

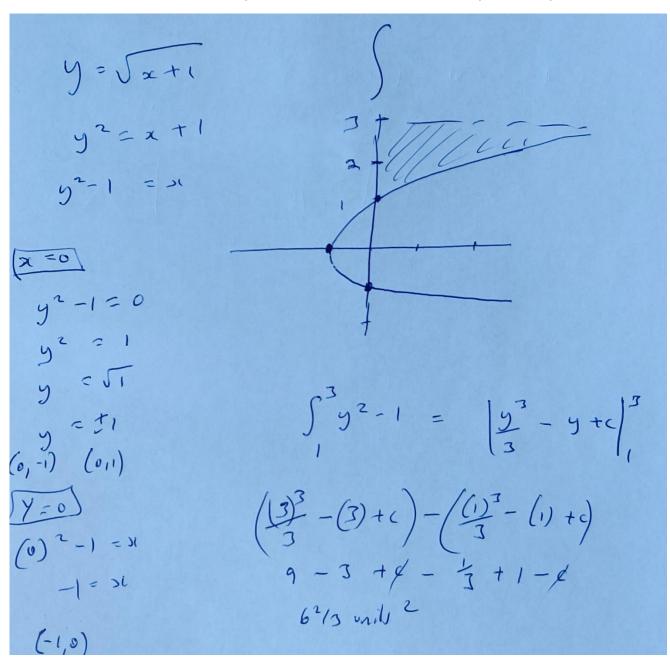
Find the area bounded by the curve $y = x^3$, the y-axis and the lines y = -1 and y = 8.

Area A =
$$\frac{3}{4} \left[\sqrt{3/3} \right]^{8}$$

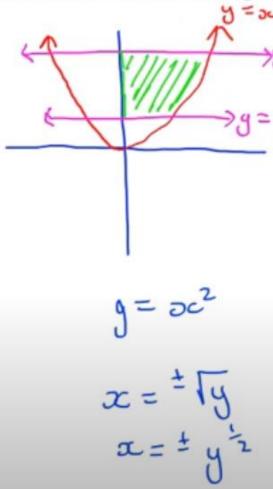
= $\frac{3}{4} \left[(\sqrt{3/8})^{4} - 0 \right]$

= 12 unit²

= $\frac{3}{4} \left[\sqrt{3/3} \right]^{3}$


= $\frac{3}{4} \left[\sqrt{3/3} \right]^{3}$

= $\frac{3}{4} \left[0 - (\sqrt{3/3})^{4} \right]$


= $-\frac{3}{4}$

: Area B = $\frac{3}{4}$ unit²

Find the area bounded by the curve $y = \sqrt{x+1}$ the y-axis and the lines y = 1 and y = 3?

Calculate the area of the region bounded by the curve $y = x^2$, the y-axis and the lines y = 1 and y = 4

$$A = \int_{1}^{3} y^{\frac{1}{2}} dy$$

$$= \left[\frac{2}{3} \times y^{\frac{3}{2}}\right]_{1}^{4}$$

$$= \frac{2}{3} \times 4^{\frac{3}{2}} - \frac{2}{3} \times 1^{\frac{3}{2}}$$

$$= \frac{14}{3} \text{ on its}^{2}$$

$$y=f(x)$$
 Area =
$$\int_{a}^{b} f(x)dx$$

Area =
$$\int (x^2 + 1) dx$$

$$y = x^2 + 1$$
= $\left[\frac{x^3}{3} + x\right]_{-1}^{3}$
= $\left[\frac{(3)^3}{3} + 3\right] - \left[\frac{(-1)^3}{3} + (-1)\right]$
= $12 + \frac{1}{3} + 1$
= $\frac{40}{3}$ sq. units

$$y = x(1-x)(x-3)$$

$$= x(x-3-x^{2}+3x)$$

$$= x(4x-x^{2}-3)$$

$$= x(4x-x$$

$$y = x(1-x)(x-3)$$

$$= x(x-3-x^{2}+3x)$$

$$= x(4x-x^{2}-3)$$

$$= x(4x-x^{2}-3)$$

$$= x(4x-x^{3}-3x)$$

$$= x(1-x)(x-3)$$

$$= x(4x-x^{2}-3)$$

$$= x(4x-x^{3}-3x)$$

$$= x(4x-x^{3}-3x)$$

$$= x(1-x)(x-3)$$

$$= x(4x-x^{3}-3x)$$

$$= x(4x-x^{3}-3x)$$

$$= x(1-x)(x-3)$$

: Area $B = \frac{5}{12}$ sq. units

:. Total Area = Area A+B
$$= \frac{8}{3} + \frac{5}{12}$$

