Q5 $f(x)=\cos x$

$$
\begin{aligned}
& f(0)=\cos 0=1 \quad(0,1) \\
& f(\pi)=\cos \pi=-1 \quad\left(\pi_{i}-1\right) \\
& f\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2}=0 \quad\left(\frac{\pi}{2}, 0\right) \\
& f\left(-\frac{\pi}{2}\right)=\cos \left(-\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)=\left(-\frac{\pi}{2}, 0\right) \\
& 60^{\circ}=\frac{\pi}{3} \\
& f(-\pi)=\cos (-\pi)=\cos (+\pi)=(\pi,-1) \\
& \begin{aligned}
\int_{-\frac{\pi}{3}}^{\pi / 3} \cos x=|\sin x+c|_{-\frac{\pi}{3}}^{\frac{\pi}{3}} & =\left(\sin \frac{1}{3}+c\right)-(\underbrace{\sin \left(-\frac{\pi}{3}\right)}+c) \\
& =\frac{\sqrt{3}}{2}+4-\left(-\frac{\sqrt{3}}{2}\right)-4
\end{aligned} \\
& \begin{aligned}
\int_{-\frac{\pi}{3}}^{\pi / 3} \cos x=|\sin x+c|_{-\frac{\pi}{3}}^{\frac{\pi}{3}} & =\left(\sin \frac{\pi}{3}+c\right)-(\underbrace{\sin \left(-\frac{\pi}{3}\right)}+c) \\
& =\frac{\sqrt{3}}{2}+4-\left(-\frac{\sqrt{3}}{2}\right)-4
\end{aligned} \\
& =\frac{2 \sqrt{3}}{2}=\sqrt{3} \\
& \text { Area }=\sqrt{5}-\frac{\pi}{3} \text { or } \sqrt{2}-60^{\circ}
\end{aligned}
$$

