Input in Java

Java code

import java.util.Scanner;
public class ScannerInput {

	public static void main(String[] args) {
		// Input using Scanner class
 Scanner in = new Scanner(System.in);
 String s = in.nextLine();
 System.out.println("You entered string "+s);
 int a = in.nextInt();
 System.out.println("You entered integer "+a);
 float b = in.nextFloat();
 System.out.println("You entered float "+b);
	}
}

Exercise

· Write code to enter a firstname, surname and age(integer) and output to screen on the same line.
· Write code to enter a Street address, town and county and output to screen on the seperate lines.

3 types of input in Java

There are three different ways to read the input from Java Console, they are –

· Using Java Bufferedreader Class
· Scanner Class in Java
· Console Class in Java

Scanner Class in Java

This is presumably the most favored technique to take input. The primary reason for the Scanner class is to parse primitive composes and strings utilizing general expressions, in any case, it can be utilized to peruse contribution from the client in the order line.

Pros

· Helpful strategies for parsing natives (nextInt(), nextFloat(), …) from the tokenized input.
· General articulations can be utilized to discover tokens.

[bookmark: _GoBack]Cons

· The reading methods are not synchronized.
· Java File Class – java.io.File Class in Java
Example of Scanner Class in Java

import java.util.Scanner;
class GetInputFromUser
{
 public static void main(String args[])
 {
 Scanner in = new Scanner(System.in);
 String s = in.nextLine();
 System.out.println("You entered string "+s);
 int a = in.nextInt();
 System.out.println("You entered integer "+a);
 float b = in.nextFloat();
 System.out.println("You entered float "+b);
 }
}

Java Bufferedreader Class

This is the Java traditional technique, introduced in JDK1.0. This strategy is utilized by wrapping the System.in (standard information stream) in an InputStreamReader which is wrapped in a Java BufferedReader, we can read result include from the user in the order line.

Pros

· The information is cradled for productive perusing.

Cons

· The wrapping code is difficult to recall.

Example of Java Bufferedreader Class–

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class Test
{
 public static void main(String[] args) throws IOException
 {
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(System.in));
 String name = reader.readLine();
 System.out.println(name);
 }
}

Console Class in Java

It has been turning into a favored route for perusing client’s contribution from the command line. In addition, it can be utilized for password key like contribution without resounding the characters entered by the client, the configuration string syntax structure can likewise be utilized (like System.out.printf()).

Pros

· Reading secret word without reverberating the entered characters.
· Reading strategies that are synchronized.
· Format string sentence structure can be utilized.

Cons

· Does not work in non-intelligent condition, (for example, in an IDE).
· Do You Know Difference Between Abstract Class and Interface in Java

Example of Console Class in Java

public class Sample
{
 public static void main(String[] args)
 {
 // Using Console to input data from user
 String name = System.console().readLine();
 System.out.println(name);
 }
}
4. Java Console Example
String name = null;
int number;
java.io.BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
name = in.readLine();number = Integer.parseInt(in.readLine());
System.out.println("Name " + name + "\t number " + number);
java.util.Scanner sc = new Scanner(System.in).useDelimiter("\\s");
name = sc.next();
number = sc.nextInt();System.out.println("Name " + name + "\t number " + number);
java.io.Console cnsl = System.console();
if (cnsl != null) {
 name = cnsl.readLine("Name: ");
 System.out.println("Name entered: " + name);
}

