Area between curve and the Y-axis between two y values

Example 1

Calculate the area trapped between the function f(y) = —y? + 2 and the y-axis.

Let's first find where the curve f(y) intersects the y-axis. This will be our upper and lower bounds of integration.
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The following graph represents the area we intend to find:

We can now integrate using the formula from above.
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Example 2

Calculate the area bounded by the curve = = siny + 1, y = 0, y = 7 and the y-axis.

We note that our lower bound a = 0, while our upper bound b = mr, and therefore:
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Example 3

Calculate the area bounded by the curve = = /4 + y2, y = —4, y = 4, and the y-axis.

We note that our lower bound @ = —4 and our upper bound b = 4. Therefore:
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We will now have to use a trigonometric substitution. Let ¥y = 2 tan # so that dy = 2sec? @ df. Making this substitution we get that:
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We will not continue the example further as it is rather tedious, that A = 23.66.



