Steps for finding the Area Under a Curve

- Graph f(x)
- Shade the region enclosed by f(x); x = a; x = b; and the x-axis. You can only take the area of a closed region, so you must include the x-axis (y = 0)
- As long as the entire shaded region is above the x-axis then $\left| \text{Area} = \int_{-b}^{b} f(x) dx \right|$

Area =
$$\int_{a}^{b} f(x) dx$$

Examples:

1)
$$f(x) = 2x + 1$$
; $a = 0, b = 2$

$$\int_0^2 (2x+1)dx = x^2 + x + C \Big|_0^2 = (4+2) - 0 = \boxed{6}$$

2)
$$f(x) = x^2 - 4$$
; $a = 2$; $b = 4$

$$\int_{2}^{2} (x^{2} - 4) dx = \frac{x^{3}}{3} - 4x + C \Big|_{2}^{4} = \left(\frac{64}{3} - 16\right) - \left(\frac{8}{3} - 8\right) = \boxed{\frac{32}{3}}$$

3)
$$f(x) = 3 - x^2$$
; $a = -1$; $b - 1$

$$\int_{-1}^{1} (3 - x^2) dx = 3x - \frac{x^3}{3} + C \Big|_{-1}^{1} = \left(3 - \frac{1}{3}\right) - \left(-3 + \frac{1}{3}\right) = \boxed{\frac{16}{3}}$$

4)
$$f(x) = 2x - x^2$$
; $a = 0$, $b = 2$

Make graphing easy!! Find the x-intercepts:

$$2x - x^2 = 0 \rightarrow x(2 - x) = 0 \rightarrow x = 0$$
 and $x = 2$

5)
$$f(x) = e^x$$
; $a = 0, b = 2$

$$\int e^x dx = e^x + C \Big|_0^2 = e^2 - e^0 = \boxed{e^2 - 1}$$

Problems #1 – 8: Graph and find the area under the graph of f(x) from a to b by integrating.

1. $f(x) = x + 1$; $a = 0, b = 3$	2. $f(x)=4-x$; $a=-1$, $b=2$
3. $f(x)=4-x^2$; $a=-2$, $b=2$	4. $f(x) = 4x - x^2$; $a = 0, b = 4$
5. $f(x) = \cos x$; $a = -\frac{\pi}{2}$, $b = \frac{\pi}{2}$	6. $f(x) = \sin x$; $a = \frac{\pi}{6}$, $b = \frac{\pi}{3}$
7. $f(x) = e^{2x}$; $a = 0, b = 1$	8. $f(x) = e^x$; $a = -1, b = 1$

For #9 – 10: Graph and find the area of the region bounded by f(x), the x-axis, and the values of a and b. In these two problems, you need to "find" a (left most x-value) and b (right most x-value). They are where f(x) crosses the x-axis.

9. Bounded by the x-axis and the parabola $y = 4 - x^2$ (What is a?	b?)
10. Bounded by the x-axis and the parabola $y = 4x - x^2$ (What is a?	<i>b</i> ?)

For #11: Graph the region stated and then find the area of the bounded region.

11. Bounded by the curve $y = \sqrt{x}$ and the lines x = 4 and y = 0 (What is a? b?)

#12 and #13 are a little trickier because the region bounded does not involve the x-axis.

For these problems, you must:

- Graph the given functions to find the enclosed region that you will find the area of
- Write down: *Top function Bottom function* (in terms of x only)
- Find the values for a and b (A little Algebra)
- Integrate to find area: $\left| \text{Area} = \int_a^b (Top Bottom) dx \right|$

12. Lying in the first quadrant and bounded by the curves $y = \sin x$, y = 1, and x = 0

- What function is on *Top* of the shaded region?

On the *Bottom*?

- What is Top Bottom?
- What is *a*?
- b?
- Write the appropriate integral and find the area.
- 13. Bounded by the parabola $y = x^2$ and the line y = x + 2

- What function is on *Top* of the shaded region?

On the *Bottom*?

- What is Top Bottom?
- What is *a*?
- *h*?
- Write the appropriate integral and find the area.

Answers:

I KIIS WEIS.							
_	_	3	$4. \frac{32}{3}$		2	7. $\frac{e^2-1}{2}$	$8. \frac{e^2 - 1}{e}$
9. a=2; b=- 2 $\frac{32}{3}$	10. a=0; b=4 $\frac{32}{3}$	11. a=0; b=4 $\frac{16}{3}$	12. $a = 0; b = \frac{\pi}{2}$ $Area = \frac{\pi}{2} - 1$	13. $y = x + 2; y = x^{2}$ $x + 2 - x^{2}$ a = -1; b = 2 $Area = \frac{9}{2}$	14. $\frac{-3}{2}$	15. 0	