Area between curve and the \mathbf{Y}-axis between two y values

Example 1

Calculate the area trapped between the function $f(y)=-y^{2}+2$ and the y-axis.
Let's first find where the curve $f(y)$ intersects the y-axis. This will be our upper and lower bounds of integration.

$$
\begin{array}{r}
f(y)=-y^{2}+2 \\
0=-y^{2}+2 \\
2=y^{2} \\
y=\sqrt{(2)},-\sqrt{(2)}
\end{array}
$$

The following graph represents the area we intend to find:

We can now integrate using the formula from above.

$$
\begin{aligned}
& \text { Area }= \int_{-\sqrt{2}}^{\sqrt{2}}\left(-y^{2}+2\right) d y \\
& \text { Area }= {\left.\left[-\frac{y^{3}}{3}+2 y\right]\right|_{-\sqrt{2}} ^{\sqrt{2}} } \\
& \text { Area }= {\left.\left[-\frac{y^{3}}{3}+2 y\right]\right|_{-\sqrt{2}} ^{\sqrt{2}} } \\
& \text { Area } \approx 3.7712
\end{aligned}
$$

Example 2

Calculate the area bounded by the curve $x=\sin y+1, y=0, y=\pi$ and the y-axis.
We note that our lower bound $a=0$, while our upper bound $b=\pi$, and therefore

$$
\text { Area }=\int_{0}^{\pi} \sin y+1 d y
$$

$$
\text { Area }=[-\cos y+y]_{0}^{\pi}
$$

$$
\text { Area }=(-(-1)+\pi)-(-(1)+0)
$$

$$
\text { Area }=\pi+2
$$

Example 3

Calculate the area bounded by the curve $x=\sqrt{4+y^{2}}, y=-4, y=4$, and the y-axis.
We note that our lower bound $a=-4$ and our upper bound $b=4$. Therefore

$$
\text { Area }=\int_{-4}^{4} \sqrt{4+y^{2}} d y
$$

We will now have to use a trigonometric substitution. Let $y=2 \tan \theta$ so that $d y=2 \sec ^{2} \theta d \theta$. Making this substitution we get that:

$$
\begin{array}{r}
\text { Area }=\int_{\alpha}^{\beta} \sqrt{4+(2 \tan \theta)^{2}} \cdot 2 \sec ^{2} \theta d \theta \\
\text { Area }=\int_{\alpha}^{\beta} \sqrt{4+4 \tan ^{2} \theta} \cdot 2 \sec ^{2} \theta d \theta \\
\text { Area }=\int_{\alpha}^{\beta} \sqrt{4\left(1+\tan ^{2} \theta\right)} \cdot 2 \sec ^{2} \theta d \theta \\
\text { Area }=\int_{\alpha}^{\beta} \sqrt{4 \sec ^{2} \theta} \cdot 2 \sec ^{2} \theta d \theta \\
\text { Area }=\int_{\alpha}^{\beta} \sqrt{4 \sec ^{2} \theta} \cdot 2 \sec ^{2} \theta d \theta \\
\text { Area }=\int_{\alpha}^{\beta} 2 \sec \theta \cdot 2 \sec ^{2} \theta d \theta \\
\text { Area }=4 \int_{\alpha}^{\beta} \sec \theta\left(1+\tan ^{2} \theta\right) d \theta \\
\text { Area }=4 \int_{\alpha}^{\beta} \sec \theta+\sec \theta \tan ^{2} \theta d \theta
\end{array}
$$

We will not continue the example further as it is rather tedious, that $A=23.66$.

