Steps for finding the Area Under a Curve

- Graph $f(x)$
- Shade the region enclosed by $f(x) ; x=a ; x=b$; and the x-axis. You can only take the area of a closed region, so you must include the \boldsymbol{x}-axis $(\boldsymbol{y}=0$)
- As long as the entire shaded region is above the \boldsymbol{x}-axis then Area $=\int_{a}^{b} f(x) d x$

Examples:

1) $f(x)=2 x+1 ; a=0, b=2$
$\int_{0}^{2}(2 x+1) d x=x^{2}+x+\left.C\right|_{0} ^{2}=(4+2)-0=6$
2) $f(x)=x^{2}-4 ; a=2 ; b=4$
$\int_{2}^{2}\left(x^{2}-4\right) d x=\frac{x^{3}}{3}-4 x+\left.C\right|_{2} ^{4}=\left(\frac{64}{3}-16\right)-\left(\frac{8}{3}-8\right)=\frac{32}{3}$
3) $f(x)=3-x^{2} ; a=-1 ; b-1$
$\int_{-1}^{1}\left(3-x^{2}\right) d x=3 x-\frac{x^{3}}{3}+\left.C\right|_{-1} ^{1}=\left(3-\frac{1}{3}\right)-\left(-3+\frac{1}{3}\right)=\frac{16}{3}$
4) $f(x)=2 x-x^{2} ; a=0, b=2$

Make graphing easy!! Find the \boldsymbol{x}-intercepts:
$2 x-x^{2}=0 \rightarrow x(2-x)=0 \rightarrow x=0$ and $x=2$
$\left.\int_{0}^{2}\left(2 x-x^{2}\right) d x=x^{2}-\frac{x^{3}}{3}\right]_{0}^{2}=\left(4-\frac{8}{3}\right)-0=\frac{4}{3}$
5) $f(x)=e^{x} ; a=0, b=2$
$\int e^{x} d x=e^{x}+\left.C\right|_{0} ^{2}=e^{2}-e^{0}=e^{2}-1$

Problems \#1-8: Graph and find the area under the graph of $f(x)$ from \boldsymbol{a} to \boldsymbol{b} by integrating.

1. $f(x)=x+1 ; a=0, b=3$	2. $f(x)=4-x ; a=-1, b=2$
3. $f(x)=4-x^{2} ; a=-2, b=2$	4. $f(x)=4 x-x^{2} ; a=0, b=4$
5. $f(x)=\cos x ; a=-\frac{\pi}{2}, b=\frac{\pi}{2}$	6. $f(x)=\sin x ; a=\frac{\pi}{6}, b=\frac{\pi}{3}$
7. $f(x)=e^{2 x} ; a=0, b=1$	8. $f(x)=e^{x} ; a=-1, b=1$

For \#9-10: Graph and find the area of the region bounded by $f(x)$, the \boldsymbol{x}-axis, and the values of \boldsymbol{a} and \boldsymbol{b}. In these two problems, you need to "find" \boldsymbol{a} (left most \boldsymbol{x}-value) and \boldsymbol{b} (right most \boldsymbol{x}-value). They are where $f(x)$ crosses the x-axis.
9. Bounded by the x-axis and the parabola $y=4-x^{2}$ (What is a ? b?)
10. Bounded by the x-axis and the parabola $y=4 x-x^{2}$ (What is a ? $\quad b$?

For \#11: Graph the region stated and then find the area of the bounded region.
11. Bounded by the curve $y=\sqrt{x}$ and the lines $x=4$ and $y=0 \quad$ (What is a ? $\quad b$?)
$\# 12$ and \#13 are a little trickier because the region bounded does not involve the \boldsymbol{x}-axis.
For these problems, you must:

- Graph the given functions to find the enclosed region that you will find the area of
- Write down: Top function - Bottom function (in terms of \boldsymbol{x} only)
- \quad Find the values for \boldsymbol{a} and \boldsymbol{b} (A little Algebra)
- Integrate to find area:

$$
\text { Area }=\int_{a}^{b}(\text { Top }- \text { Bottom }) d x
$$

12. Lying in the first quadrant and bounded by the curves $y=\sin x, y=1$, and $x=0$

- What function is on Top of the shaded region?

On the Bottom?

- What is Top - Bottom?
- What is a ? $\quad b$?
- Write the appropriate integral and find the area.

13. Bounded by the parabola $y=x^{2}$ and the line $y=x+2$

- What function is on Top of the shaded region?

On the Bottom?

- What is Top - Bottom?
- What is a ? $\quad b$?
- Write the appropriate integral and find the area.

Answers:

$1 . \frac{15}{2}$	2. $\frac{21}{2}$	3. $\frac{32}{3}$	4. $\frac{32}{3}$	5.2	6. $\frac{\sqrt{3}-1}{2}$	7. $\frac{e^{2}-1}{2}$	8. $\frac{e^{2}-1}{e}$
9. $\begin{aligned} & a=2 ; b=- \\ & 2 \\ & \frac{32}{3} \end{aligned}$	$\begin{aligned} & 10 . \\ & a=0 ; b=4 \\ & \frac{32}{3} \end{aligned}$	$\begin{aligned} & 11 . \\ & \mathrm{a}=0 ; \mathrm{b}=4 \\ & \frac{16}{3} \end{aligned}$	12. $\begin{aligned} & a=0 ; b=\frac{\pi}{2} \\ & \text { Area }=\frac{\pi}{2}-1 \end{aligned}$	13. $\begin{aligned} & y=x+2 ; y=x^{2} \\ & x+2-x^{2} \\ & a=-1 ; b=2 \\ & \text { Area }=\frac{9}{2} \end{aligned}$	14. $\frac{-3}{2}$	15.0	

