Volume when rotating about Y-Axis using Integration

Determine the volume of the solid generated by rotating the region bounded by $y=\sqrt[3]{x}$, and $y=\frac{x}{4}$ that lies in the first quadrant about the y-axis.

Solution

Step 1: Graph the bounding region and a graph of the object. The cross section is cut perpendicular to the axis of rotation and it is a horizontal washer. The inner and outer radii of the washer are x values, so we will need to rewrite our functions into the form $x=f(y)$.

Here are the functions written in the correct form for this example.

$$
y=\sqrt[3]{x} \Rightarrow x=y^{3} \quad \text { and } \quad y=\frac{x}{4} \Rightarrow x=4 y
$$

Step 2. Graph couple of sketches of the boundaries of the walls of this object as well as a typical washer. The sketch on the left includes the back portion of the object to give a little context to the figure on the right.

The cross-sectional area is then, $A(y)=\pi\left((4 y)^{2}-\left(y^{3}\right)^{2}\right)=\pi\left(16 y^{2}-y^{6}\right)$

Step 3. Working from the bottom of the solid to the top we can see that the first cross-section will occur at $y=0$ and the last cross-section will occur at $y=2$. These will be the limits of integration.
Step 4. The volume is then, $V=\int_{c}^{d} A(y) d y=\pi \int_{0}^{2}\left(16 y^{2}-y^{6}\right) d y=\left.\pi\left(\frac{16}{3} y^{3}-\frac{1}{7} y^{7}\right)\right|_{0} ^{2}=\frac{512 \pi}{21}$

