$$
(1+i)^{6}
$$

Write in polar form

$$
\begin{gathered}
\text { Modulus } \Rightarrow \sqrt{(1)^{2}+(1)^{2}}=\sqrt{2} \\
\theta \Rightarrow \tan \theta=\frac{1}{1} \\
\theta=\frac{\pi}{4}
\end{gathered}
$$

Polar form

$$
\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)
$$

Using De Morn',

$$
\begin{aligned}
\therefore & \left(\sqrt{2}\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)\right)^{6} \\
& \left(2^{1 / 2}\right)^{6}\left(\cos \frac{6 \pi}{4}+i \sin \frac{6 \pi}{4}\right) \\
& 2^{3}\left(\cos \frac{3 \pi}{2}+i \sin \frac{3 \pi}{2}\right) \\
& 8\left(\cos 270^{\circ}+i \sin 270^{\circ}\right) \\
& 8(0+i-1) \\
& -8 i
\end{aligned}
$$

$(\sqrt{3}-i)^{9}$

Modulus $\sqrt{(\sqrt{3})^{2}+(1)^{2}}=\sqrt{3+1}=\sqrt{4}=2$

Arguner $\tan \theta=\frac{1}{\sqrt{3}}$

$$
\theta=\frac{\pi}{6} \text { or } 30^{\circ}
$$

We can use 330° or $-30^{\circ}, \frac{11 \pi}{6}$

Polar form

$$
\begin{aligned}
& r(\cos \theta+i \sin \theta) \\
& \left(2(\cos 330+i \sin 330)^{9}\right. \\
& 2^{9}(\cos 9(330)+i \sin 9(330)) \\
& \operatorname{si2}(\cos 2970+i \sin 2970) \\
& \operatorname{si2}\left(\cos 90^{\circ}+i \sin 90^{\circ}\right) \\
& \operatorname{si2}(0+i(1)) \\
& \operatorname{si2}(i) \\
& \operatorname{si2} i
\end{aligned}
$$

Note:

$$
\begin{aligned}
& 2970-360=2610 \\
& \vdots \\
& 810-360=450 \\
& 450-760=90
\end{aligned}
$$

$$
(\sqrt{3}-i)^{9}
$$

Modulus $\sqrt{(\sqrt{3})^{2}+(-1)^{2}}=\sqrt{3+1}=\sqrt{4}=2$
Argument $\tan \theta=\frac{1}{\sqrt{3}}$

$$
\theta=\frac{\pi}{6} \text { or } 30^{\circ} \text { so we vas }-\frac{\pi}{6} \text { or }-30^{\circ}
$$

Polar form

$$
\begin{aligned}
& r(\cos \theta+i \sin \theta) \\
& \left(2\left(\cos \left(-\frac{\pi}{6}\right)+i \sin \left(-\frac{\pi}{6}\right)\right)\right)^{9} \\
& 2^{9}\left(\cos \left(-\frac{9 \pi}{6}\right)+i \sin \left(-9 \frac{\pi}{6}\right)\right) \\
& \sin \left(\cos ^{3} \frac{\pi}{2}+i \sin -\frac{3 \pi}{7}\right) \\
& \operatorname{si2}\left(\cos 270^{\circ}+i \sin -270^{\circ}\right) \text { or } \operatorname{sir}(\cos 270-i \sin 270) \\
& \operatorname{si2}(0+i-(-1)) \\
& \sin (i) \\
& \operatorname{si2} i
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \cos (-A)=\cos A \\
& \sin (-A)=-\sin A \\
& \tan (-A)=-\tan A
\end{aligned}
$$

