4. As a car passes a point p, its driver applies the brakes. The car's distance, s, from p at any subsequent time, t, is given by

$$
s(t)=20 t-2 t^{2}
$$

where s is measured in metres and t in seconds.

Find

(i) the car's distance from p at $t=4$.
(ii) the car's speed at $t=4$.
(iii) the time when the car comes to rest.
(iv) the car's distance from p when it stops.
(v) the constant deceleration of the car.
5. As soon as an aeroplane touches down, it applies brakes. The distance, s, which it has travelled along the runway at time t seconds after touchdown is given by

$$
s(t)=200 t-4 t^{2} \quad \text { metres. }
$$

Find
(i) the speed of the aeroplane at $t=3$.
(ii) the speed of the aeroplane at $t=4$.
(iii) the constant deceleration of the aeroplane.
(iv) the time taken in coming to rest.
(v) the distance travelled by the plane before coming to rest.
6. A piece of wire, 40 cm long, is bent to form a rectangle.
If the length of the rectangle is x, show that its area, A, is given by

$$
A=20 x-x^{2} .
$$

Hence find the maximum possible area.
7. A straight wall runs along one side of a farm. The farmer has 60 m of fencing to complete the other 3 sides of a small rectangular pen. If $x=$ the width of the pen, show that the area, A, is given by

$$
A(x)=60 x-2 x^{2}
$$

Hence find the maximum possible area of the pen.

Solutions
Q4 $\quad s(t)=20 t-2 t^{2}$
(1) $t=4, \quad s(4)=20(4)-2(4)^{2}=80-32=48 m$
(II)

$$
\begin{aligned}
\frac{d s}{d r}= & 20-4 t \\
& 20-4(4)=20-16=4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(III) stopped, speed $=0$

$$
\begin{array}{ll}
20-4 t & =0 \\
20 & =4 t, \quad t=55
\end{array}
$$

(iv) $\quad s(5)=20(5)-2(5)^{2}$

$$
100-50 \quad 50 \mathrm{~m}
$$

(v) $\frac{d^{2} s}{d r^{2}}=-4$ $4 \mathrm{~m} / \mathrm{s}^{2}$ Deceleration
$Q \sigma$

$$
s(t)=200 t-4 t^{2}
$$

$$
\text { Speed }=\frac{d s}{d r}=200-8 t
$$

(1) $200-8(3)=176 \mathrm{~m}$
(ii) $200-8(4)=168 \mathrm{~m}$
(iii) $\frac{d^{2} s}{d t^{2}}=-8 \mathrm{~m} / \mathrm{s}^{2}$ Deceleration of $8 \mathrm{~m} / \mathrm{s}^{2}$
(iv)
(v)

$$
\begin{aligned}
5(25)= & 200(25)-4(25)^{2} \\
& 5000-4(625)= \\
& 5000-2500 \\
= & 2500 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& 200-8 t=0 \\
& 200=81 \\
& 25=t \\
& t=25 \mathrm{~s}
\end{aligned}
$$

Solutions
$\ell 6$

$40-2 x=1$ Both sites
\therefore ore side is $\frac{40-2 x}{2}=20-x$

$$
\begin{aligned}
\therefore \quad A & =x(20-x) \\
A & =20 x-x^{2}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\frac{d A}{d x}=20-2 x & =0 \\
20-2 x & =0 \\
20 & =2 x \\
10 \mathrm{~cm} & =x
\end{array}\right\} \begin{aligned}
& \frac{d^{2} A}{d x^{2}}=-2 \\
& \therefore \max ^{2} \\
& (+=\operatorname{minimum})
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =10 \times 10 \\
& =100 \mathrm{~cm}^{2}
\end{aligned}
$$

QT

$$
60-2 x \quad(\text { ungth })
$$

$$
\begin{aligned}
\text { Area } & =x(60-2 x) \\
& =60 x-2 x^{2}
\end{aligned}
$$

$$
\begin{array}{r}
\frac{d A}{d x}=60-4 x \\
60-4 x=0 \\
60=4 x \\
15=x
\end{array}
$$

$$
\frac{d^{2} A}{d x^{2}}=-4
$$

(\therefore a maximusi)

$$
\begin{aligned}
\text { Area } & =15 \times 30 \\
& =450 \mathrm{~m}^{2}
\end{aligned}
$$

