
Android Development Tutorial

New Android Lollipop Features

By Jim White

 Page 1

Table of Contents:

Tutorial 1: Lollipop RecyclerView

Tutorial 2: Lollipop Notifications

Tutorial 3: Lollipop CardView

Tutorial 4: Lollipop Material Design

Tutorial 5: Job Scheduler

Tutorial 6: Project Volta

 Page 2

www.Intertech.com

Lollipop RecyclerView

READY FOR MATERIAL DESIGN

Material Design is a term you are going to hear a lot about in the new Android platform.
Material Design is described as “a new approach for designing apps.” Finding a clear and
concise definition of Material Design can be daunting. Practically speaking, however,
what Material Design brings is a new theme to be applied to apps, a new design guide
which developers are encouraged to follow for UI layouts and components, widgets that
can now have an elevation allowing them to cast a shadow, a new API to create custom
animations such as the transition from on activity to another, and new View
components for better and more flexible display of data.

RECYCLERVIEW

RecyclerView is “a more advanced and flexible version of ListView” (see here). In fact, at
AnDevCon in November, I heard Chet Haase, Android UI Toolkit team lead at Google,
describe RecyclerView as “ListView2.”

BENEFITS OF USE

Why use RecyclerView? According to documentation, it scrolls more efficiently (“very
efficiently”) especially when considering large data sets and data sets whose elements
are changing dynamically. RecyclerView also tries to simplify data display. In my opinion,
there are more helper objects or pieces to building a RecyclerView, but default
implementations are in place for many of the pieces and each of these associated
components are typically small and simple – making it easier to know how to address
RecyclerView features you want. The RecyclerView also offers some nice visual
additions like item animation that is representative of the new Material Design.

RECYCLERVIEW TUTORIAL

Enough talk – you are probably ready to see and experiment with a RecyclerView. This
RecyclerView tutorial assumes you have Android Studio installed on your PC and that

https://developer.android.com/training/material/lists-cards.html
http://www.andevcon.com/
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html

 Page 3

www.Intertech.com

your have used the Android SDK Manager to install Lollipop (API 21). Android Studio just
emerged from beta this week. It is now “the official IDE for Android development”
according to the developer.android.com web site. I am seeing a rather quick shift to
Android Studio on the part of most Android developers and so I am going to use Android
Studio on posts about Android on this blog site going forward. You can find the Android
Studio project for this post on GitHub at https://github.com/IntertechInc/android-
recycler.

The RecyclerView tutorial application here simulates a stock price ticker app – showing
the rise and fall of a collection of financial stocks of interest. A background service and
AsynTask simulate the constant fetch of new stock prices from Wall Street (for the
tutorial the prices are actually generated by random number generator). The prices are
going to be displayed on a RecyclerView. The data changes rapidly and there could be a
lot of data – perfect requirements for this new Lollipop widget.

(click to see video)

https://developer.android.com/tools/studio/index.html
https://github.com/IntertechInc/android-recycler
https://github.com/IntertechInc/android-recycler
http://cdn.intertech.com/Blog/wp-content/uploads/2014/12/recyclerview.mp4?_=1

 Page 4

www.Intertech.com

ADDING THE SUPPORT LIBRARY

Create a new Android project that has a Blank Activity with Fragment in Android Studio.
[Again, you can download the Android Studio project from bitbucket if you want to
review the code without writing it yourself.] RecyclerView is not part of the “normal”
SDK. So you will need to add a support library to incorporate the RecyclerView (and its
associated components) into your project. Add the RecyclerView (2nd compile line
below) to your Gradle build file (build.gradle). Save the file, and clean/rebuild your
project.

FRAGMENT LAYOUT WITH RECYCLERVIEW

Let’s start building the app with the fragment layout that will contain the RecyclerView.
We don’t have to use a fragment – especially for this simple tutorial – but ever since
Android 3, its always a good practice to provide the master list widget in a fragment so
that you can easily create master/detail displays. Here the RecyclerView fragment
provides the master list of stocks while a future second fragment could provide the
detail information of any stock selected from the master list. The idea is that master and
detail may be spread over a single activity screen when on a tablet or split across two
activities when on a smaller smartphone device (see this tutorial for help on the ideas of
master/detail displays in Android).

http://www.techotopia.com/index.php/An_Android_Master/Detail_Flow_Tutorial

 Page 5

www.Intertech.com

The fragment, in this case, is comprised solely of the RecyclerView. Note the fully
qualified widget reference.

RECYCLERVIEW’S ROW LAYOUT

Next, we’ll need a layout file to provide the arrangement of information in each row of
the RecyclerView. The row layout will determine how each stock price will be displayed
in the rows of the RecyclerView. This is not unlike how rows of a ListView had to have a
layout. In this tutorial, each incoming stock price will be shown with a stock symbol,
price change, timestamp of the price change and an image visually indicating whether
the price change is a gain or a loss in price.

 Page 6

www.Intertech.com

To this point, easy-peasy and nothing different than what you have had to do to create a
ListView to display similarly.

A NEW ADAPTER

Adapters in Android provide AdapterViews (like ListView) access to data and create the
correct layout for each row or item in the AdapterView. However, RecyclerView does
not use the old adapter hierarchy (BaseAdapter, SimpleAdapter, SimpleCursorAdapter,
ArrayAdapter, etc.). Recycler view has its own RecyclerView.Adapter that replaces the
old adapter. RecyclerView.Adapter is a generic type that requires you specify its
ViewHolder via type parameters. ViewHolders are discussed in the next section.

The new RecyclerView.Adapter abstract/generic class is similar in behavior to the old
BaseAdapter, but it has its own unique interface. Here are the methods you need to
implement:

 getItemCount – returns the number of rows in the associated data set and the
number of rows that could be displayed in the RecyclerView.

 onCreateViewHolder – Called when the RecyclerView needs to create/add a
new ViewHolder to represent a row. It creates the ViewHolder for the specified
row display. Typically, this means inflating the row layout for the row and
creating a ViewHolder with that layout.

 onBindViewHolder – Called by the RecyclerView when it needs to display the
data at the position/row specified as a parameter. This method updates the
row’s View components with data from the dataset. Unlike the older
AdapterViews (like ListView), the RecyclerView will not call this method again if
the position of the item changes in the dataset unless the item itself is invalidate
or a new position cannot be determined.

 Page 7

www.Intertech.com

The RecyclerView.Adapter will need an associated data set. In this tutorial, a simple
ArrayList of stock price objects is used. This list is updated by the background service
and AsyncTask.

Here is the full blown RecyclerView.Adapter for the stock prices.

 Page 8

www.Intertech.com

Note too the notifyItemInserted() and notifyItemRemoved() methods used when a new
quote is added or updated. There are a number of these types of methods on this new
adapter type (notifyItemMoved, notifyItemChanged, etc.) and they can all be used
conveniently to update the RecyclerView through the adapter.

VIEWHOLDER – OLD PATTERN, NEW IMPLEMENTATION

The RecyclerView.ViewHolder is also a new component (that follows a pre-Android 5
recommended pattern) associated with the new adapter and the RecyclerView. The
ViewHolder’s job is to cache the collection of row View objects. The findViewById()
method to fetch View components gets expensive. In a ListView, this could happen a lot
as the rows are continually rebuilt and redisplayed. The ViewHolder reduces that
overhead.

In most case you simply extend the RecyclerView.ViewHolder class. As you can see by
the code below, the ViewHolder gets each row’s View components by id through the
root view – itemView – passed to the constructor.

http://java.dzone.com/articles/optimizing-your-listview

 Page 9

www.Intertech.com

FRAGMENT AND LAYOUTMANAGER

The RecyclerView is going to be displayed on a fragment. A hosting fragment’s
onCreateView() method is typically used to graphically initialize. Therefore, it is in the
onCreateView() method of the fragment that the RecyclerView is initialized. You need a
RecyclerView.LayoutManager to put items in the RecyclerView’s child views. Unlike
ListView or GridView, you can customize the layout of the child views (a point that will
re reviewed below). The RecyclerView here uses a simple LinearLayoutManager
provided by the support library. Below is the fragment’s onCreateView() with the
RecyclerView initializing code.

Beyond the setLayoutManager() call, and association of the RecyclerView to its
RecyclerView.Adapter, take note of the setHasFixedSize() method. RecyclerView is
about performance and display enhancements over widgets like ListView. In this case,
use this method to help increase performance of the display when size of the
RecyclerView is not going to change – even though the rows/items will come and go
dynamically. As the documentation states: “RecyclerView can perform several
optimizations if it can know in advance that changes in adapter content cannot change
the size.”

https://developer.android.com/reference/android/support/v7/widget/RecyclerView.html

 Page 10

www.Intertech.com

HOSTING ACTIVITY

The activity, in this demo, is there host the fragment holding the RecyclerView. It also
starts/stops the stock price Service (and associate AsyncTask) and updates and forwards
new price data from those to the fragment and RecyclerView. Here is the important
onCreate() method.

You can peak at the rest of the activity code on GitHub.

ADDITIONAL RECYCLERVIEW FEATURES

Beyond its performance improvements, RecyclerView comes with some display options
that give it superior visual capability over the older components like ListView. Custom
layout management and animation are two such capabilities.

LAYOUT MANAGEMENT

As mentioned above, when initializing the RecyclerView (see the hosting fragment’s
onCreateView() method), you need to create and set the LayoutManager for the
RecyclerView. You can create your own custom layout or use LinearLayoutManager or
GridLayoutManager (both subclasses of RecyclerView.LayoutManager) provided by the
support library. Simply swap out the layout manager to the RecyclerView and you have
a different display. Note the one line of code change below to use GridLayoutManager
versus LinearLayoutManager.

 Page 11

www.Intertech.com

You can even use the layout manager to define the scrolling direction!

 Page 12

www.Intertech.com

ANIMATION

One of Lollipops considerable improvements is in the use of animation. Not surprising
then that RecyclerView allows for custom item animation. You can determine how
added, removed and update items get highlighted. As a minimal example of this
capability, you can use the DefaultItemAnimator that is associated to the RecyclerView
by default, but customize the add and remove animation duration time when you
initialize the RecyclerView. This has the effect of exaggerating the coming and goings of
the add and removed items of the view respectively.

 Page 13

www.Intertech.com

Lollipop Notifications

The first tutorial in our Android Development Tutorial series, based on new features in
Android 5 Lollipop, we’ll look at one of the new features that Android smartphone and
tablet users will definitely see and appreciate – the Notification system. Notifications
are displayed by an application in notification status bar (typically displayed on the top
of smartphones and coming up from the bottom of a tablet).

A “notification drawer” can be pulled down to display more information about the
notifications and to allow users to trigger application actions by pressing the notification
in the drawer.

 Page 14

www.Intertech.com

NOTIFICATIONS ON THE LOCK SCREEN

On Lollipop platforms, important notifications can be displayed on the lock screen.
Users must configure their devices in order to display notifications on the lock screen.
Users, or developers using AVD’s, must take the following steps to enable lock screen
notifications:

1. Find Settings and select Security and then Screen lock. You must first enable the
screen lock in order to see the notifications on the screen lock.

 Page 15

www.Intertech.com

2. Once you pick a screen lock, you’ll get a chance to show or hide notifications. You can
choose to show all of them, none of them, or show only the notifications that are not
“sensitive.” The definition of sensitive will be defined below.

By the way, testing your app on an AVD, you invoke the lock screen by pressing F7 on
your keyboard.

NOTIFICATION VISIBILITY

Developers can now (with Android 5) determine whether a notification message is
“sensitive.” Sensitivity is actually determined by a new Android 5 attribute called
“visibility” on the notification object. There are three choices of visibility:

 Secret (Notification.VISIBILITY_SECRET) – messages are considered sensitive and
not shown on the lock screen.

 Private (VISIBILITY_PRIVATE) – messages are considered sensitive such that the
content is not displayed on the lock screen, but the fact that notification has
arrived is displayed on the lock screen. Notice in the picture below that the lock
screen displays that a private notification has been posted (from
NotificationDemo app with its choice of icon), but the content of the message is
still hidden and replaced by “Contents hidden“.

 Page 16

www.Intertech.com

 Public (VISIBILITY_PUBLIC) – these notification messages are displayed – to
include the content – on the lock screen. As shown by the example below, now
the notification title, contents, and icon are all on display on the lock screen.

 Page 17

www.Intertech.com

When creating a notification message, developers use the setVisibility(int) method to
select the visibility from public static final int options above. Below is code that sets the
visibility to public (notifications are private by default). A little sample application to see
this code exercised is available at GitHub. [For a full tutorial on Notification and
NotificationManager API see here.]

An additional method on the builder – .setPublicVersion(notification) – allows you to
provide a replacement notification to display on the lock screen when the visibility is set
to private and you still want something to display on the lock screen.

BACKWARD COMPATIBILITY

If you intend to support older devices (pre-Lollipop and API 21), you will want to use
NotificationCompat versus Notification to build the notification object.

Speaking of backward compatibility support, remember notification visibility is an
Android 5 feature. Therefore, unless you are creating an application just for API 21
devices (of which there are very few at this time), you need to add the support library to
your application. If using Android Studio - the newly “official IDE” for Android
development, you need to add the support library to the dependencies in the app’s
Gradle build file (build.gradle) as shown below (copy the second dependency).

Keep in mind, older devices will not show the notifications on the lock screen
(regardless of visibility).

https://github.com/IntertechInc/notifications-demo
http://developer.android.com/guide/topics/ui/notifiers/notifications.html
http://developer.android.com/sdk/index.html

 Page 18

www.Intertech.com

NOTIFICATION METADATA

New metadata – additional attributes – can be associated to notifications in Android 5.
Notifications can have a category, a priority, and people (contacts) to a notification.
These metadata can be used by the device to provide guidance (Android calls them
“hints”) about how to organize and display notifications.

 category: the design documentation says all notifications should include a
category and there are several category constants defined on the Notification
class. They are just Strings and include categories such as “alarm”, “promo” (for
advertisements), “progress”, etc. A category allows groups of notifications to be
ranked and filtered – per user or system settings. For example, alarm
notifications should display before promo notifications.

 priority: the priority can be set to min, max, high, low, or default – all again
defined as constant ints on the Notification class. High priority notifications are
displayed as heads-up notifications (discussed below) when accompanied by
sound or vibration. Priority should be set with care. Max and high priority
notifications risk interrupting the user in their current activity. Android provides
a number of guidelines about setting the proper priority for your notifications
(see here).

 person: adding a person to your notification allows the notification to be
associated to a contact from the device’s contacts. Adding a contact is
accomplished through .addPerson(uri) method on the notification builder, where
the URI is a person URI (it will even attempt to resolve mailto: and tel: schema
URIs). Adding a person to the notification allows the device to group
notifications from the same person and even prioritize/rank notifications from
preferred persons.

HEADS-UP NOTIFICATIONS

Also new in Android 5 are Heads-up notifications. When the screen is unlocked and on,
heads-up notifications appear like floating dialog boxes at the top of the smartphone
over the status bar.

http://developer.android.com/design/patterns/notifications.html

 Page 19

www.Intertech.com

When actions are associated with the notification, buttons display with the heads-up
notification to allow the user to take immediate action based on the notification.

If not dismissed or acted on, the heads-up notifications fade away and return to the
“regular” notifications in the status bar. Again, use heads-up notifications with care.
These higher priority notifications that include sound and vibration are usually going to
interrupt the device user’s current work flow. You should have something of
importance that needs immediate attention to use a heads-up notification.

In order to programmatically create a heads-up notification, the notification must be set
with high priority (or better) and use either sound or vibration (the latter requiring a
user permission in the manifest). Below is sample code to create a heads-up
notification that vibrates and takes the user to a designated URL in a browser when the
action is clicked.

DESIGN GUIDELINES

Before creating notifications, take a look at the design guidelines – particularly around
iconography, category and priority.

http://developer.android.com/guide/topics/ui/notifiers/notifications.html
http://developer.android.com/design/style/iconography.html

 Page 20

www.Intertech.com

Lollipop CardView

Android 5 has now been out for almost 2 months. Devices with Android 5 are starting to
appear. No doubt, if you are an Android developer you are studying the new features
and API. Take a look at one of my previous posts in Intertech’s blog site, getAppTasks(),
an earlier Android development tutorial.

CARDVIEW CONCEPT

In this Android development tutorial, we take a look at the new CardView. CardView
was another widget type added in Lollipop. CardViews display “cards.” Think about a
collection of 3×5 cards you may use to collect recipes on. On the 3×5 card, you have
some notes written out about the recipe. You may have written a link to the web site
where you found the recipe on the card. You may also paste a picture of the final
product.

Like a recipe card, the concept behind a card in the CardView is “a piece of paper that
contains unique related data; for example, a photo, text, and link all about a single
subject.” Cards display content of different types. In particular, they are built to display
a collection of objects whose size and associated actions vary.

http://www.intertech.com/Blog/android-5-api-changes-getapptasks/
http://www.google.com/design/spec/components/cards.html
http://www.google.com/design/spec/components/cards.html
http://www.google.com/design/spec/components/cards.html

 Page 21

www.Intertech.com

ANDROID CARDVIEW

Cards represented by CardViews can be used to display the row of data in a
RecyclerView or ListView. Like the rows in a RecyclerView or ListView, a CardView
typically serves as the entry to more detailed information – in a master/detail way.
CardViews have a constant width but a variable height. The height is determined by the
collection of objects displayed in the card.

In Android, CardView extends FrameLayout. Per the new Material Design, the CardView
provides for the display of the card information in a panel with rounded corners, raised
elevation and make themselves available to swipe gestures to move them.

CARDVIEW TUTORIAL

In my RecyclerView tutorial, I built an application that simulates a stock price ticker app
– showing the rise and fall of a collection of financial stocks of interest. The stock prices
were displayed in a RecyclerView – using a row layout to display the information about
the stock price change. In this tutorial, we’ll use a CardView to display each stock price
change.

To begin this Android development tutorial, download the RecyclerView tutorial code.
The rest of this tutorial replaces the RecyclerView’s rows with CardViews.

http://www.google.com/design/spec/material-design/introduction.html
https://github.com/IntertechInc/android-recycler

 Page 22

www.Intertech.com

ADD THE CARDVIEW LIBRARY TO GRADLE

CardView is provided via a new Lollipop support library. Your first step in using
CardView is to add the library to the dependencies list of your Gradle build file as shown
by the last line in the code below (add it to the app’s build.gradle and not the project
build.gradle file).

ADD CARDVIEW TO THE QUOTE LAYOUT

In the stock quote demo, you’ll find a layout file called quote_item.xml. This layout
defines the display of a single stock quote in the RecyclerView. Here we add CardView
to put the information/contents about a new stock quote in a “card.” Doing so is
actually quite easy (and this should give you and idea of just how easy it is to add the
card paradigm to your application).

Surround the RelativeLayout of the current quote_item.xml with a CardView. You will
also want to remove the namespace and margin references in the RelativeLayout. The
new CardView layout for quote_item.xml is shown below.

(see next page)

 Page 23

www.Intertech.com

 Page 24

www.Intertech.com

CARDVIEW ATTRIBUTES

At this point, there isn’t much difference in the display. CardView allows for more
Material Design adaptations. To demonstrate, let’s change some of the CardView
specific attributes in the layout. Below, I’ve added cardBackgroundColor, cardElevation,
and cardCornerRadius attributes (some rather exaggerated to highlight some of the new
design ideas).

And now, the display has been altered significantly.

 Page 25

www.Intertech.com

Of course, the CardView attributes can also be accomplished programmatically (some
are easier to set than other). Remember that CardView is a FrameLayout wrapping each
of the stock quotes in the RecyclerView. So in this case, adjust each of the CardView in
the RecyclerView in the ViewHolder.

IMPROVING THE UI

With RecyclerView and CardView in place, you can start to add additional gesture
features to dismiss cards from the display. Check out this Github project to add swipe
gestures to remove enclosed CardViews from the RecyclerView.

https://github.com/krossovochkin/Android-SwipeToDismiss-RecyclerView

https://github.com/krossovochkin/Android-SwipeToDismiss-RecyclerView

 Page 26

www.Intertech.com

Lollipop Material Design

One of the most publicized features of the Android 5 (Lollipop) release has been
Material Design. Yet, it is probably one of the hardest features to grasp for those
hearing about the feature for the first time. Google even set up a web site to try to
describe and explain Material Design. Google has called it a “design language” or “visual
language” for app development. Perhaps that term speaks to designers and marketing
types. As a developer, when I first heard these terms, I was left wanting to understand
exactly how it was going to impact my work in developing applications and how it was
going to impact the look and feel of products I produced. I knew Material Design had
something to do with the visual makeup, but how? In this post, I hope to take a
developer’s look at Material Design – at least some of it. That is, I hope to explain
Material Design by showing you its impact on app development.

As Wired reported, Google hopes to unite its product line under the design styles and
principles established by Material Design. Given Google’s investment in Material Design
and use beyond Android, we can probably expect Material Design to guide the look and
feel of Android apps for the foreseeable future. That’s Android developer speak for –
get used to it because your going to have to use it for a while. After reading this post, I
highly encourage you to read the design specification and look at how design guidelines
for Android have changed due to Material Design. For Material Design to succeed (and
for Android devices to rival its competitor’s visual appeal), it is my opinion that we
developers must follow its principals.

COMPONENTS OF MATERIAL DESIGN

There are actually several parts to the Material Design.

 A new material theme

 New widgets – particularly for displaying collections of data

 APIs for creating view elevations and shadows

http://www.google.com/design/spec/material-design
http://www.wired.com/2014/12/google-material-design/
http://www.google.com/design/spec/material-design/introduction.html
https://developer.android.com/design/index.html

 Page 27

www.Intertech.com

 APIs for clipping views

 Addition of vector drawables

 APIs for custom animations

MATERIAL THEME

A style in Android is a collection of properties that specify the look and format for a
View. A theme is a style applied to an entire Activity or application. If you have
developed in Android for even a little while, you are probably familiar with new themes
(and thus styles) that have been created with most of the major Android releases.
Android 5 is no different in this respect. There are new themes (Material Light Theme,
Material Dark Theme and Material Light with Dark Action Bar Theme to be precise) that
have been released with Lollipop. The API Demo application provided with the AVDs
can give you insight into these new themes – especially as they differ from the Holo
themes (which debuted with Android 4). Below, on the left is the API Demo app (Views
-> Controls->Material Light) run on an Android Lollipop AVD displaying the Material
Light theme. On the right is the API Demo app (Views->Controls->Holo Light) run on an
Android KitKat (4.4) AVD.

http://developer.android.com/guide/topics/ui/themes.html

 Page 28

www.Intertech.com

Importantly, the Material Design themes allow for activity transition animations, touch
feedback animations and a color palette that allows for easier branding of the app. The
color palette can even be set by the colors found in a drawable (more on this later). The
color palette allows the colors of the status bar to be easily customized, which design
guidelines are now suggesting you do in Android 5.

NEW WIDGETS

As reported in early posts in this blog, Android 5 also introduces now widgets to simplify
and improve the display of collections of data. The RecyclerView scrolls more efficiently
especially when considering large data sets and data sets whose elements are changing
dynamically. The RecyclerView also offers some nice visual additions like item animation
that is representative of the new Material Design.

CardViews can be used to display the row of data in a RecyclerView or ListView. In
Android 5, CardView extend FrameLayout. Per the new Material Design, the CardView
provides for the display of the card information in a panel with rounded corners, raised
elevation and make themselves available to swipe gestures to move them.

VIEW ELEVATION AND SHADOWS

Widgets (more formally Views) always had an X and Y position on the screen. Now they
have a Z position. The Z position defines the virtual elevation of the widget from the
screen surface in order to give it the appearance as if it is hovering – and thus projecting
a shadow of the view to the surface below. The higher the Z value of the view, the
larger the shadow cast by the widget. Further, views with a higher Z value “occlude” (I
had to look it up myself if you are not sure what it means – it means to obstruct) views
with smaller Z values as if they were to hover above the images with smaller Z values.

To see the new shadow/Z value projected, simply set the elevation property to a
particular density pixel (or other spatial unit of measure) value. Here is an example of
an ImageView with no elevation (on the left) versus an elevation set (as shown in the
code below) to 15dp (right).

“The status bar should almost always have a clear delineation from the primary toolbar”

 Page 29

www.Intertech.com

CLIPPING VIEWS

In previous versions of Android, soft corners, round buttons, etc. all had to be faked by
using the appropriate color shading in images, backgrounds, etc. Android 5 now
supports clipping to give views the appropriate shape. Specifically, you need to create
and apply a ViewOutlineProvider (new in Android 5) to your view to have the view
clipped. Suppose you have a standard ImageButton with a PNG drawable set as its
source. Below, the Cubs baseball team logo serves as the source PNG to the
ImageButton.

As you can see, the actual logo is circular in shape. Wouldn’t it be nice if the button
could be the shape of the logo – that is circular? In Android 5 it can, just define a
ViewOutlineProvider to clip the view appropriately – in this case, clip the view according
to the dimensions of the logo in a circular / oval fashion. Here is how it is done in code.

https://developer.android.com/reference/android/view/ViewOutlineProvider.html

 Page 30

www.Intertech.com

The results of the clipping are shown below – a “round” ImageButton.

A similar effect can be had by using a rounded rectangle as the means to provide the
clipping. Changing the outline.setOval(…) line of code above to
outline.setRoundRect(paddingSize,paddingSize,imageSize+paddingSize,
imageSize+paddingSize, (imageSize+paddingSize)/3) yields a similar yet slightly different
clipped view.

SVG DRAWABLES

Scalar vector graphics (SVG) are now supported in Android 5. In prior releases, images –
or drawables as they are know – were in the form of png, jpg, or gif images. Create a
resource which defines the graphic using the SVG Path API. Below, I have defined an
orange star using SVG Path in a file I called star.xml in the res/drawables folder.

http://www.w3.org/TR/SVG11/paths.html

 Page 31

www.Intertech.com

The vector file can then be applied as if it was any other image. Take, for example, its
use as the source image in an ImageButton. You even refer to the SVG image as a
@drawable!

Lollipop comes with even more features around drawables. Drawables can now be
defined with an alpha mask for tinting, and you can extract prominent colors from an
image to help colorize the rest of your application components.

PALETTE & COLOR EXTRACTION

I used the color extraction API in the latest version of Vid-iT available at Google Play.
Vid-iT allows people to find YouTube videos matching the music collection stored on
their Android device. I used the color extraction API to extract the prominent colors of
the video thumbnail image to color up the CardView used to display each video in Vid-iT.
Note how each song/video listing below has a background color that seems to resemble
the most prominent color in the video thumbnail?

(see next page)

https://play.google.com/store/apps/details?id=com.intertech.vidit&hl=en

 Page 32

www.Intertech.com

The API that makes this possible is the new Pallete API found in Lollipop. A Palette is a
helper class used to extract colors from an image (as shown below).

Depending on the colors of the image, Palette attempts to define the prominent dark
and light contrasting colors from the image. Here is the list of color definitions it tries to
come up with.

 Vibrant

 Vibrant Dark

 Vibrant Light

 Muted

 Muted Dark

 Muted Light

Above, in the Vid-iT example code, the light vibrant color is used to set the CardView for
each favorite video displayed. Palette can be a very helpful tool in branding your
application in a way that is consistent with a company logo, or color scheme used by an
organization. White label applications can now be easily “colorized” based on the user
or user’s organization with Palette.

https://developer.android.com/reference/android/support/v7/graphics/Palette.html

 Page 33

www.Intertech.com

ANIMATIONS

The addition of animations has been added to several areas of the user interface in
Lollipop. In the tutorial on RecyclerView, I showed how animation can easily be added
to highlight the addition/removal of items to the RecyclerView. Additionally, the
animation API allows developers to highlight activity transition and show state changes
in views (like button clicks). The API Demo application, provided with Android 5 AVDs,
has a collection of animation samples to show you just how extensive this new API is.
Try them out to get inspired by some of these new features. Let’s face it, animation had
been one of user interface areas where iOS was superior to Android. Lollipop’s Material
Design animation API is helping to close that gap.

http://www.intertech.com/Blog/android-v5-lollipop-recyclerview-tutorial/

 Page 34

www.Intertech.com

Job Scheduler

Project Volta is the name given to features of Android 5 aimed at improving power
usage on Android devices. Volta includes better tools for monitoring battery usage. I’ll
be covering those tools in the next tutorial. It also includes a new API for scheduling
work – a job scheduler – which I cover in this Android Development Tutorial.

You might ask why is a job scheduler API part of a power improvement effort? The idea
is that often times, the battery life of our devices is better served when more taxing
tasks are performed under certain conditions – like when the device is plugged in or
connected via WIFI versus using the mobile carrier network. Of course, the job
scheduling API can also be used to schedule asynchronous work that isn’t always about
battery improvement. Sometimes there are tasks that just need to occur regularly or
when the device is otherwise unoccupied.

Now scheduling work in Android is not new. The AlarmManager in Android, for
example, has been a means to repetitively schedule an application or work to kick off
since Android API 1. The new job scheduling API differs from the AlarmManager in that
it is more aware of the environmental resources and can kick of batch jobs when certain
resources are more available.

Job Scheduling API

There are several new classes in Android 5 to help create and execute your scheduled
tasks.

JOBSCHEDULER SERVICE

There is a service for most things in Android. A new service, the JobScheduler Service,
helps you manage scheduled tasks. Obtain the JobScheduler service via
getSystemServices().

http://developer.android.com/reference/android/app/AlarmManager.html
https://developer.android.com/reference/android/app/job/JobScheduler.html

 Page 35

www.Intertech.com

JobScheduler jobScheduler = (JobScheduler)
getApplicationContext().getSystemService(JOB_SCHEDULER_SERVICE);

Call getSystemServices() on a Context – the global application context is used in the
example above.

The scheduler has methods to schedule, cancel and see the list of pending jobs. Jobs
are represented by JobInfo objects.

JOB SCHEDULING API

You now need to build a job and schedule it for execution. Again a familiar pattern is
used in Android to help you create a scheduled job – the builder. Use a Builder to
create a new JobInfo object.

The Builder requires the JobService or “job” name (the name is TestService in the
example code above) and the Job ID. The Job ID (1 in the example above) can be used
to cancel the job via the JobScheduler.

Note the call to setMinimumLatency() before the call to build the JobInfo object? This
is the first of many optional method calls used when creating the JobInfo.

The JobInfo object encapsulates all the information about the work you want
accomplished and the conditions of its execution (time, power availability, etc.). JobInfo
isn’t the actual work or task itself. The actual work to be accomplished is defined in a
JobService (like TestService above). The JobInfo just represents the parameters or
criteria about when you want the work to execute. It is in the JobInfo object, for
example, that you specify that a big downloading job is to run when the device is
plugged in and has a WIFI connection.

Optional parameters or criteria to the JobInfo include:

 make the job periodic (a repeating job within a given period)

 the interval between periodic job runs

 the maximum execution delay – how long to wait to kick of the job (not a
parameter for a periodic job task)

 the minimum amount of time delay before starting the job (not a parameter for
a periodic job task)

https://developer.android.com/reference/android/app/job/JobInfo.html

 Page 36

www.Intertech.com

 the device must be plugged in and charging in order to run the job

 the device must be idle (“in an idle maintenance window”) in order to run the
job

 the device must have a network connection (either WIFI, unmetered, or any)

 the device must not be connected to a network

 the job should be rescheduled if the device reboots (called a “persistent” job).

* all time related parameters are specified in milliseconds.

Lastly, you can also set what is called a back off policy with the JobInfo. The backoff
policy applies to tasks that have finished and need to be retried (perhaps because of a
failure or the need to do the task again). The backoff policy allows the job to be retried,
but under additional parameters like a delay before rescheduling the job or even
growing the delay in an exponential way for repeated failures. Consider the situation
whereby your backend service goes down for some extended period. During that time,
the mobile application running on multiple devices may all want to keep retrying until
the service comes back up. The idea behind the backoff policy is that is allows you to
determine how to stagger and/or ease retries so that once the backend server comes
back on line, there is not a glut of request from the mobile clients – possibly causing it to
go down again.

Each of the optional parameters are set with a method call to the builder. Here, for
example, is how to specify that you want your job (again, defined by TaskService) to kick
off only when there is any network connection, when the device is plugged in, and
repeats at least every 12 hours (43200000 milliseconds).

CREATING THE SERVICE

Where is the work of the job specified? The object that contains the job or work to be
accomplished is an instance of JobService. JobService (android.app.job) is a subclass of
the the good-old Android Service class. As such, it represents background (non-UI) work
that is to accomplished. It is important to note that by default, just as with regular
Android Service objects, the JobService runs on the main / UI thread. As with a regular
Service, you must take care of getting the execution of the task to a non-UI thread –
such as creating and using an AsyncTask. (refer to above tutorial about thread options
and how to deal with other threads and communication with the UI thread).

https://developer.android.com/reference/android/app/job/JobService.html

 Page 37

www.Intertech.com

Unlike the super class Service, you do not override the onStartCommand() method in a
JobService. Instead, the JobService has new methods: onStartJob() and onStopJob().
The onStartJob() method gets called when the JobScheduler runs your job per the
conditions specified in the parameters of your JobInfo. The onStartJob() method runs
on the main / UI thread. It is typically in this method that you create and kick off
another thread to take care of the work of your job. The onStartJob() method returns a
Boolean true if the service needs to process the work and false if there is no more work
to be done for the job.

The onStopJob() method gets called by the system when your job is executing and it
detects that the criteria or parameters associated with your job via the JobInfo no
longer apply and it must stop your job. For example, if you specified in your JobInfo that
the job must have network access to run, the onStopJob() will get called when network
access is no longer available. This method also executes on the main / UI thread. The
onStopJob() method also returns a Boolean to indicate whether you would like the job
to rescheduled / retried when conditions are right again.

One other very important method built in to the JobService superclass is a method that
you cannot override. The final jobFinished() method must be called by your code when
your job is done executing. This notifies the system’s “JobManager” that it is finished so
that it no longer needs to be managed, rescheduled, etc. One of the parameters (a
Boolean true) to jobFinished() allows you to indicate that you want the job to be
rescheduled according to the back-off criteria.

Here is a complete example of the example JobService – TestService – with its
onStartJob() and onStopJob() methods along with an inner AsyncTask class used to
demonstrate how to possibly move the actual work to a separate thread.

 Page 38

www.Intertech.com

Now, all that is left is to show you how to start the JobService, given the JobInfo and
JobScheduler. Note the last line in the code below.

WRAP UP

App power utilization is serious business. At last year’s AnDevCon conference, several
speakers indicated that one of the best ways to get yourself a low rating on Google Play
is to consume too much power. Users don’t like their phones and tablets going dead
because of your poor decision making. So use the JobScheduler to schedule power-
expensive tasks when it is unlikely to affect the device’s battery life.

 Page 39

www.Intertech.com

Project Volta

PROJECT VOLTA

In the previous Android development tutorial on Android Lollipop JobScheduler, I
mentioned Project Volta as part of a large, multi-faceted initiative associated with
Android 5 (Lollipop) to improve the battery utilization and life on Android devices. In
that last tutorial, I covered the JobScheduler API, which was part of Project Volta. The
JobScheduler API provides the means to schedule taxing tasks under certain device
conditions – like when the device is plugged in or connected via WiFi versus using the
mobile carrier network – thereby improving battery life by simply doing less work when
the battery is needed.

Google discovered that just waking the device from sleep for a single second required
two minutes of standby time. The “wake-up” calls turn on the screen, the processors
and radios to get incoming data. That’s a lot of energy consumed for an action that can
be delayed (say when it is being charged) or simply ignored (say when the device is in
airplane mode) when appropriate guidance is provided to a task that needs to be
accomplished.

HOW MUCH BATTERY SAVINGS?

It is/was Google’s hope that Android 5 would give users an average of 90 minutes more
of battery life a day. Early indications about the impact of Project Volta and Lollipop on
Android battery life are mixed. Some early reports suggest that the newest Android
version is giving devices as much as 36% more battery life (see here). Other reports (like
this one) are suggesting that there isn’t any significant savings yet, but that the true
impact may not be felt yet since most apps are not using the new features provided by
Volta and Android 5. Certainly, it would appear that the device and usage greatly
influence the battery life – just as they do today.

https://developer.android.com/about/versions/android-5.0.html
http://arstechnica.com/gadgets/2014/07/examining-project-volta-we-put-android-l-through-our-battery-test/
http://www.techspot.com/article/961-android-lollipop-performance-battery-life/page4.html
http://www.techspot.com/article/961-android-lollipop-performance-battery-life/page4.html

 Page 40

www.Intertech.com

LOLLIPOP/PROJECT VOLTA SPECIFICS

What changes and additions were made to improve the battery life of Android – beyond
the JobScheduler API already covered?

Battery Saver Mode

A new battery saver mode was added to the OS. Device users can turn this feature of
the device on/off (it is off by default) – more on how in a second.

What the battery saver mode does is reduce background processing (like fetching new
emails frequently), throttle down the device’s performance, eliminate unneeded screen
animations, turn off auto application updates, and even dim the screen a little.

Things may seem a little more sluggish and not as “snazzy” as when in non-battery saver
mode, but the idea is it will extend the life of the battery in exchange for these
inconveniences. Battery saver mode is switched off when your device is reconnected to
a power outlet.

As mentioned, battery saver mode is an opt-in feature in the new Android 5 devices.
That means users most turn it on through settings in order to get the battery savings. It
won’t just happen by default! The easiest way to get to the new battery savings options
in settings is to use the new search feature in Settings. Take a look at the small video
below to see how to turn on the battery saver mode.

 (click to see video)

http://cdn.intertech.com/Blog/wp-content/uploads/2015/03/set_battery_saver.mp4?_=1

 Page 41

www.Intertech.com

Note too that you can set the battery saver to automatically come on when the device
has 5% or 15% battery life left.

While on the Battery settings page, you might notice that your device (or the AVD as
shown below) offers some battery usage statistics. These displays are getting more and
more sophisticated and detailed in providing users insight into power-hungry apps.
While not consistent across device platforms yet (in the display or usage), Android 5 is
putting focus on power usage and you can expect users to start to use these types of
stats to make more decisions about what apps stay and go on to their devices.

ART

The new Android Runtime (ART) was introduced as an optional replacement for the
Dalvik Virtual Machine (DVM) with Android 4.4. Developers could choose to run their
apps on ART versus DVM in 4.4. With Lollipop, ART is the default virtual machine –
goodbye DVM.

 Page 42

www.Intertech.com

ART uses an ahead-of-time (AOT) compiler to turn an app’s bytecode to native
executable code. This is done just one time when the app is first loaded and started.
The old DVM used a just-in-time compiler which compiled the app’s code each time the
app was opened. The trade off is speed and battery drain (better in ART then in the
DVM) versus space. The native code typically uses more space and now that must be
stored by the device after it is first compiled. Unless you have a lot of apps/data, the
larger footprint is not typically a big a deal given the larger storage spaces of today’s
devices.

Google has also optimized the code compiled by ART that again improves performance
(fewer CPU cycles) and saves battery life as the app gets used.

Finally, a new and vastly improved garbage collection system is in place with ART.
Again, a more improved GC means better performance and better battery life.

All these ART improvements come without the need for developers to write or deploy
their applications any differently.

By the way, ART also supports 32 bit and 64 bit processors in the x86 and MIPS
architectures. In the long run, ART provides a great deal of advantages to Android that
go beyond power savings.

BATTERY STATS

The final improvement Volta brings to the Android developer is a new dumpsys tool
option that provides battery statistics information. The dumpsys tool runs on a device
or AVD (typically through the adb shell) and it provides statistical data about the
services and operations on that device or AVD. Developers have been using this tool for
years to get insight into what is happening on the device such finding out CPU utilization
or the state/configuration of the Wifi. Find more details about the tool in general here.

A new option to dumpsys provides a deep collection of battery statistics. This option is
called batterystats. You can find out more details about theses stats here. If you take a
look at the documentation, the tool can provide a lot of detail and there are command
options to filter away some of that detail. Importantly, there is a -h (for help) switch to
get an appreciation of the batterystats options. Below, the adb shell command is used
to invoke batterystats to get the help (the help results shown below the command call).

https://source.android.com/devices/input/dumpsys.html
https://source.android.com/devices/tech/power.html

 Page 43

www.Intertech.com

As a simple example of using dumpsys batterystats, the request below asks for the
battery stats on the application package named com.intertech.vidit through the adb
shell.

adb shell dumpsys batterystats com.intertech.vidit

Here are the results of such a request.

 Page 44

www.Intertech.com

Note, earlier versions of Android provided a weaker dumpsys command to get battery
statistical information – it was called batteryinfo. With Android 5, this option to
dumpsys is considered deprecated (see here).

BATTERY HISTORIAN

Along with battery stats, a Google tool – called Battery Historian – is available to put the
battery stats data in a visual display. You can find the tool and information about it in
GitHub. Unfortunately, the tool is a Python-based script and requires you to set up
Python. I am sure we can look for more tools and even IDEs that will provide us insight
into the data provided by batterystats in the future.

WRAP UP

I hope you have found my collection of Android Development Tutorials on Android 5 to
be helpful. Again, this is a major release with many more features that I have not
covered. Both users and developers will see a lot of new capability that will take some
time to get used to.

http://stackoverflow.com/questions/24402918/android-dumpsys-batteryinfo-vs-android-dumpsys-batterystats
https://github.com/google/battery-historian

 Page 45

www.Intertech.com

You can also download a copy of the presentation I made at DevFest MN about the new
features of Android 5.

NEED FURTHER ASSISSTANCE?

See what Intertech has to offer with our Android Training and/or Consulting offerings.
We will help you become a better developer by furthering your knowledge on Android
Lollipop as well as the entire platform and help your organization utilize the Android
platform in your mobile strategies. Click through below to learn more.

 Intertech’s Android Training Offerings

 Intertech’s Android Consulting Offerings

http://www.intertech.com/Blog/android-development-tutorial-project-volta/www.intertech.com/downloads/DevFestMnAndroidLollipop.pdf
http://www.intertech.com/Blog/android-development-tutorial-project-volta/www.intertech.com/downloads/DevFestMnAndroidLollipop.pdf
http://www.intertech.com/Training/Mobile/Android/Android
http://www.intertech.com/Consulting/Android-Development-Consulting
http://www.intertech.com/

