
CompSci 100E 3.1

1

Functions (Static Methods)
!  Java function.

"  Takes zero or more input arguments.
"  Returns one output value.

!  Applications.
"  Scientists use mathematical functions to calculate formulas.
"  Programmers use functions to build modular programs.
"  You use functions for both.

!  Examples.
"  Built-in functions: Math.random(), Math.abs(), Integer.parseInt().
"  Our I/O libraries StdDraw.show(), StdAudio.play().
"  User-defined functions: main().

CompSci 100E 3.2

2

Anatomy of a Java Function

!  Java functions. Easy to write your own.

f(x) = !x!input
2.0 1.414213…

output

CompSci 100E 3.3

3

Flow of Control

!  Flow of control. Functions provide a new way to
control the flow of execution of a program.

"pass-by-value"

CompSci 100E 3.4

4

Libraries
!  Library. A module whose methods are primarily

intended for use
by many other programs.

!  Client. Program that calls a library.

!  API. Contract between client and
implementation.

!  Implementation. Program that
implements the methods in an API.

CompSci 100E 3.5

5

Modular Programming

!  Modular programming.
"  Divide program into self-contained pieces.
"  Test each piece individually.
"  Combine pieces to make program.

!  Ex. Flip N coins. How many heads?
"  Read arguments from user.
"  Flip one fair coin.
"  Flip N fair coins and count number of heads.
"  Repeat simulation, counting number of times each

outcome occurs.
"  Plot histogram of empirical results.
"  Compare with theoretical predictions.

CompSci 100E 3.6

Flashback: Data processing

!  Scan a large (~ 107 bytes) file
!  Print the words together with counts of how often

they occur
!  Need more specification?

!  How do you do it?

!  What is we only wanted the top k (say 20) words?

CompSci 100E 3.7

What can you put into an ArrayList?
!  Any Object
!  Use a wrapper class (see java.lang.*)

"  int, double, char, boolean, …
"  Integer, Double, Character, Boolean,

!  Can have your cake and eat it too
 ArrayList<Integer> list = new ArrayList<Integer>();
 for (int k = 0; k < 10; k++){
 list.add(k*k);
 }
 for (Integer jj : list){
 System.out.println(jj);
 }

!  All made practical by Version 5 of Java

CompSci 100E 3.8

Exploring ArrayLists
!  Look at the Java 6 API
!  Note interfaces implemented

"  Serializable, Cloneable, Iterable
"  Collection, List, RandomAccess

!  Note other descriptive text
"  Regarding performance
"  Constructors
"  Methods
"  Don’t forget methods in parent classes

CompSci 100E 3.9

Exploring ArrayLists
!  Some Commonly Used Methods

"  boolean add(E o) // append
"  void add(int index, E element) // insert
"  void clear()
"  boolean contains(Object elem)
"  E get(int index)
"  int indexOf(Object elem)
"  boolean remove(Object o)
"  E remove(int index)
"  E set(int index, E elem) // replace
"  int size()

CompSci 100E 3.10

Exploring ArrayLists
!  Performance

"  Constant Time
#  size, isEmpty, get, set, iterator, listIterator operations
#  add (amortized)

"  Linear Time
#  All of the other operations run in linear time

"  What does all of this mean?
"  Why do we care?
"  Exercise: Implement on an array the equivalent of

#  void add(int index, E element)
#  E remove(int index)

"  Remember: Memory is an array (well sort of)

CompSci 100E 3.11

What is a char?

!  Differences between unicode and ASCII
"  Why is unicode used? Why should we care? What should

we know? How many of the details are important?

!  A char value can be treated like an int value
"  Add integer to it, cast back to char
"  Subtract character from it, get int back

 counters[s.charAt(k)- ’A’]++;

"  Anatomy of the statement above??

CompSci 100E 3.12

Inheritance and Interfaces

!  Inheritance models an "is-a" relationship
"  A dog is a mammal, an ArrayList is a List, a square is a

shape, …

!  Write general programs to understand the
abstraction, advantages?

void execute(Pixmap target) {
 // do something
}

!  But a dog is also a quadruped, how can we deal
with this?

CompSci 100E 3.13

Single inheritance in Java

!  A class can extend only one class in Java
"  All classes extend Object --- it's the root of the inheritance

hierarchy tree
"  Can extend something else (which extends Object), why?

!  Why do we use inheritance in designing programs/
systems?
"  Facilitate code-reuse (what does that mean?)
"  Ability to specialize and change behavior

o  If I could change how method foo() works, bar() is
ok

"  Design methods to call ours, even before we implement
o Hollywood principle: don't call us, …

CompSci 100E 3.14

Comparable and Comparator

!  Both are interfaces, there is no default
implementation
"  Contrast with .equals(), default implementation?
"  Contrast with .toString(), default?

!  Where do we define a Comparator?
"  In its own .java file, nothing wrong with that
"  Private, used for implementation and not public behavior

o Use a nested class, then decide on static or non-static
o Non-static is part of an object, access inner fields

!  How do we use the Comparator?
"  Sort, Sets, Maps (in the future)

!  Does hashing (future topic) have similar problems?

CompSci 100E 3.15

Sets

!  Set is an unordered list of items
"  Items are unique! Only one copy of each item in set!

!  We will use two different implementations of sets
!  TreeSet

"  A TreeSet is backed up by a tree structure (future topic)
"  Keeps items sorted (+)
"  Slower than HashSets ?? (-)

!  HashSet
"  A HashSet is backed up by a hashing scheme (future topic)
"  Items not sorted – should seem to be in random order (-)
"  Faster than TreeSets ?? (+)

CompSci 100E 3.16

Using Both ArrayList and Sets

!  You may want to use a set to get rid of duplicates,
then put the items in an ArrayList and sort them!

!  Problem:
"  Often data comes in the form of an array
"  How do we go from array to ArrayList or TreeSet?

!  Problem:
"  Often we are required to return an array
"  How do we go from a Collection such as an ArrayList or

TreeSet to an array?

!  Can do it the “hard” way with loops or iterators:
"  one item at a time

!  OR:

