{-2}^{2}=\left(\frac{8}{3}-8\right)-\left(\frac{8}{3}+8\right)
$$

$=16 / 3-16 \quad$ Note: the area is negative
$=-10.67$ (2d.p.) because it is below the x-axis. Areas above the x-axis, on the other hand, give positive results.

Example 2

Areas under the x-axis will come out negative and areas above the x-axis will be positive. This means that you have to be careful when finding an area which is partly above and partly below the x-axis.

Example: find the total area between the curve $y=x^{3}$ and the x-axis between $x=-2$ and $\mathrm{x}=2$.

If we simply integrated x^{3} between -2 and 2 , we would get:

$$
\left[\frac{x^{4}}{4}\right]_{-2}^{2}=4-4=0
$$

So instead, we have to split the graph up and do two separate integrals.

$$
\begin{aligned}
& \int_{0}^{2} x^{3} d x=\left[\frac{x^{4}}{4}\right]_{0}^{2}=16 / 4-0=4 \\
& \int_{-2}^{0} x^{3} d x=\left[\frac{x^{4}}{4}\right]_{-2}^{0}=0-16 / 4=4 \quad \text { (so area is } 4 \text {). }
\end{aligned}
$$

We then add these two up to get: 8 units 2

You may also be asked to find the area between the curve and the y-axis. To do this, integrate with respect to y.

Example 3

Example

Find the area bounded by the lines $y=0, y=1$ and $y=x^{2}$.

$$
\begin{array}{rlr}
\text { Area } & =\int_{0}^{1} \mathrm{y} \text { dy } \\
= & \text { since } x=y^{1 / 2} \\
= &
\end{array}
$$

Exercise

Find the coordinates of the points (eg a and b) of intersection of the curve $f(x)=x^{2}+4$ and the line $y=13$
Find the area bounded by the by $f(x)$, the x -axis and the lines $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$.

Solution

$$
\begin{gathered}
13=x^{2}+4 \\
13-4=x^{2} \\
9=x^{2} \\
\pm 3=x \text { or } x= \pm 3
\end{gathered}
$$

$\int_{-3}^{3} x^{2}+4=\left\lfloor\frac{1}{3} x^{3}+4 x+c\right\rfloor$ for $x= \pm 3$
Substituting we get
$\left\lfloor\frac{1}{3}(3)^{3}+4(3)+c\right\rfloor-\left\lfloor\frac{1}{3}(-3)^{3}+4(-3)+c\right\rfloor$
$=\lfloor 9+12+c\rfloor-9-12+c=21+c+21-c \quad(+c$ and $-c$ cancel out)
Area $=42$ units 2

