[bookmark: _GoBack]Exception Handling - Exceptions
Exception handling is one of the most important feature of java programming that allows us to handle the runtime errors caused by exceptions. In this guide, we will learn what is an exception, types of it, exception classes and how to handle exceptions in java with examples.
What is an exception?
An Exception is an unwanted event that interrupts the normal flow of the program. When an exception occurs program execution gets terminated. In such cases we get a system generated error message. The good thing about exceptions is that they can be handled in Java. By handling the exceptions we can provide a meaningful message to the user about the issue rather than a system generated message, which may not be understandable to a user.
Why an exception occurs?
There can be several reasons that can cause a program to throw exception. For example: Opening a non-existing file in your program, Network connection problem, bad input data provided by user etc.
Exception Handling
If an exception occurs, which has not been handled by programmer then program execution gets terminated and a system generated error message is shown to the user. For example look at the system generated exception below:
An exception generated by the system is given below
Exception in thread "main" java.lang.ArithmeticException: / by zero at ExceptionDemo.main(ExceptionDemo.java:5)
 ExceptionDemo : The class name
 main : The method name
 ExceptionDemo.java : The filename
 java:5 : Line number
This message is not user friendly so a user will not be able to understand what went wrong. In order to let them know the reason in simple language, we handle exceptions. We handle such conditions and then prints a user friendly warning message to user, which lets them correct the error as most of the time exception occurs due to bad data provided by user.
Advantage of exception handling
Exception handling ensures that the flow of the program doesn’t break when an exception occurs. For example, if a program has bunch of statements and an exception occurs mid way after executing certain statements then the statements after the exception will not execute and the program will terminate abruptly.
By handling we make sure that all the statements execute and the flow of program doesn’t break.

Difference between error and exception
Errors indicate that something severe enough has gone wrong, the application should crash rather than try to handle the error.
Exceptions are events that occurs in the code. A programmer can handle such conditions and take necessary corrective actions. Few examples:
NullPointerException – When you try to use a reference that points to null.
ArithmeticException – When bad data is provided by user, for example, when you try to divide a number by zero this exception occurs because dividing a number by zero is undefined.
ArrayIndexOutOfBoundsException – When you try to access the elements of an array out of its bounds, for example array size is 5 (which means it has five elements) and you are trying to access the 10th element.

Source Code

class Example1 {
 public static void main(String args[]) {
 int num1, num2;
 try {
 /* We suspect that this block of statement can throw
 * exception so we handled it by placing these statements
 * inside try and handled the exception in catch block
 */
 num1 = 0;
 num2 = 62 / num1;
 System.out.println(num2);
 System.out.println("Hey I'm at the end of try block");
 }
 catch (ArithmeticException e) {
 /* This block will only execute if any Arithmetic exception
 * occurs in try block
 */
 System.out.println("You should not divide a number by zero");
 }
 catch (Exception e) {
 /* This is a generic Exception handler which means it can handle
 * all the exceptions. This will execute if the exception is not
 * handled by previous catch blocks.
 */
 System.out.println("Exception occurred");
 }
 System.out.println("I'm out of try-catch block in Java.");
 }
}

