Functions (Static Methods)

< Java function.
0 Takes zero or more input arguments.
O Returns one output value.

< Applications.
O Scientists use mathematical functions to calculate formulas.
0 Programmers use functions to build modular programs.
0 You use functions for both.

« Examples.
QO Built-in functions: Math.random(), Math.abs (), Integer.parseInt().
QO Our I/O libraries stdbraw.show (), StdAudio.play().
0 User-defined functions: main().

CompSci 100E 31

Anatomy of a Java Function

+ Java functions. Easy to write your own.

input output
2.0 —EREE L gy =ve SEERUE L g sna213
signature return method argument argument
type name type variable

AN

‘ public static ¢

{
if (c < 0) return Double.NaN;
valruig;z]les < = le-15;
double t]= c;
met};ad/r while |(Math.abs(t - c/t)|> err * t)

body t=(c/t+1)/2.0;
return t;
N
} call on another method

return statement

CompSci 100E 3.2

Flow of Control

« Flow of control. Functions provide a new way to
ContrOl thn flaxir nf Avaniibinn Af A nunaway

public class Newton

{ ‘
public static double sqrt(double c)
{

if (c < 0) return Double.NaN;

double err = le-15;

double t = c;

while (Math.abs(t - c/t) > err * t)
t=(c/t +1t) /2.0;

return t;

"pass-by-value"

)

public static void main(String[] args)

int N = args.length;
double[] a = new double[N];
for (int i =0; i < N; i++)
a[i] = Double.parseDouble(args[il);
for (int i =0; i < N; i++)

!)
double x =(sgrt(alil);) >

. StdOut.printin(x);
CompSci 100E } 3.3

' |

Libraries
« Library. A module whose methods are primarily

intended for use
by many other programs.

client
Gaussian.Phi(1019)
calls methods

API

< Client. Program that calls a librai suiic class caussian

double phi(double x) &(x)
double Phi(double z) ®(2)

.

< API. Contract between client anc defi
. . and desc
implementation.

gnatures

es methods
l!llﬁl(“??t'”/l!/lﬂ”
public class Gaussian

public static double phi(double x)

< Implementation. Program that
implements the methods in an A] public static double Phi(double z)

N

CompSci 100E Java code that

implements methods

Modular Programming

< Modular programming.
a Divide program into self-contained pieces.
O Test each piece individually.
0 Combine pieces to make program.

< Ex. Flip N coins. How many heads?
0 Read arguments from user.
Flip one fair coin.
Flip N fair coins and count number of heads.

0O 0D

Repeat simulation, counting number of times each
outcome occurs.

D Pl()t] % java Bernoulli 20 100000

o Com
CompSci 100E

3.5

Flashback: Data processing

« Scan a large (~ 107 bytes) file
» Print the words together with counts of how often
they occur

+ Need more specification?

+» How do you do it?

< What is we only wanted the top k (say 20) words?

CompSci 100E 3.6

What can you put into an ArrayList?

<+ Any Object
« Use a wrapper class (see java.lang.*)
QO int, double, char, boolean,...
QO Integer, Double, Character, Boolean,

<+ Can have your cake and eat it too

ArrayList<Integer> list = new ArraylList<Integer>();

for (int k = 0; k < 10; k++){
list.add(k*k) ;

}

for (Integer jj : list){
System.out.println(jj);

}

All made practical by Version 5 of Java

RS
oo

CompSci 100E

3.7

Exploring ArrayLists

< Look at the Java 6 API

<+ Note interfaces implemented
0 Serializable, Cloneable, Iterable
0 Collection, List, RandomAccess

< Note other descriptive text

Regarding performance

Constructors

Methods

Don’t forget methods in parent classes

000D

CompSci 100E 3.8

Exploring ArrayLists

<+ Some Commonly Used Methods

0O boolean add(E o) // append

O void add(int index, E element) // insert
QO void clear()

0O boolean contains (Object elem)

O E get(int index)

0 int indexOf (Object elem)

O boolean remove (Object o)

O E remove (int index)

QO E set(int index, E elem) //replace

QO int size()

CompSci 100E 3.9

Exploring ArrayLists

«+ Performance

0 Constant Time
> size, isEmpty, get, set, iterator, listIterator operations
» add (amortized)

0 Linear Time
> All of the other operations run in linear time

0 What does all of this mean?

0 Why do we care?

0 Exercise: Implement on an array the equivalent of
» void add(int index, E element)
» E remove (int index)

0 Remember: Memory is an array (well sort of)

CompSci 100E 3.10

What is a char?

< Differences between unicode and ASCII

0 Why is unicode used? Why should we care? What should
we know? How many of the details are important?

+ A char value can be treated like an int value
0 Add integer to it, cast back to char
Q Subtract character from it, get int back

counters[s.charAt(k)- 'A’']++;

0 Anatomy of the statement above??

CompSci 100E 3.11

Inheritance and Interfaces

+ Inheritance models an "is-a" relationship
0 A dogis a mammal, an ArrayList is a List, a square is a
shape, ...
+ Write general programs to understand the
abstraction, advantages?

void execute (Pixmap target) {
// do something
}

< But a dog is also a quadruped, how can we deal
with this?

CompSci 100E 312

Single inheritance in Java

+ A class can extend only one class in Java

0 All classes extend Object --- it's the root of the inheritance
hierarchy tree

0 Can extend something else (which extends Object), why?

< Why do we use inheritance in designing programs/
systems?
O Facilitate code-reuse (what does that mean?)
O Ability to specialize and change behavior

o If I could change how method foo () works, bar () is
ok

0 Design methods to call ours, even before we implement
o Hollywood principle: don't call us, ...

CompSci 100E 3.13

Comparable and Comparator

o

» Both are interfaces, there is no default
implementation
O Contrast with .equals () , default implementation?
0 Contrast with . toString() , default?
+ Where do we define a Comparator?
0 In its own .java file, nothing wrong with that
Q Private, used for implementation and not public behavior
o Use a nested class, then decide on static or non-static
o Non-static is part of an object, access inner fields
+ How do we use the Comparator?
O Sort, Sets, Maps (in the future)

> Does hashing (future topic) have similar problems?

*,

3

Ry
s

oo

CompSci 100E 3.14

Sets

» Set is an unordered list of items

Q Items are unique! Only one copy of each item in set!

R

3

» We will use two different implementations of sets

RS
o5

TreeSet
O A TreeSet is backed up by a tree structure (future topic)
0 Keeps items sorted (+)
0 Slower than HashSets ?? (-)
» HashSet
0 A HashSet is backed up by a hashing scheme (future topic)
0 Items not sorted - should seem to be in random order (-)
O Faster than TreeSets ?? (+)

K3

CompSci 100E 3.15

Using Both ArrayList and Sets

’0

» You may want to use a set to get rid of duplicates,
then put the items in an ArrayList and sort them!

o

+ Problem:
0 Often data comes in the form of an array

K3

0 How do we go from array to ArrayList or TreeSet?

» Problem:
Q Often we are required to return an array

*

0 How do we go from a Collection such as an ArrayList or
TreeSet to an array?

K3

» Can do it the “hard” way with loops or iterators:
O one item at a time

» OR:

CompSci 100E 3.16

