
An Android Studio SQLite Database Tutorial
Previous Table of Contents Next

An Android Studio

TableLayout and

TableRow Tutorial

Understanding Android

Content Providers in

Android Studio

eBookFrenzy.com

Purchase the fully updated Android 6 Edition of this Android Studio Development Essentials

publication in eBook ($9.99) or Print ($38.99) format
Android Studio Development Essentials - Android 6 Edition Print and eBook (ePub/PDF/Kindle)

editions contain 65 chapters.

The chapter entitled An Overview of Android SQLite Databases in Android Studio covered the basic principles of
integrating relational database storage into Android applications using the SQLite database management system.
The previous chapter took a minor detour into the territory of designing TableLayouts within the Android Studio
Designer tool, in the course of which, the user interface for an example database application was created. In this

http://www.techotopia.com/index.php/An_Android_Studio_TableLayout_and_TableRow_Tutorial
http://www.techotopia.com/index.php/Android_Studio_Development_Essentials
http://www.techotopia.com/index.php/Understanding_Android_Content_Providers_in_Android_Studio
http://www.ebookfrenzy.com/
http://www.techotopia.com/index.php/An_Overview_of_Android_SQLite_Databases_in_Android_Studio
http://www.ebookfrenzy.com/ebookpages/android_studio_6_ebook.html
https://www.e-junkie.com/ecom/gb.php?c=cart&i=PLDM-42&cl=56328&ejc=2
https://www.createspace.com/5921247

chapter, work on the Database application project will be continued with the ultimate objective of completing the
database example.

Contents

 [hide]

 1 About the Android Studio Database Example

 2 Creating the Data Model

 3 Implementing the Data Handler

o 3.1 The Add Handler Method

o 3.2 The Query Handler Method

o 3.3 The Delete Handler Method

 4 Implementing the Activity Event Methods

 5 Testing the Application

 6 Summary

About the Android Studio Database Example
As is probably evident from the user interface layout designed in the preceding chapter, the example project is a
simple data entry and retrieval application designed to allow the user to add, query and delete database entries.
The idea behind this application is to allow the tracking of product inventory.

The name of the database will be productID.db which, in turn, will contain a single table named products. Each
record in the database table will contain a unique product ID, a product description and the quantity of that product
item currently in stock, corresponding to column names of “productid”, “productname” and “productquantity”
respectively. The productid column will act as the primary key and will be automatically assigned and incremented
by the database management system.

The database schema for the products table is outlined in Table 42-1:

Column Data Type

productid Integer / Primary Key/ Auto Increment

productname Text

productquantity Integer

Table 42-1

Creating the Data Model

Once completed, the application will consist of an activity and a database handler class. The database handler will
be a subclass of SQLiteOpenHelper and will provide an abstract layer between the underlying SQLite database and
the activity class, with the activity calling on the database handler to interact with the database (adding, removing
and querying database entries). In order to implement this interaction in a structured way, a third class will need to
be implemented to hold the database entry data as it is passed between the activity and the handler. This is actually
a very simple class capable of holding product ID, product name and product quantity values, together with getter
and setter methods for accessing these values. Instances of this class can then be created within the activity and
database handler and passed back and forth as needed. Essentially, this class can be thought of as representing
the database model.

Within Android Studio, navigate within the Project tool window to app -> java and right-click on the package name.
From the popup menu, choose the New -> Java Class option and, in the Create New Class dialog, name the class
Product before clicking on the OK button.

Once created the Product.java source file will automatically load into the Android Studio editor. Once loaded, modify
the code to add the appropriate data members and methods:

package com.ebookfrenzy.database;

public class Product {

http://www.techotopia.com/index.php/An_Android_Studio_SQLite_Database_Tutorial
http://www.techotopia.com/index.php/An_Android_Studio_SQLite_Database_Tutorial#About_the_Android_Studio_Database_Example
http://www.techotopia.com/index.php/An_Android_Studio_SQLite_Database_Tutorial#Creating_the_Data_Model
http://www.techotopia.com/index.php/An_Android_Studio_SQLite_Database_Tutorial#Implementing_the_Data_Handler
http://www.techotopia.com/index.php/An_Android_Studio_SQLite_Database_Tutorial#The_Add_Handler_Method
http://www.techotopia.com/index.php/An_Android_Studio_SQLite_Database_Tutorial#The_Query_Handler_Method
http://www.techotopia.com/index.php/An_Android_Studio_SQLite_Database_Tutorial#The_Delete_Handler_Method
http://www.techotopia.com/index.php/An_Android_Studio_SQLite_Database_Tutorial#Implementing_the_Activity_Event_Methods
http://www.techotopia.com/index.php/An_Android_Studio_SQLite_Database_Tutorial#Testing_the_Application
http://www.techotopia.com/index.php/An_Android_Studio_SQLite_Database_Tutorial#Summary

 private int _id;

 private String _productname;

 private int _quantity;

 public Product() {

 }

 public Product(int id, String productname, int quantity) {

 this._id = id;

 this._productname = productname;

 this._quantity = quantity;

 }

 public Product(String productname, int quantity) {

 this._productname = productname;

 this._quantity = quantity;

 }

 public void setID(int id) {

 this._id = id;

 }

 public int getID() {

 return this._id;

 }

 public void setProductName(String productname) {

 this._productname = productname;

 }

 public String getProductName() {

 return this._productname;

 }

 public void setQuantity(int quantity) {

 this._quantity = quantity;

 }

 public int getQuantity() {

 return this._quantity;

 }

}

The completed class contains private data members for the internal storage of data columns from database entries
and a set of methods to get and set those values.

Implementing the Data Handler

The data handler will be implemented by subclassing from the Android SQLiteOpenHelper class and, as outlined
in An Overview of Android SQLite Databases in Android Studio, adding the constructor, onCreate() and
onUpgrade() methods. Since the handler will be required to add, query and delete data on behalf of the activity
component, corresponding methods will also need to be added to the class.

Begin by adding a second new class to the project to act as the handler, this time named MyDBHandler. Once the
new class has been created, modify it so that it reads as follows:

package com.ebookfrenzy.database;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

public class MyDBHandler extends SQLiteOpenHelper {

 @Override

 public void onCreate(SQLiteDatabase db) {

 }

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVersion,

 int newVersion) {

 }

}

Having now pre-populated the source file with template onCreate() and onUpgrade() methods the next task is to
add a constructor method. Modify the code to declare constants for the database name, table name, table columns
and database version and to add the constructor method as follows:

package com.ebookfrenzy.database;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteOpenHelper;

import android.content.Context;

import android.content.ContentValues;

import android.database.Cursor;

public class MyDBHandler extends SQLiteOpenHelper {

 private static final int DATABASE_VERSION = 1;

 private static final String DATABASE_NAME = "productDB.db";

 private static final String TABLE_PRODUCTS = "products";

 public static final String COLUMN_ID = "_id";

 public static final String COLUMN_PRODUCTNAME = "productname";

 public static final String COLUMN_QUANTITY = "quantity";

http://www.techotopia.com/index.php/An_Overview_of_Android_SQLite_Databases_in_Android_Studio

 public MyDBHandler(Context context, String name,

 SQLiteDatabase.CursorFactory factory, int version) {

 super(context, DATABASE_NAME, factory, DATABASE_VERSION);

 }

 @Override

 public void onCreate(SQLiteDatabase db) {

 }

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVersion,

 int newVersion) {

 }

}

Next, the onCreate() method needs to be implemented so that the products table is created when the database is
first initialized. This involves constructing a SQL CREATE statement containing instructions to create a new table
with the appropriate columns and then passing that through to the execSQL() method of the SQLiteDatabase object
passed as an argument to onCreate():

@Override

public void onCreate(SQLiteDatabase db) {

 String CREATE_PRODUCTS_TABLE = "CREATE TABLE " +

 TABLE_PRODUCTS + "("

 + COLUMN_ID + " INTEGER PRIMARY KEY," + COLUMN_PRODUCTNAME

 + " TEXT," + COLUMN_QUANTITY + " INTEGER" + ")";

 db.execSQL(CREATE_PRODUCTS_TABLE);

}

The onUpgrade() method is called when the handler is invoked with a greater database version number from the
one previously used. The exact steps to be performed in this instance will be application specific, so for the
purposes of this example we will simply remove the old database and create a new one:

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion,

 int newVersion) {

 db.execSQL("DROP TABLE IF EXISTS " + TABLE_PRODUCTS);

 onCreate(db);

}

All that now remains to be implemented in the MyDBHandler.java handler class are the methods to add, query and
remove database table entries.

The Add Handler Method

The method to insert database records will be named addProduct() and will take as an argument an instance of our
Product data model class. A ContentValues object will be created in the body of the method and primed with key-
value pairs for the data columns extracted from the Product object. Next, a reference to the database will be

obtained via a call to getWritableDatabase() followed by a call to the insert() method of the returned database
object. Finally, once the insertion has been performed, the database needs to be closed:

public void addProduct(Product product) {

 ContentValues values = new ContentValues();

 values.put(COLUMN_PRODUCTNAME, product.getProductName());

 values.put(COLUMN_QUANTITY, product.getQuantity());

 SQLiteDatabase db = this.getWritableDatabase();

 db.insert(TABLE_PRODUCTS, null, values);

 db.close();

}

eBookFrenzy.com

Purchase the fully updated Android 6 Edition of this Android Studio Development Essentials

publication in eBook ($9.99) or Print ($38.99) format
Android Studio Development Essentials - Android 6 Edition Print and eBook (ePub/PDF/Kindle)

editions contain 65 chapters.

The Query Handler Method

The method to query the database will be named findProduct() and will take as an argument a String object
containing the name of the product to be located. Using this string, a SQL SELECT statement will be constructed to
find all matching records in the table. For the purposes of this example, only the first match will then be returned,
contained within a new instance of our Product data model class:

public Product findProduct(String productname) {

 String query = "Select * FROM " + TABLE_PRODUCTS + " WHERE " + COLUMN_PRODUCTNAME

+ " = \"" + productname + "\"";

 SQLiteDatabase db = this.getWritableDatabase();

 Cursor cursor = db.rawQuery(query, null);

 Product product = new Product();

 if (cursor.moveToFirst()) {

 cursor.moveToFirst();

 product.setID(Integer.parseInt(cursor.getString(0)));

 product.setProductName(cursor.getString(1));

 product.setQuantity(Integer.parseInt(cursor.getString(2)));

 cursor.close();

 } else {

 product = null;

http://www.ebookfrenzy.com/
http://www.ebookfrenzy.com/ebookpages/android_studio_6_ebook.html
https://www.e-junkie.com/ecom/gb.php?c=cart&i=PLDM-42&cl=56328&ejc=2
https://www.createspace.com/5921247

 }

 db.close();

 return product;

}

The Delete Handler Method

The deletion method will be named deleteProduct() and will accept as an argument the entry to be deleted in the
form of a Product object. The method will use a SQL SELECT statement to search for the entry based on the
product name and, if located, delete it from the table. The success or otherwise of the deletion will be reflected in a
Boolean return value:

public boolean deleteProduct(String productname) {

 boolean result = false;

 String query = "Select * FROM " + TABLE_PRODUCTS + " WHERE " + COLUMN_PRODUCTNAME

+ " = \"" + productname + "\"";

 SQLiteDatabase db = this.getWritableDatabase();

 Cursor cursor = db.rawQuery(query, null);

 Product product = new Product();

 if (cursor.moveToFirst()) {

 product.setID(Integer.parseInt(cursor.getString(0)));

 db.delete(TABLE_PRODUCTS, COLUMN_ID + " = ?",

 new String[] { String.valueOf(product.getID()) });

 cursor.close();

 result = true;

 }

 db.close();

 return result;

}

Implementing the Activity Event Methods

The final task prior to testing the application is to wire up onClick event handlers on the three buttons in the user
interface and to implement corresponding methods for those events. Locate and load the activity_database.xml file
into the Designer tool, switch to Text mode and locate and modify the three button elements to add onClick
properties:

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/add_string"

 android:id="@+id/button"

 android:onClick="newProduct" />

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/find_string"

 android:id="@+id/button2"

 android:onClick="lookupProduct" />

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/delete_string"

 android:id="@+id/button3"

 android:onClick="removeProduct" />

Load the DatabaseActivity.java source file into the editor and implement the code to identify the views in the user
interface and to implement the three “onClick” target methods:

package com.ebookfrenzy.database;

import android.support.v7.app.ActionBarActivity;

import android.os.Bundle;

import android.view.Menu;

import android.view.MenuItem;

import android.view.View;

import android.widget.EditText;

import android.widget.TextView;

public class DatabaseActivity extends ActionBarActivity {

 TextView idView;

 EditText productBox;

 EditText quantityBox;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_database);

 idView = (TextView) findViewById(R.id.productID);

 productBox = (EditText) findViewById(R.id.productName);

 quantityBox =

 (EditText) findViewById(R.id.productQuantity);

 }

 public void newProduct (View view) {

 MyDBHandler dbHandler = new MyDBHandler(this, null, null, 1);

 int quantity =

 Integer.parseInt(quantityBox.getText().toString());

 Product product =

 new Product(productBox.getText().toString(), quantity);

 dbHandler.addProduct(product);

 productBox.setText("");

 quantityBox.setText("");

 }

 public void lookupProduct (View view) {

 MyDBHandler dbHandler = new MyDBHandler(this, null, null, 1);

 Product product =

 dbHandler.findProduct(productBox.getText().toString());

 if (product != null) {

 idView.setText(String.valueOf(product.getID()));

 quantityBox.setText(String.valueOf(product.getQuantity()));

 } else {

 idView.setText("No Match Found");

 }

 }

 public void removeProduct (View view) {

 MyDBHandler dbHandler = new MyDBHandler(this, null,

 null, 1);

 boolean result = dbHandler.deleteProduct(

 productBox.getText().toString());

 if (result)

 {

 idView.setText("Record Deleted");

 productBox.setText("");

 quantityBox.setText("");

 }

 else

 idView.setText("No Match Found");

 }

.

.

.

}

Testing the Application

With the coding changes completed, compile and run the application either in an AVD session or on a physical
Android device. Once the application is running, enter a product name and quantity value into the user interface
form and touch the Add button. Once the record has been added the text boxes will clear. Repeat these steps to
add a second product to the database. Next, enter the name of one of the newly added products into the product

name field and touch the Find button. The form should update with the product ID and quantity for the selected
product. Touch the Delete button to delete the selected record. A subsequent search by product name should
indicate that the record no longer exists.

Summary

The purpose of this chapter has been to work step by step through a practical application of SQLite based database
storage in Android applications. As an exercise to develop your new database skill set further, consider extending
the example to include the ability to update existing records in the database table.

