

1

 2

By
Ryan Hodson

Foreword by Daniel Jebaraj

3

Copyright © 2014 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: Rui Machado

Copy Editor: Courtney Wright

Acquisitions Coordinator: Hillary Bowling, marketing coordinator, Syncfusion, Inc.

Proofreader: Morgan Cartier Weston, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 4

Table of Contents

Contents

The Story behind the Succinctly Series of Books ... 9

About the Author ... 11

Introduction ... 12

Chapter 1 Setting Up .. 13

The Android SDK ... 13

Installation .. 13

Creating a Project .. 13

Setting Up the Emulator ... 16

Compiling the Application .. 19

Chapter 2 Hello, Android ... 20

App Structure Overview ... 20

Creating a User Interface ... 21

Adding a Button ... 23

Defining String Resources ... 24

Detecting Button Input ... 25

5

Logging Output .. 26

Creating Another Activity ... 27

Linking Activities With An Intent ... 28

Another Button ... 30

Passing Data with Intents .. 31

Summary .. 34

Chapter 3 The Activity Lifecycle ... 35

Common Activity Transition Events ... 37

Pressing the Power Button .. 37

Rotating the Device.. 37

Tapping the Back Button ... 37

Recreating Destroyed Activities ... 38

Restoring Instance State ... 38

Saving Instance State .. 38

View States .. 39

Example Project ... 39

Summary .. 40

Chapter 4 User Interface Layouts ... 41

 6

Loading an Android Project.. 41

Loading Layouts ... 42

Basic View Attributes ... 43

Size .. 43

Padding .. 46

Margin .. 48

Common Layouts ... 49

Linear Layouts ... 50

Relative Layouts .. 54

List and Grid Layouts ... 59

Nesting Layouts ... 73

Summary .. 75

Chapter 5 User Interface Widgets .. 76

Images ... 76

Adding Drawable Resources ... 77

Scaling Images .. 77

Programmatically Defining the Image Source ... 78

Buttons ... 78

7

Text Fields ... 80

Styling Text Fields.. 80

Editable Text Fields ... 82

Checkboxes ... 86

Radio Buttons .. 88

Spinners ... 90

Date/Time Pickers .. 94

Summary .. 96

Chapter 6 Fragments ... 98

Creating a Fragment .. 100

Embedding Fragments in Activities ... 101

Swipe Views ... 102

Adding Tabs ... 104

Summary .. 105

Chapter 7 Application Data ... 107

Shared Preferences ... 107

Internal Storage ... 109

SQLite Databases .. 110

 8

Representing Databases ... 110

Accessing the Database .. 111

Inserting Rows ... 112

Querying the Database .. 112

Summary .. 113

9

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

 10

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com

11

About the Author
Ryan Hodson began learning ActionScript at age 14, which eventually led to a job creating
Flash-based data visualizations for the National Center for Supercomputing Applications at the
University of Illinois. Since then, he's worked in a diverse collection of programming fields,
building everything from websites to e-publishing platforms, touch-screen thermostats, and
natural language processing tools. These experiences have led to a love of exploring new
software and a proficiency in several languages (HTML/CSS, JavaScript, PHP, MySQL, Python,
Java, Objective-C, PDF) and many frameworks (WordPress, Django, CherryPy, and the iOS
and OSX SDKs, to name a few).

In 2012, Ryan founded an independent publishing firm called RyPress and published his first
book, Ry's Friendly Guide to Git. Since then, he has worked as a freelance technical writer for
well-known software companies, including Syncfusion and Atlassian. Ryan continues to publish
high-quality software tutorials via RyPress.com.

 12

Introduction
Android is an open source operating system built on top of Linux. It powers a plethora of
devices, from smart phones to tablets to gaming consoles (along with a vast array of other
consumer electronics). According to the International Data Corporation, Android had over 70
percent market share for worldwide smartphones in the last quarter of 2012, so developing for
this platform has the potential to reach a very large number of mobile users.

Figure 1: The Android Logo

Android is the main alternative to the iOS platform for mobile applications, but unlike iOS,
Android projects can easily be created using OS X, Windows, or Linux-based computers. And
since Android uses the Java programming language, developers coming from a C# background
will most likely feel more comfortable than they would with iOS’s Objective-C programming
language.

The goal of Android Programming Succinctly is to guide you through the major aspects of
Android development with friendly, concise examples. You should walk away with a solid
understanding of the necessary design patterns, frameworks, and APIs for producing a polished
Android app. If you would like to follow along with the sample code, it can be found here.

https://bitbucket.org/syncfusiontech/android-programming-succinctly

13

Chapter 1 Setting Up

Before we start writing any code, our first task is to set up a development environment. The
major components necessary for building an Android app are as follows:

 A text editor for writing your code.

 The Android framework for linking against your application code.

 The Android command-line tools for compiling your code into a working app.

 An emulator or actual device for testing your compiled application.

While it’s possible to use virtually any IDE or text editor to create apps, the easiest way to get
started with the Android platform is the official Android Software Development Kit (SDK), which
contains all of these components in a single convenient download.

The Android SDK

The Android SDK (available for OS X, Windows, and Linux) includes the Eclipse IDE with the
Android Developer Tools (ADT) plugin, along with an emulator, a graphical layout editor, and
some other useful features. This is also the development environment that we’ll be using in this
book, so go ahead and download it now so you can follow along.

Installation

After the download has completed, unzip the file and open the eclipse folder. It should contain

an Eclipse executable that you can launch to start the IDE. You’ll be prompted to select a

workspace folder, and then Eclipse should be ready to go. And that’s it for installation!

Creating a Project

Let’s jump right in by creating a new Android project. On the File menu, click New. In the
resulting wizard, select Android Application Project.

http://developer.android.com/sdk/index.html

 14

Figure 2: Creating a new Android project

This will prompt you for some information about your new project:

 Application Name: The name of your app. Use Hello Android for this field.

 Project Name: The name of the project directory. This should be automatically
populated with HelloAndroid, and you can leave this value as is.

 Package Name: The unique namespace for the project. Since it’s just an example app,
you can leave the default com.example.helloandroid, but you should use the reverse
domain name of your organization for real applications.

The remaining fields define important platform requirements, and you can leave them all at their
default values. Your configuration should look like the following when you’re done:

15

Figure 3: Configuring a new Android project

The next two windows ask you about some other miscellaneous details and the app’s icon. You
can leave all of them at their default values. Finally, you’ll come to the following window asking if
you want to create an activity:

 16

Figure 4: Creating an initial activity

We’ll talk about activities in great detail next chapter, but all you need to know for now is that an
activity represents a single screen of your application. We want to have something to look at
initially, so make sure Create Activity is checked, then select Blank Activity to specify an
empty screen. In the next window, you can use the default MainActivity and activity_main
values for the Activity Name and Layout Name fields (again, we’ll discuss layouts in the next
chapter). Click Finish to create a brand new Eclipse project.

Setting Up the Emulator

Unfortunately, we can’t immediately compile the template project to see what it does. First, we
need to set up a device on which to test our new app. Android is designed to let you run a single
application on devices of wildly differing dimensions and capabilities, making it a very efficient
platform for porting apps from smartphones to tablets to anything in between. The Android
Virtual Device Manager included in the SDK allows you to emulate virtually any device on the
market.

17

To view the list of emulated devices, navigate to Window and select Android Virtual Device
Manager. This window makes it easy to see how your application behaves on all sorts of
Android devices, test different screen resolutions and dimensions, and experiment with various
device capabilities (e.g., hardware keyboards, cameras, storage capacity).

To create an emulated device for our project, click New... and use GalaxyNexus for the AVD
Name, then select Galaxy Nexus from the Device dropdown menu, and leave everything else
as the default. For development purposes, it’s also a good idea to check the Use Host GPU to
use your computer’s GPU, since emulating animations can be quite slow and clunky. Your
configuration should resemble the following:

Figure 5: Creating a new emulated device

 18

After clicking OK, you should find your device in the Android Virtual Device Manager window.
To start the emulator, select the GalaxyNexus item, and click Start. Leave the launch options
at their default values, and click Launch. This will start spinning up the emulator, which looks
something like the following:

Figure 6: The Android device emulator

The emulator has to boot up the Android operating system (just like a real device), so you might
be staring at that Android logo for a while before the emulator is actually ready to use. When it is
finally ready, you’ll see the typical Android home screen, and you can click around to launch
apps and explore the emulated device:

Figure 7: The emulator after it’s ready to use

19

Since it takes so long to boot, you’ll want to keep the emulator running as you start writing code
(Eclipse can re-launch the application on the emulator without restarting it).

Compiling the Application

We’re finally prepared to compile the sample project. Back in Eclipse, make sure one of the
source files is selected in the Package Explorer, then click Run, select Run as, and choose
Android Application. After taking a moment to compile, you should see your first Android app
in the device emulator. As you can see, the default template contains a single text field that says
“Hello world!”

Figure 8: The compiled template project

In the next chapter, we’ll learn how to change the contents of this text field, add other UI
components, and organize a simple Android application.

 20

Chapter 2 Hello, Android

In this chapter, we’ll discover the fundamental design patterns of all Android applications. We’ll
learn how to work with activities, display UI elements by editing XML layout files, handle button
clicks, and switch between activities using intent objects. We’ll also learn about best practices
for representing dimension and string values for maximum portability.

Each screen in an Android app is represented by a custom subclass of Activity. The subclass
defines the behavior of the activity, and it’s also responsible for loading user interface from an
XML layout file. Typically, this XML layout file is where the entire interface for a given activity is
defined. To display text fields, buttons, images, and other widgets to the user, all you need to do
is add XML elements to the layout file.

Intent objects are used to switch between the various activities that compose your app. For
example, when the user clicks a button to navigate to another screen, you create an Intent

object and pass the destination activity to it. Then, you “execute” the intent to tell Android to
switch to the next page. This is the general pattern for building up a multi-screen application.

This chapter explains how all these android architecture components interact using hands-on
examples. You can follow along with the empty Android project that you created in the previous
chapter, or you can view the completed code in the HelloAndroid application included with the
sample code for this book.

App Structure Overview

Let’s start by taking a look at the files and directories our template project created for us. It may
look like there are a lot of files in Eclipse’s Package Explorer, but don’t be overwhelmed—there
are only three items that you need to worry about:

AndroidManifest.xml – This file declares everything about your app that the Android

operating system needs to launch it. This includes the classes composing the application, the
permissions required by your app, meta information like the minimum Android API for your app,
and the libraries that your app depends on. This must be in the root directory of your project.
Typically, the SDK will update this file for you automatically, so you shouldn’t have to edit it
directly.

src/ – This directory contains all of your app’s source files. This is where all of your Java

source code will reside.

res/ – This folder contains application resources, which are the images, videos, and strings

that will be displayed to the user. By abstracting resources from your application code, it’s trivial
to add support for new screen resolutions, orientations, and languages.

http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/content/Intent.html

21

The manifest and source directory are relatively straightforward, however the resource folder
calls for a bit more explanation. If you expand this folder in the Package Explorer, you’ll find
three types of subdirectories: drawable/, layout/, and values/. The drawable/ folders

contain all of the graphics for your application, which can be either image files or special XML
files defining shapes. The layout/ directory stores the UI of each screen displayed by your

application, and the values/ folder contains lists of strings that are utilized by the UI.

Now, the interesting part is what comes after the hyphen. This portion of the folder name is a
qualifier that tells the system when to use the contained resources. For example, images in
drawable-hdpi/ will be displayed when the host device has a high-density screen (~240dpi),

whereas devices with low-density screens (~120dpi) will use the images in drawable-ldpi/.

By simply placing high-resolution images and low-resolution images in the appropriate folders,
your app will be available to both types of devices with no changes to your code. Similarly, your
app can be ported to other languages by appending en, es, fr, ar, or any other language code

after the values/ subdirectory. In this way, the res/ directory makes it very easy to support

new devices and reach new audiences.

Creating a User Interface

Android apps use XML to define their user interfaces. Each XML element in a layout file
represents either a ViewGroup or a View object. ViewGroups are invisible containers for other

View objects, and their main job is to arrange child views (or nested view groups) into a

pleasing layout. View objects are visible UI components like text fields, buttons, and tables. To

configure the properties of a view or view group, you edit the attributes of the corresponding
XML element.

The template project we used comes with a default layout called activity_main.xml, which

you should find in the res/layout/ directory. When you double-click the file, ADT displays the

graphical UI editor by default. While you can use this to visually edit the underlying XML, for this
book, we’ll be directly editing the XML markup to gain an in-depth understanding of how Android
user interfaces work. To display the raw XML, click the activity_main.xml tab in the bottom-left
of Eclipse’s editing area, highlighted in orange as you can see in the following figure:

http://developer.android.com/reference/android/view/ViewGroup.html
http://developer.android.com/reference/android/view/View.html

 22

Figure 9: The raw XML tab for the main layout

After clicking this tab, you’ll find the XML that defines the current layout. It should look
something like the following:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:paddingBottom="@dimen/activity_vertical_margin"

 android:paddingLeft="@dimen/activity_horizontal_margin"

 android:paddingRight="@dimen/activity_horizontal_margin"

 android:paddingTop="@dimen/activity_vertical_margin"

 tools:context=".MainActivity" >

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/hello_world" />

</RelativeLayout>

23

As you can see, this defines two elements: <RelativeLayout> and <TextView>.

RelativeLayout is a subclass of ViewGroup that defines the position of its children relative to

each other. TextView is a subclass of View that represents a standard text field component.

We’ll survey the most common UI elements and later in this book.

All of the attributes in the android namespace determine various properties of the associated

element. For example, android:layout_width="match_parent" makes the RelativeLayout

stretch to the same size as its parent (in this case, the main window of the app). The available
attributes and values for each type of element are listed in the documentation for the
corresponding class (e.g., View, ViewGroup, RelativeLayout, TextView). The value of
android:text is a reference to a string resource, which we’ll explain in a moment.

Adding a Button

But first, we’re going to simplify the default layout a bit and change it to a single button, centered
on the screen. Replace the existing activity_main.xml with the following:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:gravity="center"

 tools:context=".MainActivity" >

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/button_next" />

</RelativeLayout>

We’ve done two things here. First, we replaced the <RelativeLayout>’s padding attributes with

android:gravity. This tells it to center all of its child views. Second, we changed the

<TextView> element to a <Button> and gave a new value to its android:text attribute.

Unfortunately, you won’t be able to compile the project to see the button just yet. Instead, you’ll
see an error message next to the android:text attribute saying something about a missing

resource, which can be seen in the following figure:

http://developer.android.com/reference/android/widget/RelativeLayout.html
http://developer.android.com/reference/android/widget/TextView.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/ViewGroup.html
http://developer.android.com/reference/android/widget/RelativeLayout.html
http://developer.android.com/reference/android/widget/TextView.html

 24

Defining String Resources

When designing layouts for Android, you’ll rarely want to hardcode the value of button titles,
labels, and other text fields into the layout’s XML file. Instead, you define string resources in a
separate file and link to it from within the layout. This extra layer of abstraction makes it possible
to reuse the same layout file with different string resources. For instance, you can display
shorter instructions when in portrait mode versus landscape mode, or display English, German,
Arabic, or Chinese instructions based on the device’s locale.

Figure 10: Displaying different string resources in the same layout

Whenever you want to link to any external resource, you use the following format:
@<type>/<identifier>. For example, the android:text="@string/button_text" attribute

in activity_main.xml references a string resource with an identifier of button_text. But,

since we haven’t created that resource yet, the compiler can’t find it, so it gives us an error.
Let’s fix this now.

In the res/values/ directory, open up the strings.xml file. This is the conventional place to

define strings that will be displayed to the user (the filename is actually arbitrary, as the
resource is fully defined by the contained XML). You’ll find a few <string> elements inside of a

<resource> element. Go ahead and add the following element:

25

<string name="button_next">Next Page</string>

The name attribute defines the identifier for the resource. Eclipse should stop complaining about

the missing resource, and you should now be able to successfully compile your project. In the
emulator, you should see a button in the center of the screen with Next Page as its title:

Figure 11: Adding a button to the UI

Separating UI strings from layout construction may seem like an unnecessary hassle, but once
you start working with more complicated user interfaces and want to support multiple
languages, you’ll really appreciate the convenience of having all of your strings in one place.

Detecting Button Input

So, we have a button that the user can interact with, and it even has the iconic blue highlight
when you tap it. The next step is to detect the tap. This is accomplished via the
android:onClick attribute, which tells the system to call a method of the associated activity

whenever the button is tapped. This binds the layout layer with the behavior one, as you can
see in the following figure.

 26

Figure 12: Detecting button clicks with the android:onClick attribute

In activity_main.xml, change the <Button> element to the following. This will hook up the

button to the nextPage() method of MainActivity.java (which we still need to implement).

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/button_next"

 android:onClick="nextPage" />

Logging Output

To figure out if our button is working, let’s log a message to the console whenever the button is
tapped. Instead of Java’s conventional System.out.println(), we’ll use the Log class that is

included with the Android platform. This is the preferred way to output messages to the console
in Android apps due to its well-defined priority levels, which let you easily filter different types of
messages. The most common Log methods are listed below from highest priority to lowest:

 Log.e(String tag, String msg) – Log an error message.

 Log.w(String tag, String msg) – Log a warning message.

 Log.i(String tag, String msg) – Log an informational message.

 Log.d(String tag, String msg) – Log a debug message.

Having several levels of message logging makes it possible to filter certain messages
depending on your compile target. For example, debug messages are stripped at runtime from
production apps, making them the best choice to use during development. Errors, warnings, and
informational messages are always logged, even in production apps.

http://developer.android.com/reference/android/util/Log.html

27

The first parameter of all these methods is a string that identifies the source of the log message.
You’ll typically want this to be the name of the class that’s doing the logging, and the
conventional way to define this value is with a private static final variable in the class itself. So,
in MainActivity.java, add the following line at the beginning of the class definition:

private static final String TAG = "MainActivity";

And, as with any other Java class, we need to import the Log class before we can use it, so add

the following import statements to the top of MainActivity.java (we’ll need the View class,

too):

import android.util.Log;

import android.view.View;

Then, implement the nextPage() method to output a debug message, like so:

public void nextPage(View view) {

 Log.d(TAG, "Switching to next page");

}

Remember that this is the name of the method that we hooked up in activity_main.xml, so it

should get called every time the user clicks the button. Any method used as an
android:onClick target needs to have the above signature (that is, it must be public, return

void, and accept a single View object as a parameter). The parameter is a reference to the UI

component that initiated the call, which in this case is the button that the user pressed.

You should now be able to compile your project, tap the button, and see the above message in
the LogCat panel at the bottom of the IDE. This is where all log messages will be displayed
when launching your application from within Eclipse. To display the LogCat panel, click
Window, Show View, Android, and select LogCat.

Figure 13: The LogCat panel in Eclipse

Creating Another Activity

Logging is a convenient way to make sure UI components are working properly, but you’re
probably going to want most of your buttons to do more than just display a message to the
console. To extend our example, we’ll switch to another activity when the user presses the
button.

 28

The first step is to create another class for the second activity. In Eclipse, press Cmd+N (or
Ctrl+N if you are on a PC) to open the New Document wizard and select Android Activity to
add a new class to the current project. Choose Blank Activity for the template. In the next
window, use SecondActivity for the Activity Name field, activity_second for Layout Name,
and Second Activity for the Title field. Your configured activity should look like the following:

Figure 14: Configuring a new Activity class

Clicking Finish will create the SecondActivity.java and activity_second.xml files, add

them to the manifest, and add a string resource defining the activity title in
res/values/strings.xml. This is everything that needs to happen for a new activity to be

ready to use.

Linking Activities With An Intent

The user experience of a single Android application is typically made up of several different
activities (e.g., browsing the user’s contact list, editing a contact, and viewing a contact are all
separate activities, but are all part of the People app). Each activity is implemented as a
completely independent component, even if they are part of the same application. This makes it
possible for any activity to be initiated by any other activity, including ones from other
applications. For example, if your application needs to add a new contact to the user’s contact
list, it can jump directly to the People app’s activity for creating new entries.

29

To glue all of these independent activities together into a coherent app, Android provides an
Intent class, which represents an arbitrary action to be performed. The general pattern is to
create an Intent object, specify the destination class, and pass in any data required for the

destination class to perform the action. The following figure shows you how the intent object
links two activities.

Figure 15: Switching from one activity to another using an Intent object

This loose-coupling between activities makes for a very modular application architecture with
flexible code reuse opportunities.

In our example, we want to create an intent inside the MainActivity class and use

SecondActivity as the destination. We’ll worry about the data passing portion at the end of the

chapter. First, import the Intent class into MainActivity.java:

import android.content.Intent;

Then, change the nextPage() method to the following:

public void nextPage(View view) {

 Intent intent = new Intent(this, SecondActivity.class);

 startActivity(intent);

}

After creating the intent, we can pass it to the built-in startActivity() function to execute it.

The result should be a transition to the second activity when you click the Next Page button in
the first activity. Right now, the second activity is just a static text field that says "Hello world!",
but we’ll change that in the upcoming section.

http://developer.android.com/reference/android/content/Intent.html

 30

Another Button

In this section, we’ll add another button to the main activity, then we’ll pass the selected button
to the second activity for display. Change activity_main.xml to the following:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="horizontal"

 tools:context=".MainActivity" >

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/button_red"

 android:onClick="nextPage" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/button_blue"

 android:onClick="nextPage" />

</LinearLayout>

Note that both buttons will call the same nextPage() method when the user taps them. This

requires two new string resources: button_red and button_blue. In strings.xml, go ahead

and add these resources:

<string name="button_red">Red Pill</string>

<string name="button_blue">Blue Pill</string>

You can delete the button_next element since we’ll no longer be using it. Before we start

passing data with Intent objects, lets make sure we can tell which button was pressed using a

simple Log message. In MainActivity.java, change the nextPage() method to the following:

public void nextPage(View view) {

 Intent intent = new Intent(this, SecondActivity.class);

 Button button = (Button)view;

 String message = button.getText().toString();

 Log.d(TAG, message);

 startActivity(intent);

}

All this does is fetch the title of the button via the getText() method and displays it via a

Log.d() call. You’ll also need to import the Button class at the top of the file:

import android.widget.Button;

Now, when you compile the app, you should see two buttons in the top-left corner.

31

Figure 16: Adding another button to the main activity

When you tap one of the buttons, you should see the corresponding title displayed in the
LogCat panel.

Passing Data with Intents

Next, we’re going to pass this information along to the next activity using our existing Intent

object. You can store data in an Intent instance by calling its putExtra() method, which takes

two parameters: a name and a string. You can think of this as creating a key-value pair on the
Intent object. For example:

public void nextPage(View view) {

 Intent intent = new Intent(this, SecondActivity.class);

 Button button = (Button)view;

 String message = button.getText().toString();

 intent.putExtra(EXTRA_MESSAGE, message);

 startActivity(intent);

}

The intent.putExtra(EXTRA_MESSAGE, message); line adds the button’s title to the Intent

object, which we can later retrieve via the EXTRA_MESSAGE constant. We still need to define this

constant, so be sure to include the following at the top of the MainActivity class:

public static final String EXTRA_MESSAGE =

"com.example.helloandroid.MESSAGE";

 32

We’ve now successfully encoded some data to send from the main activity to the second
activity. Next, we need to allow the second activity to receive this information. This requires two
steps:

1. Get the Intent instance that was sent to the second activity.

2. Use the EXTRA_MESSAGE key to return the associated value.

To do both of these, add the following method to SecondActivity.java:

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_second);

 Intent intent = getIntent();

 String message = intent.getStringExtra(MainActivity.EXTRA_MESSAGE);

 Log.d(TAG, message);

}

The onCreate() method is a special method defined by the Activity class. The Android

framework invokes onCreate() whenever an Activity is started, and by overriding it in

subclasses, we can add custom initialization behavior. For now, you can think of it as the
constructor method for an Activity instance, but we’ll refine this concept a little bit in the next

chapter.

The last three lines fetch the Intent data we sent from MainActivity.java and display it with

Log.d(). The getIntent() method is another method defined by the Activity class which

simply returns the Intent instance that started the activity. Then, we use the Intent class’s

getStringExtra() method to find the value associated with the

MainActivity.EXTRA_MESSAGE key. Note that defining the key as a constant in

MainActivity.java is a best practice, as it lets the compiler make sure the key is typed

correctly. There are similar methods for other data types (e.g., getFloatExtra() returns a

float value).

The above method still needs access to the Intent and Log classes, so add the following lines

to the top of SecondActivity.java:

import android.content.Intent;

import android.util.Log;

We also need to define another TAG variable in SecondActivity.java:

private static final String TAG = "MainActivity";

You should now be able to compile the project. Click either of the buttons, and have
SecondActivity log the selected button title:

http://developer.android.com/reference/android/content/Intent.html

33

Figure 17: Logging the selected button’s title

For completeness, let’s make the text field in SecondActivity display the value instead of just

displaying it in LogCat. First, add an id attribute to the TextView in activity_second.xml:

<TextView

 android:id="@+id/selected_title"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/hello_world" />

The id attribute is necessary when you want to access a UI element from elsewhere in the

application. The plus sign in @+id is only necessary when first defining the UI element (if you

wanted to reference it from another UI file, you would not need it). The selected_title portion

defines the unique ID of the element, which can be used as follows (define this in
SecondActivity.java):

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_second);

 Intent intent = getIntent();

 String message = intent.getStringExtra(MainActivity.EXTRA_MESSAGE);

 TextView textField = (TextView)findViewById(R.id.selected_title);

 textField.setText(message);

}

The global findViewById() method is defined by the Activity class, and it returns a View

instance that has the supplied ID. Note that we have to cast the return value to a TextView so

we can use the setText() method to display the selected button. The R.id.selected_title

snippet is the conventional way to refer to UI components defined in XML files. The R class is

generated automatically when you compile your project, and the framework populates it with
constants for each element with an android:id attribute. This method of using static constants

to refer to UI elements eliminates the possibility of referencing undefined elements (e.g., from a
misspelled or omitted ID in the layout file).

Note that you’ll have to import the TextView class for the above onCreate() method to

compile:

import android.widget.TextView;

One common mistake for Android beginners is to call findViewById() before calling

setContentView(). The latter must be called first, otherwise findViewById() will return null.

 34

The second view should now display either “Red Pill” or “Blue Pill” depending on which button
you tapped in the main activity page. To switch between buttons, use the Back button on the
device to return to the main page and select the one you want to test. As you can see in the
following image, selecting the Blue Pill button will display its text.

Figure 18: Displaying the selected button title in the second activity

Summary

In this chapter, we learned about the basic structure on an Android application, how to create
user interfaces with XML files, define media resources, handle user input, and switch between
activities using an Intent object. We also acquired some practical debugging skills by taking a

brief look at the Log class.

This is almost everything you need to know to develop basic Android apps. The next chapter
explains the lifecycle of an Activity in more detail, which is important to properly manage the

memory footprint of your application. The rest of this book explores the intermediate
functionality that makes apps more interactive, data-driven, and user-friendly.

35

Chapter 3 The Activity Lifecycle

Once you have the basic structure of an Android application down, the next step is to
understand the intricacies behind constructing and destroying Activity objects. We already

saw how onCreate() can be used to initialize an Activity, but this is only one aspect of

managing an activity’s lifecycle. In this chapter, we’ll learn how to minimize CPU, memory, and
battery usage, handle phone call interruptions, save user state, and switch between landscape
and portrait orientations by properly implementing an activity’s lifecycle. This is a very important
aspect of Android app development, as a failure to do so will cause your application to regularly
crash (and that’s a very bad user experience). The following figure shows you the activity
lifecycle of an application.

Figure 19: The activity lifecycle

An activity lifecycle consists of the following six states:

 Created: The activity has been created and is ready to be displayed.

 Started: The activity is visible, but the user cannot interact with it yet. This state is
typically followed immediately by the resumed state.

 Resumed: The activity is running in the foreground and the user can interact with it.

 Paused: The activity has been interrupted by a phone call or dialog message (e.g., a
low-battery alert). This often leads immediately into the stopped state. The activity is
usually still visible while paused, but obscured by a dialog so the user cannot interact
with it.

 Stopped: The activity has been moved to the background and is no longer visible, but
the instance still exists in memory. An activity can be re-launched from this state without
re-creating it.

 Destroyed: The activity has been released by the system and no longer exists. This will
happen automatically when the Android operating system deems it necessary.

 36

When an activity is being created, it passes through the first three states, and when it is being
destroyed, it passes through the latter half of the states. However, this rarely happens in a
strictly linear fashion. The typical application will switch between the started, resumed, paused,
and stopped state as the user interacts with the other activities in your application and gets
interrupted by important alerts.

To manage the transitions between these states, the Activity class provides several methods.

To define custom startup and teardown behavior, all you have to do is override these methods
in an Activity subclass. All of the Activity transition methods are listed below, along with

common examples of when they should be used:

 onCreate() – Called when the activity is entering the created state. As we saw in the

last chapter, this is where you want to initialize UI elements and otherwise prepare the
activity for use.

 onStart() – Called when the activity is entering the started state. This is a good place

to load data that needs to be displayed to the user, though this can also be done in
onResume() depending on the type of data and how you’re using it.

 onResume() – Called when the activity is entering the resumed state. This is the best

place to initialize sensor input (e.g., GPS, cameras) and begin any animations required
by your user interface.

 onPause() – Called when the activity is entering the paused state. This is where you

should stop using scarce system resources (e.g., animations, GPS, cameras) to
maximize the device’s battery life and to reduce your application’s memory footprint.
This is the teardown counterpart to the onResume() method.

 onStop() – Called when the activity is entering the stopped state. This is called right

before the application enters the background, so it’s a good place to save user data that
needs to be re-used later on (e.g., an email draft). Note that onPause() can also be an

appropriate time to do this, as it is always called immediately before onStop(). Whether

you want to use onPause() or onStop() largely depends on your specific application

requirements. onStop() is the teardown counterpart to the onStart() method.

 onDestroy() – Called when the activity is entering the destroyed state. This is the last

chance you have to clean up any resources that would otherwise leak when your
application is destroyed. This is the teardown counterpart to the onCreate() method;

however, the system will automatically release class references when the activity is
destroyed, so you usually won’t need to implement onDestroy() unless you started a

background thread or created a memory buffer in onCreate().

As you can see, there is a symmetry between the above transition methods. Anything that
happens in onStart() should be undone in onStop(), and anything done in onResume()

should be undone in onPause().

When overriding any of the above methods, remember that you must call the superclass’s
version for your application to work correctly.

37

Common Activity Transition Events

If you’re feeling a little confused about all of these transitions, it might help to discuss them from
the perspective of the user. In this section, we’ve included a few of the most common events
that can trigger an activity state transition below. Again, all of these occur frequently in the
normal usage of an application, so it’s imperative to ensure that the corresponding transition
methods consume and release system resources efficiently.

Pressing the Power Button

When the user presses the device’s power button to put it in standby, the current activity will be
moved to the background (that is, it will pause, then stop). As you might expect, the opposite
process occurs when they exit standby: the current activity will start, then resume.

If you think about how many times you’ve entered standby on your own Android device while in
the middle of an activity, you’ll quickly understand how important it is to properly manage the
onPause(), onStop(), onStart(), and onResume() methods. For example, if you left the

accelerometer sensor running after the device entered standby, the user would find their battery
unexpectedly low when they turned their phone back on.

Rotating the Device

The way the Android system handles device orientation changes can be somewhat
counterintuitive, especially for new developers. When the screen rotates, the foreground activity
is actually destroyed and re-created from scratch. This is because some layouts need to load
different resources for portrait vs. landscape modes, and using the same instance is potentially
wasteful.

Tapping the Back Button

When the user taps the Back button, the operating system interprets this as no longer needing
the current activity, so it destroys it instead of just sending it to the background. This means that
if the user navigates back to the destroyed activity, it will be created from scratch. If you’re trying
to record the user’s progress in the destroyed activity, this means that you need to store that
information outside of the activity and reload it in onCreate(), onStart(), or onResume(). If

you try to store any data as instance variables, it will be lost when the activity is destroyed.

 38

Recreating Destroyed Activities

An activity that is destroyed when the user taps the Back button or when it manually terminates
itself is gone forever; however, this is not the case when an activity is destroyed due to system
constraints. For example, if an activity is about to be destroyed because the Android OS needs
the memory, it first archives the instance state of the Activity in a Bundle object, saves it to

disk, and associates the Bundle with the Activity subclass.

This Bundle object can then be used to create a new Activity object with the same state as

the destroyed one. Essentially, this makes it appear as though the original Activity instance is

always in a stopped state without consuming any resources whatsoever.

Restoring Instance State

If there is an associated Bundle for an Activity, it gets passed to its onCreate() method. For

instance, if you were developing an email client and stored the email body in an instance
variable called message, your onCreate() method might look something like the following:

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 if(savedInstanceState != null) {

 // Restore the archived instance state

 this.message = savedInstanceState.getString(STATE_MESSAGE);

 } else {

 // Initialize with default values

 this.message = "Hello, World!";

 }

}

This would also require the following two lines at the top of the class:

private static final String STATE_MESSAGE = "MainActivityMessageState";

public String message;

STATE_MESSAGE is a constant that defines the key to use when archiving the message instance

variable in the bundle. This is similar to the key-value pattern for storing information in an
Intent object.

Saving Instance State

To archive custom instance variables, all you need to do is override the
onSaveInstanceState() method defined by Activity. For example, to save the above

message state, you would use something like this:

http://developer.android.com/reference/android/os/Bundle.html

39

@Override

public void onSaveInstanceState(Bundle savedInstanceState) {

 savedInstanceState.putString(STATE_MESSAGE, this.message);

 super.onSaveInstanceState(savedInstanceState);

}

As with the Activity state transition methods, it’s important to call the superclass version of

onSaveInstanceState() when overriding it.

View States

The Android framework will automatically save the state of the entire view hierarchy, which
means that every text field, button, and image will look exactly as it did before it was destroyed
by the system. For many activities, this is the only state that really needs to be saved—one of
the few times you’ll actually need to implement a custom onSaveInstanceState() is when the

Activity has multiple steps and the user’s progress is recorded in instance variables.

Example Project

The ActivityLifecycle-transitions project in the resource package for this book is a

simple application demonstrating all of the transition methods discussed above. It has two
activities that you can switch between, and both of them use Log.d() to inform you when they

have changed states. When you run the project in the emulator and click the buttons, you
should see the following messages in LogCat:

05-23 12:27:41.178: D/MainActivity(4042): Created Main Activity

05-23 12:27:41.178: D/MainActivity(4042): Started Main Activity

05-23 12:27:41.178: D/MainActivity(4042): Resumed Main Activity

// Click the "Next Activity" button

05-23 12:27:44.788: D/MainActivity(4042): Paused Main Activity

05-23 12:27:45.018: D/SecondActivity(4042): Created Second Activity

05-23 12:27:45.018: D/SecondActivity(4042): Started Second Activity

05-23 12:27:45.018: D/SecondActivity(4042): Resumed Second Activity

05-23 12:27:45.728: D/MainActivity(4042): Stopped Main Activity

Also notice that if you press the Power button on the emulator (which emulates the physical
power button on an actual device), you’ll see the current activity pause and then stop. You can
also see the current activity get destroyed when you press the emulator’s Back button.

Of course, you’ll generally want to do more than just log a message in onCreate(), onStart(),

and the other activity transition methods, but this project does give you a convenient place to
start experimenting with the various states of an Activity. We’ll see some more practical

versions of these methods later in the book after we learn how to create animations and save
user data.

 40

Summary

In this chapter, we introduced the lifecycle on an Activity object. As the user navigates an

application, each Activity object passes through a created, started, resumed, paused,

stopped, and destroyed state, often cycling between the middle four states several times before
being destroyed. Since these state transitions happen so frequently, and mobile devices have
such scarce system resources, properly transitioning between these states is an essential
component for a satisfying user experience.

This chapter focused more on the conceptual aspects on the Activity lifecycle because the

concrete implementation of transition methods like onResume() is so application-specific. What

you should take away from this chapter is a high-level understanding of how the Android
framework manages its Activity objects. Once you understand that, it’s easy to adapt these

concepts to your real-world application requirements.

In the next two chapters, we’ll shift gears a bit and focus on configuring the front end of an
Android application. First, we’ll learn how to arrange UI elements into user-friendly layouts, then
in the following chapter, we’ll explore the API for buttons, text fields, spinners, and the other
common input controls.

41

Chapter 4 User Interface Layouts

Laying out the UI elements in each Activity is one of the most important aspects of Android

app development. It defines the appearance of an app, how you collect and display information
to your users, and how they navigate between the various activities that compose your
application.

The first chapter in Android Programming Succinctly provided a brief introduction to XML
layouts, but this chapter will take a much deeper look at Android’s built-in layout options. In this
chapter, we’ll learn how to arrange UI elements in linear, relative, and grid layouts, the common
navigation patterns recommended by Android maintainers, and we’ll even take a brief look at
how to develop device-independent layouts that can seamlessly stretch and shrink to different
dimensions.

This chapter goes hand-in-hand with the upcoming chapter, in which we’ll learn about all of the
individual UI elements. The running example for this chapter uses buttons and text fields to
demonstrate different layout functionality, but remember that you can substitute any of the UI
elements discussed in the next chapter to the same effect.

Loading an Android Project

You can follow along with the examples for this chapter from a fresh Android project, but if you
want to see the end result, you can load the UserInterfaceLayouts project contained in the
sample code for this book. To open an existing project, launch Eclipse (with the ADT plugin),
and select Import in the File menu. This will open a dialog that looks like the following figure:

 42

Figure 20: Opening a project in Eclipse

Open the General folder and select Existing Projects into Workspace, then click Next. In the
next dialog, click Browse..., find the resource folder that came with this book, and open the
UserInterfaceLayouts folder. After clicking Finish, you should see the project in the Package
Explorer.

Loading Layouts

In the first chapter, we let the template load the XML layout file for us, but it’s important to
understand how this works under the hood. Fortunately, it’s also a relatively simple process.

When you compile a project, Android automatically generates a View instance from each of

your XML layout files. Like String resources, these are accessed via the special R class under

the static layout variable. For example, if you wanted to access the View instance created from

a file called activity_main.xml, you would use the following:

R.layout.activity_main

To display this View object in an Activity, all you have to do is call the setContentView()

method. The onCreate() method of the blank Activity template always contains a call to

setContentView() to load the associated view into the Activity:

43

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

}

Note that you can pass any View instance to setContentView(); using the generated

R.layout.activity_main object is just a useful convention for working with XML-based

layouts. If you need to replace an Activity’s content dynamically, it’s perfectly legal to call

setContentView() outside of onCreate().

Basic View Attributes

Before we start talking about Android’s built-in layout schemes, it’s important to understand how
to set the size and position of UI elements within a particular layout. The next three sections
show you how to define the dimensions, padding, and margin of a UI element using various
XML properties.

Size

To set the width of a particular UI element, all you need to do is add an
android:layout_width attribute to that element in the XML layout file. Likewise, the

android:layout_height attribute defines the height of the element. The value for either of

these parameters must be one of the following:

 wrap_content – This constant makes the element as big as it needs to be to contain its

content.

 match_parent – This constant makes the element match the width and height of the

parent element.

 An explicit dimension – Explicit dimensions can be measured in pixels (px), density-

independent pixels (dp), scaled pixels based on preferred font size (sp), inches (in), or

millimeters (mm). For example, android:layout_width="120dp" will make the element

120 device-independent pixels wide.

 A reference to a resource – Dimension resources let you abstract reusable values into a
resource file, just like we saw with strings.xml in the first chapter of this book.

Dimension resources can be accessed using the @dimen/resource_id syntax, where

resource_id is the unique ID of the resource defined in dimens.xml.

Let’s start by exploring wrap_content. Change activity_main.xml to the following and

compile the project (we’ll discuss the LinearLayout element later in this chapter):

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 44

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context=".MainActivity"

 >

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Click me!" />

</LinearLayout>

You should see a single button at the top of the screen, and since we used wrap_content for

both of the dimensions, it should be just big enough to fit the “Click me!” text (with some default
padding). If you change the text, the button will expand or shrink to match. The following figure
shows you the button you have created in the activity_main.xml.

Figure 21: A Button element using the wrap_content constant for both dimensions

If you change android:layout_width and android:layout_height to match_parent, the

button will fill the entire screen, since that’s how big the parent LinearLayout is:

<Button

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:text="Click me!" />

When you run this, it should look something like the following:

45

Figure 22: A Button element using the match_parent constant for both dimensions

If you need more control over the size of your UI elements, you can always manually define
their width and height using explicit values, like so:

<Button

 android:layout_width="200dp"

 android:layout_height="60dp"

 android:text="Click me!" />

This makes the button 200 device-independent pixels wide by 60 device-independent pixels
high, as you can see in the following figure:

Figure 23: A Button element with an explicit width and height

 46

The last option is to add an explicit dimension to dimens.xml and reference that from

activity_main.xml. This is very useful if you have many elements that need to share the

same dimension. Dimension resource references look just like string resource references,
except you use @dimen instead of @string:

<Button

 android:layout_width="@dimen/button_width"

 android:layout_height="@dimen/button_height"

 android:text="Click me!" />

Of course, you’ll also have to add these resources to dimens.xml before you compile the

project:

<resources>

 <!-- Default screen margins, per the Android Design guidelines. -->

 <dimen name="activity_horizontal_margin">16dp</dimen>

 <dimen name="activity_vertical_margin">16dp</dimen>

 <dimen name="button_width">200dp</dimen>

 <dimen name="button_height">60dp</dimen>

</resources>

This will have the exact same effect as the previous snippet, but now it’s possible to reuse the
button_width and button_height values in other layouts (or for other elements in the same

layout).

It’s also worth noting that you can mix-and-match different methods for the width and height
values. For example, it’s perfectly legal to use 200dp for the width and wrap_content for the

height.

Padding

Padding is the space between an element’s content and its border. It can be defined via any of
the following attributes, all of which take an explicit dimension (e.g., 120dp) or a reference to a

resource (e.g., @dimen/button_padding):

 android:padding – Sets a uniform value for all sides of the element.

 android:paddingTop – Sets the padding for the top edge of the element.

 android:paddingBottom – Sets the padding for the bottom edge of the element.

 android:paddingLeft – Sets the padding for the left edge of the element.

 android:paddingRight – Sets the padding for the right edge of the element.

 android:paddingStart – Sets the padding for the start edge of the element.

 android:paddingEnd – Sets the padding for the end edge of the element.

47

Figure 24: Padding attributes

Padding can be added to View or ViewGroup elements. For the former, it defines the space

between the element’s contents (e.g., a button’s title text) and its border, and for the latter it
defines the space between the edge of the group and all of its child elements. For example, the
following button will have 60 device-independent pixels surrounding its title text:

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:padding="60dp"

 android:text="Click me!" />

This should result in the following:

Figure 25: A Button with 60dp padding

Next, let’s try adding some padding to the top and bottom of the containing ViewGroup (i.e., the

LinearLayout element) and making the button match the size of its parent, like so:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 48

 android:layout_height="match_parent"

 android:orientation="vertical"

 android:paddingTop="24dp"

 android:paddingBottom="24dp"

 tools:context=".MainActivity"

 >

 <Button

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:text="Click me!" />

</LinearLayout>

This demonstrates that using match_parent on a child element takes the padding of the parent

into account. Notice the 24dp padding on the top and bottom of the following screenshot:

Figure 26: A Button with match_parent for its width and height and 24dp top and bottom padding in its parent
ViewGroup

Margin

An element’s margin is the space between its border and either the surrounding elements or the
edges of the parent element. It can be specified for any View or ViewGroup using the

android:layout_margin element. And, like android:padding, the top, bottom, left, right,

start, and end margins can be defined individually using android:layout_marginTop,

android:layout_marginBottom, etc.

49

Figure 27: Margin attributes

For instance, the following code creates the same result as the example from the previous
section by defining a top and bottom margin on the Button instead of top and bottom padding

on the parent LinearLayout:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context=".MainActivity"

 >

 <Button

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:layout_marginTop="24dp"

 android:layout_marginBottom="24dp"

 android:text="Click me!" />

</LinearLayout>

Common Layouts

Android provides three main ways to arrange UI elements: linear layouts, relative layouts, and
grid layouts. The first two methods use classes called LinearLayout and RelativeLayout,

respectively. These are subclasses of ViewGroup that have built-in functionality for setting the

position and size of their child View objects. Grid layouts make it easy to display one- and two-

dimensional data structures to the user, and they are slightly more complex than linear or
relative layouts. The following figure shows you the available layout elements:

 50

Figure 28: The three standard Android layouts

Linear Layouts

The LinearLayout class arranges all of the contained UI elements either horizontally or

vertically. It displays each element in the same order it appears in the XML file, making it a very
simple way to create complex layouts made up of many elements.

Orientation

A LinearLayout element needs to know in which direction it should lay out its children. This is

specified via the android:orientation attribute, which can have a value of either horizontal

or vertical. A horizontal layout will have each child element stacked left-to-right (in the same

order as they appear in the source XML). For example, try changing activity_main.xml to the

following:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="horizontal"

 tools:context=".MainActivity"

 >

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Click me!" />

51

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Click me!" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Click me!" />

</LinearLayout>

If you compile the project and run it in the emulator, you should see a single row of three
buttons, like the following:

Figure 29: A LinearLayout with horizontal orientation

But if you change the orientation to vertical, like so:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context=".MainActivity"

 >

...

</LinearLayout>

The three buttons will appear in a single column:

 52

Figure 30: A LinearLayout with vertical orientation

Weight

You can use the same android:layout_width and android:layout_height attributes

discussed earlier this chapter to define the size of each child element, but LinearLayout also

enables another sizing option called android:layout_weight. An element’s weight determines

how much space it takes up relative to its siblings. For example, if you want three buttons to be
evenly distributed over the height of the parent LinearLayout, you could use the following:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context=".MainActivity"

 >

 <Button

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight="1"

 android:text="Click me!" />

 <Button

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight="1"

 android:text="Click me!" />

 <Button

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight="1"

 android:text="Click me!" />

53

</LinearLayout>

Note that for vertical orientations, you need to set each element’s android:layout_height

attribute to 0 so that it can be calculated automatically using the specified weight. For horizontal

orientations, you would need to set their android:layout_width to 0. Running the above code

should give you the following:

Figure 31: Evenly weighted UI elements in a vertical linear layout

You can change the weight ratios to make the buttons take up different proportions of the
screen. For example, changing the button weights to 2, 1, 1 will make the first button take up
half the screen and the other two a fourth of the screen:

 54

Figure 32: Unevenly weighted UI elements in a vertical linear layout

Specifying weights instead of explicit dimensions for UI elements is a flexible way to configure
layouts, as it lets them automatically scale to match the size of the parent ViewGroup.

Relative Layouts

RelativeLayout is an alternative to LinearLayout that lets you specify where each element

should be placed with respect to the other elements in the interface. Unlike LinearLayout, the

order of the elements in the rendered interface of a RelativeLayout does not necessarily have

to match the underlying XML file. Instead, their positions are defined by specifying a relationship
to another element (e.g., “place the button to the left of the text field” or “place the button at the
bottom of its parent”). The fact that positions are defined relative to other elements makes this a
very powerful way to create pleasing UIs that expand and contract based on the screen size.

Relative To Parent

In a RelativeLayout, a UI element can be positioned with respect to its parent or with respect

to its siblings. In either case, you define the position using one of the layout attributes defined by
RelativeLayouts.LayoutParams. The attributes that position elements relative to their parent are
listed below, and all of them take a Boolean value:

 android:layout_alignParentLeft – If true, aligns the left side of the element with

the left side of its parent.

 android:layout_centerHorizontal – If true, centers the element horizontally in its

parent.

http://developer.android.com/reference/android/widget/RelativeLayout.LayoutParams.html

55

 android:layout_alignParentRight – If true, aligns the right side of the element with

the right side of its parent.

 android:layout_alignParentTop – If true, aligns the top of the element to the top of

its parent.

 android:layout_centerVertical – If true, centers the element vertically in its parent.

 android:layout_alignParentBottom – If true, aligns the bottom of the element to the

bottom of its parent.

 android:layout_alignParentStart – If true, aligns the start edge of the element

with the start edge of its parent.

 android:layout_alignParentEnd – If true, aligns the end edge of the element with

the end edge of its parent.

 android:layout_centerInParent – If true, centers the element horizontally and

vertically in its parent.

For example, try changing activity_main.xml to the following:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 >

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_alignParentBottom="true"

 android:text="Top Button" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerHorizontal="true"

 android:layout_centerVertical="true"

 android:text="Middle Button" />

 <Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:text="Bottom Button" />

</RelativeLayout>

This will result in a diagonal row of three buttons, as shown below:

 56

Figure 33: A RelativeLayout that positions elements with respect to their parent

Note that if you change the order of the XML elements in activity_main.xml, the buttons will

still appear in the same locations. This is different than the behavior of LinearLayout, which

places each element relative to the previous one. Also notice that if you change the button
dimensions or rotate the emulator (Ctrl+F12), they will still appear in their respective locations
relative to the screen.

Relative To Siblings

Elements can also be positioned relative to each other. The attributes listed below all specify a
graphical relationship with surrounding elements, but instead of a Boolean value, they require
an ID of another element in the layout:

 android:layout_above – Positions the bottom edge of the element above the element

with the specified ID.

 android:layout_below – Positions the top edge of the element below the element with

the specified ID.

 android:layout_toLeftOf – Positions the right edge of the element to the left of the

element with the specified ID.

 android:layout_toRightOf – Positions the left edge of the element to the right of the

element with the specified ID.

 android:layout_alignBaseline – Aligns the baseline of the element with the baseline

of the element with the specified ID.

 android:layout_alignTop– Aligns the top edge of the element with the top of the

element with the specified ID.

57

 android:layout_alignBottom – Aligns the bottom edge of the element with the bottom

edge of the element with the specified ID.

 android:layout_alignLeft – Aligns the left edge of the element with the left edge of

the element with the specified ID.

 android:layout_alignRight – Aligns the right edge of the element with the right edge

of the element with the specified ID.

For example, consider the following RelativeLayout that uses relative-to-sibling attributes

instead of relative-to-parent attributes. The second and third buttons are positioned relative to
the first one, which will be located in the default top-left corner.

<Button

 android:id="@+id/topButton"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Top Button" />

<Button

 android:id="@+id/middleButton"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@id/topButton"

 android:layout_toRightOf="@id/topButton"

 android:text="Middle Button" />

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_below="@id/middleButton"

 android:layout_toRightOf="@id/middleButton"

 android:text="Bottom Button" />

Instead of a diagonal line of buttons that spans the entire screen, this code will give you a
diagonal with all of the button corners touching:

Figure 34: A RelativeLayout that positions elements with respect to their siblings

 58

Since we’re referencing them by ID, we needed to include an android:id attribute for the top

and middle buttons. Remember from the first chapter that the first time an XML element ID is
used, it needs to be declared as "@+id/foo". This plus sign usually occurs in the android:id

attribute, but it doesn’t have to—it should always be found in the first attribute that uses the ID.
In the following snippet, the android:layout_toLeftOf attributes are the first place the

middleButton and bottomButton IDs are referenced, so they need to be prefixed by a plus

sign:

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_toLeftOf="@+id/middleButton"

 android:layout_above="@id/middleButton"

 android:text="Top Button" />

<Button

 android:id="@id/middleButton"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_toLeftOf="@+id/bottomButton"

 android:layout_above="@id/bottomButton"

 android:text="Middle Button" />

<Button

 android:id="@id/bottomButton"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_alignParentRight="true"

 android:layout_alignParentBottom="true"

 android:text="Bottom Button" />

This use of plus signs helps reduce the number of mistyped IDs by ensuring that new IDs are
explicitly labeled as such. For example, if you were to accidentally try to reference an element
with @id/bottumButton, the compiler would let you know that there is no such element.

The above XML positions the top and middle buttons relative to the bottom one, then puts the
bottom one in the bottom-right corner of the screen. This gives you the following layout:

59

Figure 35: A RelativeLayout that positions buttons relative to elements that have not been declared yet

Also notice that you can combine the relative-to-sibling with the relative-to-parent positioning
methods. The bottom button is positioned relative to its parent (e.g.,
android:layout_alignParentRight), and the others are positioned relative to a sibling (e.g.,

android:layout_toLeftOf).

List and Grid Layouts

So far, we’ve learned how to quickly create user interfaces with LinearLayout and

RelativeLayout; however, the content of these interfaces have been entirely static—their UI

elements are hardcoded into the underlying XML file. When you want to create a user interface
using dynamic data, things get a little bit more complicated. Data-driven layouts require three
components:

 A data set

 A subclass of Adapter for converting the data items into View objects.

 A subclass of AdapterView for laying out the View objects created by the Adapter

Before you can start configuring a data-driven layout, you need some data to work with. For this
section, our data set will be a simple array of String objects, but Android also provides many

built-in classes for fetching data from text files, databases, or web services.

Next, you need an Adapter to convert the data into View objects. For example, the built-in

ArrayAdapter takes an array of objects, creates a TextView for each one, and sets its text

property to the toString() value of each object in the array. These TextView instances are

then sent to an AdapterView.

http://developer.android.com/reference/android/widget/Adapter.html
http://developer.android.com/reference/android/widget/AdapterView.html
http://developer.android.com/reference/android/widget/ArrayAdapter.html

 60

AdapterView is a ViewGroup subclass that replaces the LinearLayout and RelativeLayout

classes from the previous sections. Its job is to arrange the View objects provided by the

Adapter. This section explores the two most common AdapterView subclasses, ListView and

GridView, which position these views into a list or a grid, respectively.

Figure 36: Displaying a data set in a GridView using an Adapter

List Layouts

Let’s start by getting a simple ListView up and running. Since we’re no longer hardcoding UI

elements, our XML layout file is going to be very simple—all it needs is an empty ListView

element. Change activity_main.xml to the following:

<ListView xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/listView"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content" />

This ListView defines our entire XML layout—all of its UI elements will be populated

dynamically. We do, however, need to include an android:id attribute so that we can access

the ListView instance from our activity.

Next, we need to update our MainActivity class to define a data set, pass that data set to an

Adapter, and then pass that adapter to the ListView that we defined in activity_main.xml.

So, change MainActivity.java to the following:

package com.example.userinterfacelayouts;

import android.os.Bundle;

import android.app.Activity;

import android.widget.ListView;

import android.widget.ArrayAdapter;

public class MainActivity extends Activity {

 @Override

http://developer.android.com/reference/android/widget/ListView.html
http://developer.android.com/reference/android/widget/GridView.html

61

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 String[] data = new String[] { "Item 1", "Item 2", "Item 3",

 "Item 4" };

 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, data);

 ListView listView = (ListView) findViewById(R.id.listView);

 listView.setAdapter(adapter);

 }

}

First, we create an array of Strings to serve as our data set and assign it to the local data

variable. Then, we create an ArrayAdapter, which generates a TextView from each String in

the array. Its constructor takes an Activity context, the ID of the prototypical TextView, and

the array of data. The android.R.layout.simple_list_item_1 snippet is a reference to one

of Android’s convenient built-in layouts. You can find the complete list in the R.layout
documentation. Next, we have to find the ListView that we added to activity_main.xml via

findViewById(), and then we need to set its adapter property to the ArrayAdapter instance

that we just configured.

You should now be able to compile the project and see the four strings in the data array

displayed as a list of TextView elements:

Figure 37: A dynamic layout generated by ListView

List layouts make it incredibly easy to work with large data sets, and the fact that you can
represent each item with any view lets you display objects that have several properties (e.g., a
list of contacts that all display an image, name, and preferred phone number).

http://developer.android.com/reference/android/R.layout.html
http://developer.android.com/reference/android/R.layout.html

 62

Grid Layouts

Grid layouts use the same data/Adapter/AdapterView pattern as list layouts, but instead of

ListView, you use the GridView class. GridView also defines some extra configuration options

for defining the number of columns and the spacing between each grid item, most of which are
included in the following snippet. Try changing activity_main.xml to:

<GridView xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/gridView"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:columnWidth="100dp"

 android:numColumns="auto_fit"

 android:verticalSpacing="5dp"

 android:horizontalSpacing="5dp"

 android:stretchMode="columnWidth" />

The only change we need to make in MainActivity.java is to update the ListView

references to GridView:

package com.example.userinterfacelayouts;

import android.os.Bundle;

import android.app.Activity;

import android.widget.GridView;

import android.widget.ArrayAdapter;

public class MainActivity extends Activity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 String[] data = new String[] { "Item 1", "Item 2", "Item 3",

 "Item 4", "Item 5", "Item 6",

 "Item 7", "Item 8", "Item 9"};

 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, data);

 GridView gridView = (GridView) findViewById(R.id.gridView);

 gridView.setAdapter(adapter);

 }

}

This will give you a nice grid of text fields that are 100 device-independent pixels wide with 5
device-independent pixels between each one:

http://developer.android.com/reference/android/widget/GridView.html

63

Figure 38: A dynamic layout generated by GridView

Handling Click Events

Of course, you’re probably going to want to allow the user to interact with the items in a
ListView or a GridView. However, because the interface generated by either of these classes

is dynamic, we can’t use the android:onClick XML attribute to call a method when the user

clicks one of the list items. Instead, we have to define a general callback function in
MainActivity.java. This can be accomplished by implementing the

AdapterView.OnItemClickListener interface, like so:

package com.example.userinterfacelayouts;

import android.os.Bundle;

import android.app.Activity;

import android.widget.GridView;

import android.widget.ArrayAdapter;

import android.util.Log;

import android.view.View;

import android.widget.TextView;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemClickListener;

public class MainActivity extends Activity {

 private static final String TAG = "MainActivity";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

http://developer.android.com/reference/android/widget/AdapterView.OnItemClickListener.html

 64

 String[] data = new String[] { "Item 1", "Item 2", "Item 3",

 "Item 4", "Item 5", "Item 6",

 "Item 7", "Item 8", "Item 9"};

 ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, data);

 GridView gridView = (GridView) findViewById(R.id.gridView);

 gridView.setAdapter(adapter);

 gridView.setOnItemClickListener(new OnItemClickListener() {

 public void onItemClick(AdapterView<?> parent, View v,

 int position, long id) {

 TextView selectedView = (TextView) v;

 Log.d(TAG, String.format("You clicked: %s",

 selectedView.getText()));

 }

 });

 }

}

Now, the onItemClick() method will be called every time one of the GridView’s items are

clicked. All of the relevant parameters are passed to this function as parameters: the parent
AdapterView, the View item that was clicked, its position in the data set, and its row id. The

above callback simply casts the clicked View to a TextView and displays whatever text it

contains in LogCat.

Clicks can be handled in the exact same way for ListView layouts.

Editing The Data Set

When you want to change the data that is displayed to the user at runtime, all you have to do is
edit the underlying data set and the built-in BaseAdapter class takes care of updating the user
interface accordingly. In this section, we’ll add a button to the layout so the user can add new
items to the grid, and then we’ll re-implement the onItemClick() function to remove the

selected item from the list.

First, let’s change activity_main.xml to include a button. We’ll do this by making

LinearLayout the root XML element and giving it a Button and a GridView for children:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="vertical"

 tools:context=".MainActivity" >

 <Button

 android:layout_width="match_parent"

 android:layout_height="80dp"

 android:text="Add Item"

 android:onClick="addItem"/>

 <GridView android:id="@+id/gridView"

http://developer.android.com/reference/android/widget/BaseAdapter.html

65

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:columnWidth="100dp"

 android:numColumns="auto_fit"

 android:verticalSpacing="5dp"

 android:horizontalSpacing="5dp"

 android:stretchMode="columnWidth" />

 </LinearLayout>

Notice that it’s perfectly legal to nest different layout schemes inside of each other (i.e., putting a
GridView inside of a LinearLayout). This makes it possible to create complex, dynamic user

interfaces with very little effort.

Next, we need to alter the corresponding activity to handle Add Item button clicks and remove
items when they are selected in the GridView. This will require a number of changes to

MainActivity.java:

package com.example.userinterfacelayouts;

import android.os.Bundle;

import android.app.Activity;

import android.widget.GridView;

import android.widget.ArrayAdapter;

import android.view.View;

import android.widget.AdapterView;

import android.widget.AdapterView.OnItemClickListener;

import java.util.ArrayList;

public class MainActivity extends Activity {

 private ArrayList<String> data;

 private ArrayAdapter<String> adapter;

 private int count;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 this.data = new ArrayList<String>();

 this.data.add("Item 1");

 this.data.add("Item 2");

 this.data.add("Item 3");

 this.count = 3;

 adapter = new ArrayAdapter<String>(this,

android.R.layout.simple_list_item_1, data);

 GridView gridView = (GridView) findViewById(R.id.gridView);

 gridView.setAdapter(adapter);

 gridView.setOnItemClickListener(new OnItemClickListener() {

 public void onItemClick(AdapterView<?> parent, View v,

 int position, long id) {

 66

 data.remove(position);

 adapter.notifyDataSetChanged();

 }

 });

 }

 public void addItem(View view) {

 count++;

 String newItem = String.format("Item %d", count);

 this.data.add(newItem);

 this.adapter.notifyDataSetChanged();

 }

}

First, we have to change the static String[] array that represents our data set to a mutable

ArrayList. This will allow us to add and remove items. We also have to change the data and

adapter local variables to instance variables so that we can access them outside of

onCreate(). We also added a count variable to keep track of how many items have been

created.

To remove an item from the the GridView, all we have to do is remove it from the data set with

ArrayList’s remove() method, then call adapter.notifyDataSetChanged(). This latter

method is defined by BaseAdapter, and it tells the Adapter that it needs to synchronize its

associated AdapterView items. It should be called whenever the underlying data set has

changed.

The new addItem() method is called whenever the Add Item button is clicked. First it

increments the count variable, then uses it to generate a title for the new item, adds the title to

the data set, and finally calls notifyDataSetChanged() to refresh the GridView.

Figure 39: Adding and removing items from the data set

67

You should now be able to compile the project and alter the underlying data set. While this
example only demonstrates adding and removing items from the GridView, editing existing

items works the exact same way. All you have to do is change the value in the ArrayList and

call notifyDataSetChanged() on the adapter.

Custom ListView (and GridView) Items

The R.layout.simple_list_item_1 TextView that we’ve been using up to this point is

convenient when working with string data, but more complex data items typically call for
correspondingly complex views. Fortunately, it’s relatively easy to implement your own
ListView or GridView items. In this section, we’ll create a custom view that displays a name

and a phone number.

Custom ListView items require three components: a class to represent the data, an XML

layout file to define the View for each item, and a custom Adapter to display the data in the

view. These components will be replacing the String data, the

android.R.layout.simple_list_item_1 view, and the ArrayAdapter from the previous

example. The result we’re aiming for looks like this:

Figure 40: ListView with custom View objects for each item

First, we need to create a new class to represent a custom data item. We’ll call it DataItem, and

all it needs to store is two properties called name and phoneNumber. You can create a new class

in Eclipse by pressing Cmd+N (or Ctrl+N if you are on a PC), and then selecting Java, and then
Class. Enter DataItem for the Name field, and leave everything else at default values. The form
should look like the following:

 68

Figure 41: Creating the DataItem class

After clicking Finish, you should find a new file called DataItem.java under
src/com.example.userinterfacelayouts in the Package Explorer. Double-click the file to

open it, and change it to the following:

package com.example.userinterfacelayouts;

public class DataItem {

 String name;

 String phoneNumber;

 public DataItem(String name, String phoneNumber) {

 this.name = name;

 this.phoneNumber = phoneNumber;

 }

}

This defines two properties for each data item, along with a convenient constructor. That’s all
we need to represent the data, so we can move on to the XML layout file that defines the View

object associated with each data item.

69

To create the layout XML file, press Cmd+N (or Ctrl+N if you are on a PC) and select Android,
and then Android XML Layout File. Use list_item.xml for the File field, and leave Root

Element as the default value (we’ll change it by editing the XML). Clicking Finish will give you a
new file called list_item.xml in the res/layout folder. We want each item to look like the

following:

Figure 42: The view created by list_item.xml

We’ll use a RelativeLayout and four TextView elements to create this layout. Change

list_item.xml to the following:

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:padding="12dp">

 <TextView

 android:id="@+id/nameLabel"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/nameLabel"/>

 <TextView

 android:id="@+id/nameValue"

 android:layout_toRightOf="@id/nameLabel"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

 <TextView

 android:id="@+id/phoneLabel"

 android:layout_below="@id/nameLabel"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="@string/phoneLabel"/>

 <TextView

 android:id="@+id/phoneValue"

 android:layout_below="@id/nameLabel"

 android:layout_toRightOf="@id/phoneLabel"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"/>

</RelativeLayout>

 70

The id/nameValue and id/phoneValue elements are going to be set dynamically by our

custom Adapter, so they don’t need an android:text attribute, but the id/nameLabel and

id/phoneLabel elements are static labels, so they can be populated from strings.xml. Add

the following two lines to strings.xml:

<string name="nameLabel">Name: </string>

<string name="phoneLabel">Phone: </string>

The only new part here is the entity, which is a non-breaking space. This is necessary to

get our label to display correctly. That takes care of the XML layout file, so all we have left is the
custom Adapter to connect it with the DataItem class.

Create another new class called CustomAdapter and use BaseAdapter as the subclass.

BaseAdapter is a minimal implementation of the Adapter class. It provides some basic

definitions for the inner-workings of Adapter, which lets us focus on higher-level functionality in

our CustomAdapter. This is going to be a longer class definition, so let’s tackle it in steps.

Let’s start by changing CustomAdapter.java to the following:

package com.example.userinterfacelayouts;

import java.util.ArrayList;

import android.view.View;

import android.view.ViewGroup;

import android.view.LayoutInflater;

import android.content.Context;

import android.widget.BaseAdapter;

import android.widget.TextView;

public class CustomAdapter extends BaseAdapter {

 ArrayList<DataItem> data;

 Context context;

 private static LayoutInflater inflater = null;

 public CustomAdapter(Context context, ArrayList<DataItem> data) {

 this.context = context;

 this.data = data;

 inflater = (LayoutInflater) context

 .getSystemService(Context.LAYOUT_INFLATER_SERVICE);

 }

}

This starts by importing the classes that we’ll need later on. Then, it defines a few properties.
The data variable stores the data backing the adapter, which is just an ArrayList of DataItem

objects. The Context class contains information about the global application environment, and
we need to store a reference to it in the context variable. Finally, we need a LayoutInflater

to turn the XML from list_item.xml into a View hierarchy. Without this LayoutInflater, it

would be impossible to get to the text fields that we defined in list_item.xml.

http://developer.android.com/reference/android/widget/BaseAdapter.html
http://developer.android.com/reference/android/content/Context.html

71

Next, we define a constructor that takes a Context instance and the data set as parameters.

Then, it uses the context to fetch a LayoutInflater. The getSystemService() method of a

Context instance is the canonical way to do this.

Now we’re ready to define the custom behavior of our adapter. Add the following methods to
CustomAdapter.java:

 @Override

 public int getCount() {

 return data.size();

 }

 @Override

 public Object getItem(int position) {

 return data.get(position);

 }

 @Override

 public long getItemId(int position) {

 return position;

 }

 @Override

 public View getView(int position, View convertView, ViewGroup parent) {

 // See if the view needs to be inflated

 View view = convertView;

 if (view == null) {

 view = inflater.inflate(R.layout.list_item, null);

 }

 // Extract the desired views

 TextView nameText = (TextView) view.findViewById(R.id.nameValue);

 TextView phoneText = (TextView) view.findViewById(R.id.phoneValue);

 // Get the data item

 DataItem item = data.get(position);

 // Display the data item's properties

 nameText.setText(item.name);

 phoneText.setText(item.phoneNumber);

 return view;

 }

The first three methods provide information that is required by all Adapter subclasses. The

getCount() and getItem() methods must return the number of items represented by the

adapter and the item at the specified position, respectively. These both just need to forward the
information from the underlying ArrayAdapter. The getItemId() method should return the

row ID of the item at the specified position. In this case, we can just return the position of the
item in the array.

The heart of our CustomAdapter class is the getView() method, which must return a View

object that represents the data item at the specified position. This is where the list_view.xml

file is converted into a View and its TextViews are populated with data from the associated

DataItem.

http://developer.android.com/reference/android/content/Context.html#getSystemService(java.lang.String)

 72

First, we need to see if the adapter is working with an existing view, which would be passed in
via the convertView parameter. If it’s not, we need to create a new View instance by inflating

the XML layout file with the LayoutInflater instance that we recorded in the constructor. This

parses the XML, turning each element into its corresponding view object and adding it to a view
hierarchy. Finally, we need to find the TextView elements that we defined in the XML file and

use them to display the requested DataItem’s name and phoneNumber properties. The following

figure shows you how to inflate an XML layout file to access the contained views.

Figure 43: Inflating an XML layout file to access the contained views

This process should provide a better understanding of the purpose of an Adapter: its

getView() method is where the data set is adapted to be displayed in a View hierarchy. The

returned View instance is what gets displayed by the parent ListView/GridView.

We have our three components of a customized ListView set up, but we still need to put all of

it together in the main activity. All that’s required for activity_main.xml is a ListView that we

can reference in MainActivity.java:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:orientation="horizontal"

 tools:context=".MainActivity" >

 <ListView

 android:id="@+id/listView"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" />

 </LinearLayout>

Then, in MainActivity.java, we need to create the data set of DataItem instances and attach

our CustomAdapter to the above ListView:

package com.example.userinterfacelayouts;

import android.os.Bundle;

73

import android.app.Activity;

import android.widget.ListView;

import java.util.ArrayList;

public class MainActivity extends Activity {

 private ArrayList<DataItem> data;

 private CustomAdapter adapter;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 this.data = new ArrayList<DataItem>();

 this.data.add(new DataItem("John Smith", "(555) 454-5545"));

 this.data.add(new DataItem("Mary Johnson", "(555) 665-5665"));

 this.data.add(new DataItem("Bill Kim", "(555) 446-4464"));

 adapter = new CustomAdapter(this, data);

 ListView listView = (ListView) findViewById(R.id.listView);

 listView.setAdapter(adapter);

 }

}

You should now be able to compile the app and see our custom list_item.xml displayed as

each item in the ListView. While this was a simple example using only TextView widgets, it’s

easy to extend this pattern to create arbitrarily complex ListView or GridView items with

images, buttons, and other UI widgets.

The concept to take away is the interaction between lists/grids, custom views, data objects, and
adapters. Together, they provide a reusable model-view-controller framework that makes it
possible to display complex data sets to the user with minimal effort on the part of the
developer.

Nesting Layouts

While layout optimization is an advanced topic out of the scope of this book, it’s worth noting
that excessively deep view hierarchies can be a potential performance bottleneck. For this
reason, you should try to keep your view groups flat and wide, as opposed to narrow and deep.
Consider the following layout:

Figure 44: A simple layout consisting of three buttons

 74

This can be created in one of two ways. First, let's see how to do it using two LinearLayouts: a

horizontal one to separate the left button from the others, and another nested LinearLayout to

render the top and bottom buttons.

<!-- Don't do this (it's not efficient) -->

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="horizontal"

 tools:context=".MainActivity" >

 <Button

 android:layout_width="0dp"

 android:layout_height="120dp"

 android:layout_weight="1"

 android:text="Left" />

 <LinearLayout

 android:layout_width="0dp"

 android:layout_height="120dp"

 android:layout_weight="2"

 android:orientation="vertical">

 <Button

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight="1"

 android:text="Top" />

 <Button

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight="1"

 android:text="Bottom" />

 </LinearLayout>

</LinearLayout>

However, the fact that both LinearLayout elements contain widgets with a layout_weight

property means that their dimensions need to be calculated twice. Needless to say, this is not
an optimal layout.

The other (and preferred) method of creating this layout is with a single RelativeLayout. This

has the advantage of flattening the view hierarchy into a single layer, avoiding the inefficiencies
of the nested LinearLayouts shown above.

<!-- Do this instead (it's more efficient) -->

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity" >

 <Button

 android:id="@+id/leftButton"

 android:layout_width="120dp"

 android:layout_height="120dp"

 android:text="Left" />

 <Button

75

 android:id="@+id/topButton"

 android:layout_width="match_parent"

 android:layout_height="60dp"

 android:layout_toRightOf="@id/leftButton"

 android:text="Top" />

 <Button

 android:layout_width="match_parent"

 android:layout_height="60dp"

 android:layout_toRightOf="@id/leftButton"

 android:layout_below="@id/topButton"

 android:text="Bottom" />

</RelativeLayout>

So, the general rule of thumb is to avoid nesting LinearLayouts whenever possible. This is

particularly true for custom ListView/GridView items because the view gets inflated multiple

times, thus any inefficiencies are multiplied as well. However, that’s not to say you should never
use LinearLayouts. They are very easy to configure, and they are plenty efficient when not

nested. This makes them appropriate for simpler layouts (e.g., a form made up of consecutive
text fields).

For more information about creating efficient layouts, please visit Optimizing Your UI.

Summary

In this chapter, we explored the standard mechanisms of laying out an Android user interface.
First, we discussed the basic attributes for defining the padding and margin of View elements.

Then, we learned how to position elements using the built-in ViewGroup subclasses:

LinearLayout, RelativeLayout, ListView, and GridView. These classes make it incredibly

easy to organize UI widgets into complex layouts with minimal coding.

While it’s important to know how to position elements on the screen, that knowledge is useless if
you don’t know what elements are available. The next chapter will flesh out your understanding
of Android’s user interface framework by surveying the most common UI widgets.

http://developer.android.com/tools/debugging/debugging-ui.html

 76

Chapter 5 User Interface Widgets

In this chapter, we’ll survey Android’s basic user interface widgets: buttons, text fields,
checkboxes, sliders, spinners, and pickers. Understanding how to configure and query these
components enables you to collect or display virtually any kind of information to a user, and
that’s the basis of any quality Android application. We’ll also briefly talk about how to change the
appearance of these UI elements and Android’s built-in themes.

This chapter is meant to be a introduction to the many UI components offered by Android. You
should walk away with a basic understanding of what components are available and how to get
started using them in real-world applications. Links to official documentation providing more
information are included throughout the chapter.

All of the examples in this chapter are available in the UserInterfaceWidgets project included
with the example code of this book. The main activity of this project provides links to several
other activities, each of which contain concrete examples of a particular type of widget.

Images

Images can be displayed using an ImageView object. An ImageView can display any kind of

bitmap, and it takes care of basic alignment and scaling functionality. You can find several
examples of various ImageView configurations in the activity_image.xml layout file:

Figure 45: The ImageActivity defined in the example application for this chapter

To include an ImageView in an XML layout file, you can develop the following code:

<ImageView

 android:layout_width="wrap_content"

http://developer.android.com/reference/android/widget/ImageView.html

77

 android:layout_height="wrap_content"

 android:padding="5dp"

 android:src="@drawable/syncfusion_icon" />

The most important attribute of an ImageView is android:src. This defines the image that it

will display. In the above case, @drawable/syncfusion_icon refers to an image file that was

included with the application source code. Note that this has a similar format to string resources
(e.g., @string/button_title). However, the @drawable prefix refers to a drawable resource,

which is any kind of graphical asset.

Adding Drawable Resources

Of course, for the above code snippet to work, we need to add an image file called
syncfusion_icon to the Eclipse project. The UserInterfaceWidgets example project already

contains this file, but adding your own graphical assets is as simple as copying them from your
hard drive and pasting them into one or more of the res/drawable directories in the Eclipse

Package Explorer. Remember that the hdpi, ldpi, and other suffixes correspond to different

screen resolutions, so it’s a good practice to include alternative images for each of the
resolutions that you plan to support.

Figure 46: Adding a graphical asset to an Eclipse project

Note that drawable resources can be PNG, GIF, or JPG files—the file extension will be inferred
automatically.

Scaling Images

You can scale images by defining layout_width and layout_height attributes on the

ImageView element. ImageView provides several types of scaling behaviors. The value of an

ImageView’s android:scaleType attribute determines whether it stretches the image to the

specified dimensions (fitXY), scales proportionally to display the whole image (centerInside),

centers the unscaled image within the specified dimensions (center), or maps the image

dimensions to the layout_width and layout_height values in several other pre-defined ways.

http://developer.android.com/reference/android/widget/ImageView.html#attr_android:scaleType

 78

<ImageView

 android:layout_width="150dp"

 android:layout_height="100dp"

 android:scaleType="fitXY"

 android:src="@drawable/syncfusion_icon" />

For example, the above code will stretch the syncfusion_icon image to 150x100 device-

independent pixels.

Programmatically Defining the Image Source

If you want to set the source image of an ImageView instance dynamically, you can pass a

drawable resource to its setImageDrawable() method. The following snippet, which can be

found in ImageActivity.java, demonstrates how to load an image called

syncfusion_alt_icon.png into an ImageView defined in an XML layout file.

// Dynamically load an image into an ImageView

ImageView imageView = (ImageView) findViewById(R.id.dynamicImage);

Resources resources = getResources();

Drawable image = resources.getDrawable(R.drawable.syncfusion_alt_icon);

imageView.setImageDrawable(image);

In the Android framework, the resource bundle contains all of the XML layout files, string
resources, and drawable resources. An application’s resource bundle is represented by the
Resources class, and the active bundle can be fetched through the global getResources()

function. The Resources class defines several useful methods that turn a resource ID into a

useful object. In this case, the getDrawable() method lets us convert an image file in one of

the res/drawable folders into a Drawable object, which can be displayed by an ImageView

object. Note that the ID of the image file is accessed via R.drawable, much like an XML layout

file is access via R.layout.

The setImageDrawable() method is a very flexible way to display images, as it’s possible to

load bitmaps from the resource bundle (as shown above) from a remote URL, or from a user-
defined location.

Buttons

We’ve been working with Button views throughout this book, but there a few common

modifications that are worth surveying. The buttons that we’ve used thus far have been purely
text-based, but it’s possible to create icon-based buttons, as well as ones that combine icons
and text. The activity_button.xml layout file contained in the included example project

contains text-based, icon-based, and combined buttons.

http://developer.android.com/reference/android/content/res/Resources.html
http://developer.android.com/reference/android/graphics/drawable/Drawable.html

79

Figure 47: The ButtonActivity defined in the example application for this chapter

We’ve already seen several examples of text-based buttons, so we’ll jump right into icon
buttons. Icon buttons are created with a dedicated class called ImageButton. These kinds of

buttons don’t display a text title, and they use the same android:src attribute as the

ImageView from the previous section. For example, the following snippet uses an image file

called edit_button_icon.png as its icon:

<ImageButton

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:padding="20dp"

 android:src="@drawable/edit_button_icon" />

As with ImageView, the android:src attribute must point to a drawable resource that you’ve

added to your project.

Combining icons and text in a single button is a little bit more complicated. We have to go back
to the familiar Button class and tell it where it should display the icon in relation to its text title

using one of the following attributes:

 android:drawableBottom – Add the icon under the text

 android:drawableEnd – Add the icon after the text (varies based on text direction)

 android:drawableLeft – Add the icon to the left of the text

 android:drawableRight – Add the icon to the right of the text

 android:drawableStart – Add the icon before the text (varies based on text direction)

 android:drawableTop – Add the icon above the text

Each of these takes a drawable resource as a value, just like ImageView’s android:src

attribute. For example, if you wanted to display the image file edit_button_icon.png to the

left of the text title, you could use the following:

<Button

 80

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:padding="20dp"

 android:text="Edit"

 android:drawableLeft="@drawable/edit_button_icon"

 android:drawablePadding="10dp" />

Also notice the android:drawablePadding attribute, which lets you define the amount of

space between the icon and the text.

All of these button types can use the android:onClick attribute to define a method to be called

when they are tapped, but if you’re creating them programmatically, this XML attribute is not
available. Instead, you need to set the button’s onClickListener property, just like we did to

detect clicks of ListView and GridView items in the previous chapter. For instance, if you

wanted to programmatically define the behavior of the textImageButton in the

ButtonActivity of this chapter’s example app, you would use the following:

Button button = (Button) findViewById(R.id.textImageButton);

button.setOnClickListener(new View.OnClickListener() {

 public void onClick(View sender) {

 Button senderAsButton = (Button) sender;

 String title = senderAsButton.getText().toString();

 Log.d(TAG, String.format("You clicked the '%s' button", title));

 }

});

This method of defining button behavior opens up many more possibilities than the static
android:onClick XML attribute. It’s necessary when dynamically generating buttons, and it

makes it possible to change a button’s behavior depending on its context.

Text Fields

Static text fields (i.e., labels) were introduced earlier in this book. In this section, we’ll learn how
to change their color, size, and other properties. We’ll also learn how to accept user input via
editable text fields, which are one of the most basic ways to collect input from a user. Concrete
examples of all the code in this section can be found in the activity_text_field.xml layout

in the UserInterfaceWidgets project. A more detailed overview of text fields can be found in the
Input Controls section of the developer guide, as well as in the TextView class documentation.

Styling Text Fields

Remember that text fields can be added to a layout using the <TextView> element and their

text can be defined with the android:text attribute. The appearance of a particular text field

can be altered by defining other attributes on it, the most common of which are listed below:

http://developer.android.com/guide/topics/ui/controls/text.html
http://developer.android.com/reference/android/widget/TextView.html

81

 android:textColor – The color of the text field, specified as a hex number in the form

of #AARRGGBB.

 android:textSize – The size of the text. The scaled pixel (sp) is the preferred unit to

use.

 android:textStyle – The style of the type. Must be either normal, bold, or italic.

 android:typeface – The typeface to use. Value must be either normal, sans, serif,

or monospace.

 android:textIsSelectable – Whether or not the user can select the text. Must be

either true or false.

The following <TextView> demonstrates all of these properties. Note that the scaled pixel unit

(sp) is based on the user’s preferred font size, which means that it will scale appropriately with

the surrounding text. When explicitly defining the text size using pixel (px), device-independent

pixels (dp), or inches (in), this will not be the case.

<TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Look, a big red serif font"

 android:textColor="#ffff0000"

 android:textSize="20sp"

 android:textStyle="italic"

 android:typeface="serif"

 android:textIsSelectable="true" />

This will create a label that looks like this:

Figure 48: A TextView with customized appearance

And, since android:textIsSelectable is set to true, the user can tap and hold the text to

select and copy it.

Figure 49: Selecting part of a selectable TextView

 82

Editable Text Fields

Editable text fields have a distinct appearance and behavior from static ones. They use an
underline and a hint to show the user that it is meant for collecting input, and when the user taps
an editable text field, an on-screen keyboard—also called a soft keyboard (opposed to a
hardware keyboard)—appears.

Figure 50: Editing a text field with a soft keyboard

Instead of the <TextView> element, editable text views are created with the <EditText>

element. For example, the text view in the above screenshot was created from the following
XML:

<EditText

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:hint="Tap here to edit this text"

 android:inputType="text" />

Editable text field hints are one of the most important attributes to set. They function as labels,
telling the user what kind of input is expected.

83

The android:inputType attribute lets you specify what kind of input you’re expecting. This can

have a drastic impact on usability, since it determines what type of soft keyboard is displayed.
For example, if you only wanted to collect a phone number, you would use phone for this value.

Instead of a full keyboard, this will make Android display a dial pad, making it much easier to
enter the desired input.

Figure 51: Using android:inputType to display a number pad instead of a full keyboard

There is a plethora of built-in input types, and many of them can be combined to give app
developers refined control over the user experience. Some of the most common values for
android:inputType values are listed below (see the android:inputType documentation for all

of the available options):

 text – Use a normal text keyboard.

 textEmailAddress – Use a text keyboard with the @ character readily available.

 textUri – Use a text keyboard with the / character readily available.

 number – Use a number keypad without traditional dial pad letters.

 phone – Use a number keypad with traditional dial pad letters (e.g., the 2 key also

displays ABC).

 textCapWords – Capitalize each word that the user types.

 textCapSentences – Capitalize the first letter of each sentence.

 TextAutoCorrect – Auto correct misspelled words using Android’s built-in dictionary.

 textPassword – Hide characters after they have been typed.

 datetime – Use a number keypad with a / character readily available.

Some of these values can be combined using a bitwise operator (|). For example, if you

wanted an <EditText> element to use a text input, capitalize sentences, and auto correct

misspelled words, you would use the following:

android:inputType="text|textCapSentences|textAutoCorrect"

http://developer.android.com/reference/android/widget/TextView.html#attr_android:inputType

 84

Another way to customize the soft keyboard is with the android:imeOptions attribute. This

defines what is used as the Done button. For example, if you wanted to display Send as the
final action after the user is finished entering input, you would add the following line to the the
<EditText> element:

android:imeOptions="actionSend"

The resulting keyboard is shown in the following screenshot. Notice how the Done button from
the previous examples turned into a Send button.

Figure 52: Changing the android:imeOptions attribute to show a Send button

The most common values for android:imeOptions are: actionDone, actionSend,

actionSearch, and actionNext, all of which are self-explanatory. Please visit the

android:imeOptions documentation for the complete list.

Collecting Text Input

Of course, if you’re using an <EditText> element, you’re probably going to want to do

something with the input after the user is done entering it. This process is similar to listening for
button clicks with an OnClickListener. In TextFieldActivity.java, you’ll find a minimal

example that shows you how to collect the input.

Let’s start by looking at the classes that need to be imported for our example to work:

import android.view.KeyEvent;

import android.view.inputmethod.EditorInfo;

import android.widget.TextView;

import android.widget.TextView.OnEditorActionListener;

import android.widget.EditText;

import android.util.Log;

The KeyEvent class contains information about which key was pressed. We won’t be using this
for our example, but it can be very useful when working with hardware keyboards. The
EditorInfo class defines several constants that let us check which kind of text the <EditText>

element is collecting. Of course, we’ll need the TextView and EditText classes, along with the

OnEditorActionLister class, which is what lets us listen for the “done” action.

http://developer.android.com/reference/android/widget/TextView.html#attr_android:imeOptions
http://developer.android.com/reference/android/view/KeyEvent.html
http://developer.android.com/reference/android/view/inputmethod/EditorInfo.html
http://developer.android.com/reference/android/widget/TextView.OnEditorActionListener.html

85

To figure out when the user has pressed the Done button, you first need to find the text view in
question, then set its onEditorActionListener property, like so:

EditText text = (EditText) findViewById(R.id.textField);

text.setOnEditorActionListener(new OnEditorActionListener() {

 public boolean onEditorAction(TextView textView,

 int actionId,

 KeyEvent event) {

 if (actionId == EditorInfo.IME_ACTION_SEND) {

 String input = textView.getText().toString();

 Log.d(TAG, String.format("Processing input: %s", input));

 }

 return false;

 }

});

The onEditorAction() function is called whenever the user has finished editing the specified

<EditText> (in this case, the one with an ID of textField). This is where you should process

the input however you see fit. If you want to check which kind of action was sent, you can check
its actionId parameter against one of the constants in EditorInfo. Here, we made sure that it

was a Send action, then we simply logged the input to LogCat.

The return value of onEditorAction() is very important. If it returns true, it means that your

code has taken care of everything related to collecting the input, including hiding the on-screen
keyboard, if necessary. However, if it returns false, it means that the default handling behavior

should be executed, which will typically hide the on-screen keyboard.

The above snippet returns false so that the keyboard is hidden when the user is done,

regardless of what the user entered. If you want to manually dismiss the keyboard based on the
input (e.g., you want to keep the keyboard displayed if the user entered an invalid value), you
can do so with the InputMethodManager, like so:

InputMethodManager imm =

(InputMethodManager)getSystemService(Context.INPUT_METHOD_SERVICE);

imm.hideSoftInputFromWindow(textView.getWindowToken(), 0);

You’ll also need two more imports for this to work:

import android.content.Context;

import android.view.inputmethod.InputMethodManager;

You should now understand how to include editable text fields in XML layouts, configure their
keyboards, and collect that data after the user is done entering it. This is everything you need to
know to start collecting text input in your own Android applications.

http://developer.android.com/reference/android/view/inputmethod/InputMethodManager.html

 86

Checkboxes

Checkboxes are designed to let users select multiple boolean items at the same time. They can
be contrasted with radio buttons, which only let the user select one item from the group. Since
checkboxes can be checked individually, working with them is very similar to working with
buttons.

They are represented by the CheckBox class, which implements the actual check and box, as
well as a corresponding text label. Checkboxes use the same android:onClick attribute as

buttons, which makes it easy to determine when they are toggled by the user.

Figure 53: Using several checkboxes to change the appearance of a TextView

The activity_check_box.xml layout file and the CheckBoxActivity.java class in the

example project demonstrate the most common characteristics of checkboxes (along with some
programmatic TextView manipulation). It uses three checkboxes to alter the color, style, and

size of a text field. The complete example can be seen in the above screenshot. Let’s start by
taking a look at the XML for one of the checkboxes:

<CheckBox

 android:id="@+id/checkBoxGreen"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Green text"

 android:onClick="checkBoxClicked" />

This creates a checkbox with Green text as its label, and it calls the checkBoxClicked()

method on CheckBoxActivity whenever it’s clicked. The example project contains another one

for toggling whether the text field is normal or bold (Bold text), and a third to switch between
18sp and 30sp text size (Big text).

The activity to handle this click will be a little bit more involved than previous examples. In
CheckBoxActivity.java, you’ll find three private instance variables used to store the state of

the text field:

private boolean isGreen;

private boolean isBold;

http://developer.android.com/reference/android/widget/CheckBox.html

87

private boolean isBig;

The onCreate() method initializes these variables, then calls two methods that we’ll define

shortly:

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_check_box);

 this.isGreen = true;

 this.isBold = false;

 this.isBig = false;

 synchronizeCheckBoxes();

 synchronizeTextView();

}

These synchronization methods separate the logic for making the checkboxes and the
TextView match the internal state of the activity, respectively. For activities that have many

interconnected UI widgets, organizing their interaction in this way can make for a much more
maintainable project. The synchronizeCheckBoxes() method fetches each of the checkboxes

by their ID and makes them match their corresponding property using CheckBox’s

setChecked() method:

private void synchronizeCheckBoxes() {

 CheckBox green = (CheckBox) findViewById(R.id.checkBoxGreen);

 CheckBox bold = (CheckBox) findViewById(R.id.checkBoxBold);

 CheckBox big = (CheckBox) findViewById(R.id.checkBoxBig);

 green.setChecked(this.isGreen);

 bold.setChecked(this.isBold);

 big.setChecked(this.isBig);

}

The synchronizeTextView() method uses the private instance variables to toggle the

appearance of the TextView:

private void synchronizeTextView() {

 TextView text = (TextView) findViewById(R.id.checkBoxText);

 if (this.isGreen) {

 text.setTextColor(Color.parseColor("#FF009900"));

 } else {

 text.setTextColor(Color.parseColor("#FF000000"));

 }

 if (this.isBold) {

 text.setTypeface(Typeface.create("default", Typeface.BOLD));

 } else {

 text.setTypeface(Typeface.create("default", Typeface.NORMAL));

 }

 if (this.isBig) {

 text.setTextSize(TypedValue.COMPLEX_UNIT_SP, 30);

 } else {

 text.setTextSize(TypedValue.COMPLEX_UNIT_SP, 18);

 }

 88

}

Finally, we have the checkboxes’ on-click method, which uses the ID and value of the clicked
checkbox to update the internal state:

public void checkBoxClicked(View view) {

 CheckBox checkbox = (CheckBox) view;

 boolean isChecked = checkbox.isChecked();

 switch (view.getId()) {

 case R.id.checkBoxGreen:

 this.isGreen = isChecked;

 break;

 case R.id.checkBoxBold:

 this.isBold = isChecked;

 break;

 case R.id.checkBoxBig:

 this.isBig = isChecked;

 break;

 }

 synchronizeTextView();

}

These three methods provide a clear data flow that is very easy to maintain, even for larger
activities: the synchronization methods make the views match the internal state of the activity,
and checkBoxClicked() collects user input to alter that state.

Radio Buttons

From a UI perspective, a group of radio buttons is like a group of checkboxes; however, only
one item is allowed to be selected at a time. From a developer perspective, this behavior makes
their API distinct from checkboxes. Instead of managing each item individually, you have to
encapsulate the radio buttons in a group so the system knows that it should only select one of
them at a time.

The buttons are represented by the RadioButton class, and you group them using the
RadioGroup class. Like buttons and checkboxes, you can use the android:onClick attribute

on the buttons to call a method when the user makes a selection.

http://developer.android.com/reference/android/widget/RadioButton.html
http://developer.android.com/reference/android/widget/RadioGroup.html

89

Figure 54: Using radio buttons to set the typeface of a TextView

The activity_radio_button.xml layout and the RadioButtonActivity.java class in this

chapter’s example project provide a simple demonstration of radio buttons and radio groups. It
uses three radio buttons to let the user choose the typeface of a TextView. Whereas the

previous section’s example let the user toggle several independent properties, the sans serif,

serif, and monospace typeface values are mutually exclusive, so radio buttons are an

appropriate choice for presenting these options.

The XML for a radio is a list of <RadioButton> elements surrounded by a <RadioGroup>

element. Aside from ensuring that only one item is selection, the job of the RadioGroup is to

arrange the radio buttons in a horizontal or vertical format. It’s actually a subclass of
LinearLayout, so you can use the same android:orientation attribute to set the direction of

the radio buttons. Each of the contained <RadioButton> elements are essentially the same as

the buttons and checkboxes that we’ve been working with:

<RadioGroup

 android:id="@+id/radioGroup"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:orientation="vertical">

 <RadioButton

 android:id="@+id/radioButtonSans"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Sans Serif"

 android:onClick="radioButtonClicked"/>

 <RadioButton

 android:id="@+id/radioButtonSerif"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Serif"

 android:onClick="radioButtonClicked"/>

 <RadioButton

 android:id="@+id/radioButtonMonospace"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Monospace"

 android:onClick="radioButtonClicked"/>

</RadioGroup>

In RadioButtonActivity.java, you’ll find some code in the onCreate() method to set the

initial selection, along with a radioButtonClicked() method to update the TextView

whenever the user changes the selection. We didn’t bother abstracting as much of the
functionality as we did in the previous section, since there is only one property being altered:

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_radio_button);

 // Set the initial selection

 RadioButton serif = (RadioButton) findViewById(R.id.radioButtonSerif);

 90

 serif.setChecked(true);

 radioButtonClicked(null);

}

public void radioButtonClicked(View view) {

 // Use the radio group to find the selected button

 RadioGroup group = (RadioGroup) findViewById(R.id.radioGroup);

 String typeface;

 switch (group.getCheckedRadioButtonId()) {

 case R.id.radioButtonSans:

 typeface = "sans";

 break;

 case R.id.radioButtonSerif:

 typeface = "serif";

 break;

 case R.id.radioButtonMonospace:

 typeface = "monospace";

 break;

 default:

 typeface = "default";

 }

 // Update the TextView accordingly

 TextView text = (TextView) findViewById(R.id.radioButtonText);

 text.setTypeface(Typeface.create(typeface, Typeface.NORMAL));

}

The only new method here is the RadioGroup’s getCheckedRadioButtonId(), which returns

the ID of the selected radio button. This lets you figure out which item is selected without
querying each button (notice how radioButtonClicked() doesn’t need to use the view

parameter at all). Radio buttons can be selected programmatically using the same
setChecked() method as checkboxes, which we use to set the initial selection. If you do need

to individually inspect each radio button, you can use the corresponding getChecked() method.

It’s also worth noting that you can clear the radio button selection with RadioGroup’s

clearCheck() method.

Spinners

Spinners are drop-down menus that allow the user to pick one item from a group of choices.
They provide similar functionality to radio buttons, but they take up less space on the screen
and make it easier to see the selected item. For these reasons, it is advised to use a spinner
instead of radio buttons if you’re offering more than four or five options for a single field.

While they may offer similar functionality as radio buttons, spinners require an entirely different
API. Their items are populated using an Adapter, which makes working with them more like
working with list views and grid views rather than radio buttons or checkboxes.

http://developer.android.com/reference/android/widget/Adapter.html

91

Figure 55: Using a Spinner to change the color of a TextView

In this section, we’ll learn how to create a Spinner, populate it with an ArrayAdapter, and handle
user input with an OnItemSelectedListener. This is almost the exact pattern we used to
configure list views and grid views earlier in this book. The activity_spinner.xml layout file

and the SpinnerActivity.java class demonstrate how to set a TextView’s color with a

Spinner.

Since spinners need to be populated programmatically, the XML for adding one to a layout is
very simple:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="horizontal"

 tools:context=".SpinnerActivity" >

 <TextView

 android:id="@+id/spinnerText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginRight="10dp"

 android:text="Hello, World!"

 android:textSize="18sp" />

 <Spinner

 android:id="@+id/colorSpinner"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content" />

</LinearLayout>

http://developer.android.com/reference/android/widget/Spinner.html
http://developer.android.com/reference/android/widget/ArrayAdapter.html
http://developer.android.com/reference/android/widget/AdapterView.OnItemSelectedListener.html

 92

SpinnerActivity.java shows you how to populate this spinner. First, we create an

ArrayList to represent the options:

ArrayList<String> colors = new ArrayList<String>();

colors.add("Red");

colors.add("Orange");

colors.add("Yellow");

colors.add("Green");

colors.add("Blue");

colors.add("Violet");

Then, we use this ArrayList to create an ArrayAdapter. Remember from our work with list

views that an ArrayAdapter is what converts the data items into View objects for display by the

spinner. Android provides a built-in spinner item resource, accessible via
android.R.simple_spinner_item. But, since spinners are dropdown widgets, we also need

to set the adapter’s dropDownViewResource property. The built-in

android.R.simple_spinner_dropdown_item is the preferred resource to use for this:

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,

 android.R.layout.simple_spinner_item,

 colors);

adapter.setDropDownViewResource(

 android.R.layout.simple_spinner_dropdown_item);

Then, we can give the adapter to the Spinner that we defined in the layout file:

Spinner spinner = (Spinner) findViewById(R.id.colorSpinner);

spinner.setAdapter(adapter);

If you compile the project at this point, you should be able to see the selected item in the
spinner and be able to tap it to see the dropdown menu. But, to make it actually do something,
we need to implement a selection handler. It’s important not to confuse the
OnItemSelectedListener class that we need for the spinner with the OnItemClickListener that we
used with the ListView and GridView in the previous chapter. The former has an additional

method that we need to implement (though it doesn’t necessarily need to do anything):

spinner.setOnItemSelectedListener(new OnItemSelectedListener() {

 public void onItemSelected(AdapterView<?> parent,

 View v,

 int position,

 long id) {

 String selectedColor = (String) parent.getItemAtPosition(position);

 setTextColor(selectedColor);

 }

 public void onNothingSelected(AdapterView<?> parent) {

 // Called when the selection disappears

 }

});

http://developer.android.com/reference/android/widget/AdapterView.OnItemSelectedListener.html
http://developer.android.com/reference/android/widget/AdapterView.OnItemClickListener.html

93

The onItemSelected() method is where the click is handled. The above code fetches the

selected String using the adapter’s getItemAtPosition() method. We then pass it off to a

method called setTextColor(), which looks like this:

private void setTextColor(String color) {

 String hexColor = "#FF000000";

 if (color.equals("Red")) {

 hexColor = "#FFAA0000";

 } else if (color.equals("Orange")) {

 hexColor = "#FFCC6600";

 } else if (color.equals("Yellow")) {

 hexColor = "#FFCCAA00";

 } else if (color.equals("Green")) {

 hexColor = "#FF00AA00";

 } else if (color.equals("Blue")) {

 hexColor = "#FF0000AA";

 } else if (color.equals("Violet")) {

 hexColor = "#FF6600AA";

 }

 TextView text = (TextView) findViewById(R.id.spinnerText);

 text.setTextColor(Color.parseColor(hexColor));

}

This takes the String values displayed in the spinner, turns them into hex values, and updates

the TextView’s color accordingly. This is all that’s required to get our spinner working.

If you don’t like defining the list items programmatically, it’s possible to put them in an XML
resource file and load it into an adapter dynamically. This is a better practice than hardcoding
values in activity classes, as it keeps all of your text values in XML files. Since it’s easy to load
different resource files based on the device and the user’s locale, this makes it a breeze to
translate your app into other languages

First we need to define a string array in strings.xml:

<string-array name="spinnerColors">

 <item>Red</item>

 <item>Orange</item>

 <item>Yellow</item>

 <item>Green</item>

 <item>Blue</item>

 <item>Violet</item>

</string-array>

To load these items into the spinner, all you have to do is replace the current ArrayAdapter

with one created from the resource file:

ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(this,

 R.array.spinnerColors,

 android.R.layout.simple_spinner_item);

 94

R.array.spinnerColors is the ID of the string array we just created, and the static

ArrayAdapter.createFromResource() method takes care of everything else for us. This will

have the exact same effect as hardcoding the ArrayList.

Date/Time Pickers

Android provides built-in UI components for selecting dates and times. Typically, this is done via
a dialog instead of directly in an activity. The DatePickerDialog and TimePickerDialog classes
provide reusable interfaces that ensure a valid date/time is selected by the user. They also
ensure a consistent user interface across applications.

Figure 56: Selecting the date with a date picker dialog

This section explains the bare minimum required to collect date or time input from a user.
Creating a date picker requires three things:

1. A DatePickerDialog object defines the appearance of the dialog.

2. A DialogFragment object hosts the DatePickerDialog and manages the dialog
lifecycle.

3. An OnDateSetListener implementation processes the user input.

The first component is provided by the Android platform, so all we need to do is instantiate it.

http://developer.android.com/reference/android/app/DatePickerDialog.html
http://developer.android.com/reference/android/app/TimePickerDialog.html
http://developer.android.com/reference/android/app/DatePickerDialog.html
http://developer.android.com/reference/android/app/DialogFragment.html
http://developer.android.com/reference/android/app/DatePickerDialog.OnDateSetListener.html

95

The DialogFragment is a lightweight wrapper for the actual dialog, and it makes sure that the

dialog is opened/closed properly, and that any interruptions are handled correctly. All we need
to do is subclass DialogFragment to return a DatePickerDialog object as its hosted dialog.

Fragments are introduced in the next chapter, but for now, suffice it to say that they are modular
UI components. You can think of them as reusable views that can be embedded in different
activities or dialogs.

To collect the input, we need to implement the OnDateSetListener interface, which defines a

single method called onDateSet() that gets called whenever the user closes the dialog. Since

you’ll probably want to process the input in the host Activity, this is where we’ll define

onDateSet().

First, let’s start with the XML for the example, which is just a button that lets the user pick a
date:

<Button

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:padding="10dp"

 android:text="Pick Date"

 android:onClick="showDatePickerDialog" />

The showDatePickerDialog() method is what will open the dialog, but before we get to that,

let’s configure the dialog itself. This is conventionally done by subclassing DialogFragment and

overriding its onCreateDialog() method to return whatever dialog you want to display. So, we

need to create a new class called DatePickerFragment, and it will look like this:

import android.os.Bundle;

import android.support.v4.app.DialogFragment;

import android.app.Dialog;

import android.app.DatePickerDialog;

import java.util.Calendar;

public class DatePickerFragment extends DialogFragment {

 @Override

 public Dialog onCreateDialog(Bundle savedInstanceState) {

 // Create and return the date picker dialog

 final Calendar c = Calendar.getInstance();

 int year = c.get(Calendar.YEAR);

 int month = c.get(Calendar.MONTH);

 int day = c.get(Calendar.DAY_OF_MONTH);

 PickerActivity context = (PickerActivity) getActivity();

 return new DatePickerDialog(context, context, year, month, day);

 }

}

http://developer.android.com/guide/components/fragments.html

 96

First, we use the Calendar class to fetch the current date, then we extract the year, month, and
day components to give to the date picker. Then, all we need to do is instantiate
DatePickerDialog. The first parameter should be the host Activity, and the second one is

the listener object, which should implement the OnDateSetListener interface. Since we want

the host activity to be the listener, too, we use this as the second parameter (note that this will
require a change to the PickerActivity class declaration).

Now, we can define the showDatePickerDialog() method in PickerActivity.java to

display this dialog. Opening the picker entails creating the DialogFragment object that hosts

the date picker (DatePickerFragment), then calling its show() method, like so:

public void showDatePickerDialog(View view) {

 DialogFragment picker = new DatePickerFragment();

 picker.show(getSupportFragmentManager(), "datePicker");

}

The getSupportFragmentManager() method is a backwards-compatible way of displaying

fragments (fragments were added in Android 3.0, but can support back to Android 1.6 using
getSupportFragmentManager()). This method is defined in FragmentActivity, which means

PickerActivity must subclass that instead of the usual Activity. Remember that

PickerActivity is also being used as the listener object, so its class declaration should look

like this:

public class PickerActivity extends FragmentActivity

 implements DatePickerDialog.OnDateSetListener

Finally, to process the selected date, we need to define onDateSet() in

PickerActivity.java. In this case, we’ll just display it in a text field:

@Override

public void onDateSet(DatePicker view, int year, int month, int day) {

 // Process the selected date (month is zero-indexed)

 TextView text = (TextView) findViewById(R.id.pickerText);

 String message = String.format("Selected date: %d/%d/%d",

 month+1, day, year);

 text.setText(message);

}

Note that the month parameter is always zero-indexed to be compatible with the Calendar

class.

Summary

This chapter briefly introduced some of the most important widgets for creating an Android user
interface. We learned how to use image views, buttons, text fields, checkboxes, radio buttons,
spinners, and date pickers to display and collect information from the user. There are a few
other useful UI components that we didn’t discuss, including toggle buttons and action bars, but
we’ll leave these for you to explore on your own.

http://developer.android.com/reference/java/util/Calendar.html
http://developer.android.com/reference/android/support/v4/app/FragmentActivity.html
http://developer.android.com/guide/topics/ui/controls/togglebutton.html
http://developer.android.com/guide/topics/ui/actionbar.html

97

By now, you should have the skills to create your own multi-screen Android apps and construct
several different types of layouts. In the next section, we’ll look at a more advanced aspect of
user interface development called fragments. Fragments are part of a modular framework for
reusing behaviors and views in several different activities. This will open up several new
navigation possibilities for your Android apps.

 98

Chapter 6 Fragments

A fragment is an encapsulated portion of an activity. Fragments let you configure UI
components and behaviors into a reusable entity, then embed that entity in several different
activities. This opens up all sorts of layout and navigation opportunities for Android applications.
You can think of them as “fragments” of an activity than can be combined in different ways to
form a complete activity. The following figure shows you the different fragments you can use,
while developing an Android application.

Figure 57: Reusing master and detail fragments in smartphone and tablet layouts

99

One of the most common use cases for fragments is to implement the master-detail UI pattern.
For example, an email app contains a list of messages (the master interface) and a separate
place to view the message body (the detail interface). By using one fragment for the list of
messages and another for the message body, you can easily support multiple screen
dimensions by combining the fragments in different ways. On a tablet, you might display both
fragments in a single activity to make the most of your screen real estate, while on a
smartphone, you would probably want to display them in dedicated activities that both take up
the whole screen. Since the master and detail fragments are reusable, all you have to do is
combine them differently based on the screen dimensions—all of their UI components and
behaviors are reusable.

It’s also possible to seamlessly swap fragments into and out of an activity. This lets you display
different kinds of interfaces and behaviors within a single activity, which enables two common
navigation patterns: swipe views and tabbed navigation.

Figure 58: Swiping and tabbing between fragments

Swipe views are designed to let the user navigate between sibling detail items in a master-
detail application. For example, in an email app, the user can swipe the screen to move
forwards and backwards through their messages without being forced to navigate back to the
master list. It’s also possible to use the swipe gesture to navigate between tabs, which we’ll
explore later on in this chapter.

Tabbed navigation lets the user switch between fragments using labeled tabs at the top of the
screen. Tabs are meant for switching between the top-level sections of your application, so
there shouldn’t be more than three or four tabs displayed at any given time. For example, an
email app might have tabs for switching between the inbox, your starred messages, and your
email settings.

 100

This chapter provides a basic introduction to fragments. We’ll learn how to create them, embed
them in activities, and use them to implement swipe views and tabbed navigation. You should
walk away with an understanding of how to encapsulate functionality into a fragment and reuse
that functionality in various activities. The Fragments project included in the sample code for this
book demonstrates everything that we’re about to discuss.

Creating a Fragment

Fragments are made up of two parts: an XML layout file that defines what the fragment looks
like, and a class to load that layout and define its behavior. Notice that these are the exact same
components required for an activity.

The Fragments example project includes two fragments: a HomeFragment and an

ArticlesFragment. Both of them display a text field with their name and a colored background

so you can see their dimensions once we load them into an activity. The XML for each fragment
looks exactly like that of an activity. For example, home_view.xml is defined as follows:

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="#FFDDFFDD">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_centerInParent="true"

 android:textSize="32sp"

 android:textColor="#FF009900"

 android:text="Home Fragment" />

</RelativeLayout>

Next, we need to define a subclass of Fragment to load this layout. The Fragment class was

only added in Android 3.0 (API 11). If you don’t need to support anything below API 11, you can
import the Fragment class from android.app.Fragment, but it’s possible to support back to

Android 1.6 by importing Fragment from the support library with
android.support.v4.app.Fragment. The example code for this chapter uses the latter

method.

The HomeFragment.java class defines the behavior of the home fragment. The

onCreateView() is the only method that must be overridden in a Fragment subclass, as it

returns the root View that represents the fragment. In this case, all we need to do is inflate the

XML layout:

import android.os.Bundle;

import android.support.v4.app.Fragment;

import android.view.LayoutInflater;

import android.view.ViewGroup;

import android.view.View;

http://developer.android.com/reference/android/app/Fragment.html

101

public class HomeFragment extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 // Inflate the layout for this fragment

 return inflater.inflate(R.layout.home_view, container, false);

 }

}

Fragments follow the same lifecycle pattern as activities. You can define custom onCreate(),

onPause(), onResume(), and all of the other activity lifecycle callback methods that we

discussed earlier in this book in a Fragment subclass. When one of the lifecycle methods is

called on a host activity, it passes that along to any fragments it contains. This is part of what
makes fragments so modular—they act just like activities, but are completely self-contained.

Embedding Fragments in Activities

Fragments must be be hosted by an activity. It’s not possible to display fragments on their own,
although it can be the only element in an activity. If you change activity_main.xml to the

following, you’ll see how to embed a fragment in an activity:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:orientation="vertical"

 tools:context=".MainActivity" >

 <fragment android:name="com.example.fragments.HomeFragment"

 android:id="@+id/homeFragment"

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight="1" />

 <fragment android:name="com.example.fragments.ArticlesFragment"

 android:id="@+id/articlesFragment"

 android:layout_width="match_parent"

 android:layout_height="0dp"

 android:layout_weight="1" />

</LinearLayout>

This includes both the HomeFragment and the ArticlesFragment in the main activity, and the

result is shown in the screenshot below. As you can see, fragments are embedded with the
<fragment> tag. The most important attribute is android:name, which should be an absolute

path to the class that defines the fragment (including the application package).

 102

Remember that the goal of a fragment is to be a reusable piece of UI. This means that it should
be able to stretch or shrink to match whatever size is defined by the host activity. This is why the
root element of the fragment uses match_parent for its android:layout_width and

android:layout_height. The above code makes each fragment half of the screen:

Figure 59: Displaying two fragments in a single activity

Right now, fragments might seem like just an abstraction for layout files (which they are), but
they enable all sorts of other navigation options. Since they are reusable, we can display both of
them in the same activity (like we’ve done here), display them in separate activities, paginate
them with swipe views, or let the user access them via tabs.

Swipe Views

Fragments can be paginated using swipe views, which are implemented with the ViewPager
class. Swipe views are recommended for only a small number of screens, and each of those
screens should be self-contained. If you’re letting the user swipe through a collection of data
items, you should also provide a master list as an alternative means of navigation, and you
shouldn’t use swipe views to paginate long articles.

To add a swipe view to the main activity, replace the <fragment> elements in

activity_main.xml with the following:

http://developer.android.com/reference/android/support/v4/view/ViewPager.html

103

<android.support.v4.view.ViewPager

 android:id="@+id/fragmentPager"

 android:layout_width="match_parent"

 android:layout_height="match_parent" />

This adds a ViewPager that is supported back to Android 1.6. The ViewPager will be populated

in MainActivity.java using an adapter, much like ListViews and GridViews are populated.

First, it needs to define a subclass of FragmentPagerAdapter, called SimplePagerAdapter in

the following code. Its getItem() method returns the fragment associated with page. In this

case, it returns HomeFragment for the first page and ArticlesFragment for the second one. Of

course, it’s possible to dynamically generate these pages from a data set if you’re trying to
swipe through a collection. To populate the ViewPager, all we need to do is set its adapter

property to the SimplePagerAdapter.

import android.os.Bundle;

import android.support.v4.app.Fragment;

import android.support.v4.app.FragmentActivity;

import android.support.v4.app.FragmentManager;

import android.support.v4.app.FragmentPagerAdapter;

import android.support.v4.view.ViewPager;

import android.view.Menu;

public class MainActivity extends FragmentActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 SimplePagerAdapter adapter = new

SimplePagerAdapter(getSupportFragmentManager());

 ViewPager pager = (ViewPager) findViewById(R.id.fragmentPager);

 pager.setAdapter(adapter);

 }

 public static class SimplePagerAdapter extends FragmentPagerAdapter {

 public SimplePagerAdapter(FragmentManager fragmentManager) {

 super(fragmentManager);

 }

 @Override

 public int getCount() {

 return 2;

 }

 @Override

 public Fragment getItem(int position) {

 switch (position) {

 case 0:

 return new HomeFragment();

 case 1:

 return new ArticlesFragment();

 default:

 return null;

http://developer.android.com/reference/android/support/v4/view/ViewPager.html
http://developer.android.com/reference/android/support/v4/app/FragmentPagerAdapter.html

 104

 }

 }

 }

 @Override

 public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the menu; this adds items to the action bar if it is

present.

 getMenuInflater().inflate(R.menu.main, menu);

 return true;

 }

}

Each fragment should now take up the whole screen, and you should be able to swipe between
them. Note that MainActivity.java extends FragmentActivity instead of Activity. This is

necessary if you want to support anything before Android 3.0. If you don’t need to do this, you
only have to extend Activity.

Adding Tabs

Tabs work in conjunction with the ActionBar, which is the bar at the top of all the examples
we’ve been working with thus far. You create new tabs by requesting one from the ActionBar

using its newTab() method, set its title, give it a listener to respond to events, and then add it to

the ActionBar with its addTab() method. This is all demonstrated in the following snippet,

which should go in the onCreate() method of MainActivity.java:

final ActionBar actionBar = getActionBar();

actionBar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

TabListener tabListener = new TabListener() {

 public void onTabSelected(Tab tab,

 android.app.FragmentTransaction ft) {

 pager.setCurrentItem(tab.getPosition());

 }

 public void onTabReselected(Tab arg0,

 android.app.FragmentTransaction arg1) {

 // TODO Auto-generated method stub

 }

 public void onTabUnselected(Tab arg0,

 android.app.FragmentTransaction arg1) {

 // TODO Auto-generated method stub

 }

};

actionBar.addTab(actionBar.newTab().setText("Home").setTabListener(tabListene

r));

actionBar.addTab(actionBar.newTab().setText("Articles").setTabListener(tabLis

tener));

http://developer.android.com/reference/android/support/v4/app/FragmentActivity.html
http://developer.android.com/guide/topics/ui/actionbar.html

105

The onTabSelected() callback method gets called whenever a tab is selected. To display the

associated fragment, all we need to do is tell the ViewPager to change its currentItem

property. You should now be able to select tabs to change the fragments, but the tabs aren’t
updated when you swipe between them. To fix this, we need to listen for page changes and
update the tabs when the user swipes, like so:

pager.setOnPageChangeListener(new ViewPager.SimpleOnPageChangeListener() {

 public void onPageSelected(int position) {

 actionBar.setSelectedNavigationItem(position);

 }

});

Tabs and swiping should now be working properly.

Figure 60: Using tabs to navigate between fragments

Summary

In this chapter, we learned how to encapsulate reusable sections of a user interface with
Fragment subclasses and display them using swipe views and tabs. This is a common use case

for fragments, but they also enable other navigation patterns, like the master-detail pattern,
flexible user interfaces, and complex multi-panel layouts.

 106

The next chapter moves away from Android’s user interface frameworks and explains how to
save and load the data that your application collects.

107

Chapter 7 Application Data

The majority of Android Programming Succinctly has focused on developing the user interface
for an Android app. Understanding how to manage the activity lifecycle, display information,
collect input, and lay out screens will go a long way towards creating your first Android app.
However, most apps also need a way to store the data they collect. In this chapter, we’ll take a
brief look at several of Android’s data storage options.

First, we’ll look at shared preferences, which are simple key-value pairs that persist outside of
your application. Then, we’ll learn how to access Android’s internal storage. Finally, we’ll
introduce Android’s SQLite API. The ApplicationData project provides a working example of all
three of these storage mechanisms.

Shared Preferences

Android’s shared preferences framework is the easiest way to store information between user
sessions. It allows you to store primitive data (Booleans, floats, ints, longs, and strings) using
key-value pairs, much like a persistent hashtable. An activity can have one or more
SharedPreferences objects associated with it.

The SharedPreferences class provides access to stored values, and the
SharedPreferences.Editor class lets you modify those values. To store values with
SharedPreferences, you first need to get access to the shared preferences for the activity. If

you only need one preferences file for an activity, you should use getPreferences(), but if you
need multiple files, you can specify the preference file names using the getSharedPreferences()
method.

Both of these methods also let you specify who is allowed to access and modify the preference
file. While it’s possible to create preference files that are accessible from other apps using the
MODE_WORLD_READABLE and MODE_WORLD_WRITEABLE, this can open up security vulnerabilities

in your application. So, you should always use MODE_PRIVATE as the scope for preference files.

If you need to share stored values with other apps, you should use something like
ContentProvider.

Once you have an instance of SharedPreferences, you can read saved values by passing the

desired key to methods like getBoolean(), getInt(), getFloat(), and getString(). To

record values, you first need to get a SharedPreferences.Editor object by calling edit() on

the SharedPreferences instance. Then, you can set key-value pairs with methods like

putBoolean(), putFloat(), etc. Finally, you must call the editor’s commit() method to save

any updated values.

The following version of MainActivity.java shows you how to record input from an

<EditText> element using SharedPreferences and display that value when the activity loads:

http://developer.android.com/reference/android/content/SharedPreferences.html
http://developer.android.com/reference/android/content/SharedPreferences.Editor.html
http://developer.android.com/reference/android/app/Activity.html#getPreferences(int)
http://developer.android.com/reference/android/content/ContextWrapper.html#getSharedPreferences(java.lang.String, int)
http://developer.android.com/reference/android/content/ContentProvider.html

 108

package com.example.applicationdata;

import android.os.Bundle;

import android.app.Activity;

import android.view.Menu;

import android.view.KeyEvent;

import android.widget.TextView;

import android.widget.TextView.OnEditorActionListener;

import android.widget.EditText;

import android.content.SharedPreferences;

public class MainActivity extends Activity {

 private static String SHARED_PREFS_KEY = "existingInput";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 // Set up the EditText

 EditText prefsText = (EditText)

findViewById(R.id.sharedPrefsText);

 prefsText.setOnEditorActionListener(new OnEditorActionListener() {

 public boolean onEditorAction(TextView textView,

 int actionId,

 KeyEvent event) {

 String input = textView.getText().toString();

 saveStringWithSharedPreferences(SHARED_PREFS_KEY, input);

 return false;

 }

 });

 // Load the string from SharedPreferences

 SharedPreferences prefs = getPreferences(MODE_PRIVATE);

 String existingInput = prefs.getString(SHARED_PREFS_KEY, "");

 prefsText.setText(existingInput);

 }

 public void saveStringWithSharedPreferences(String key, String value) {

 // Get the SharedPreferences editor.

 SharedPreferences prefs = getPreferences(MODE_PRIVATE);

 SharedPreferences.Editor editor = prefs.edit();

 // Save the string.

 editor.putString(key, value);

 // Commit the changes.

 editor.commit();

 }

}

Note that SharedPreferences’s getter methods let you specify a default value as their second

parameter, as you can see in the pref.getString(SHARED_PREFS_KEY, "") call in the above

code.

109

Internal Storage

While SharedPreferences offers a convenient abstraction for storing simple data, it’s not

always appropriate for more complex data structures or for recording a user’s documents. As an
alternative, Android apps can store information directly on the device’s hard drive. However, like
SharedPreferences, these files are private—other apps shouldn’t be allowed to access them

due to security vulnerabilities. Files saved to internal storage are deleted when your app in
uninstalled.

To save data to a file, you first need to open the file with Context.openFileOutput(). This returns
a FileOutputStream, whose write() method enables you to add bytes to the file. When you’re

done writing data to the file, you have to close it with its close() method. The following method

shows you how to store a string in a file:

public void saveStringWithInternalStorage(String filename,

 String value) throws IOException {

 FileOutputStream output = openFileOutput(filename, MODE_PRIVATE);

 byte[] data = value.getBytes();

 output.write(data);

 output.close();

}

Note that FileOutputStream works with bytes, so the string has to be converted before

passing it to write().

To read back this string data, you need to open the file with openFileInput(), which returns a
FileInputStream object. Then you can read the file contents into a byte array. When you’re
done, don’t forget to close the input stream. The following example loads the string saved by the
previous snippet and displays it in an EditText widget:

FileInputStream input = null;

try {

 // Open the file.

 input = openFileInput(FILENAME);

 // Read the byte data.

 int maxBytes = input.available();

 byte[] data = new byte[maxBytes];

 input.read(data, 0, maxBytes);

 while (input.read(data) != -1) {};

 // Turn it into a String and display it.

 String existingInput = new String(data);

 prefsText.setText(existingInput);

} catch (IOException e) {

 e.printStackTrace();

} finally {

 if (input != null) {

 try {

 input.close();

 } catch (IOException e) {

 e.printStackTrace();

 }

http://developer.android.com/reference/android/content/Context.html#openFileOutput(java.lang.String, int)
http://developer.android.com/reference/java/io/FileOutputStream.html
http://developer.android.com/reference/android/content/Context.html#openFileInput(java.lang.String)
http://developer.android.com/reference/java/io/FileInputStream.html

 110

}

The FileInputStream.available() method returns the estimated number of bytes that can

be read without blocking for more input. We use this to figure out the length of a new byte array,
which is populated by FileInputStream.read(). These bytes are then converted to a string

and displayed to the user.

SQLite Databases

Android also provides built-in support for local SQLite databases. This is useful for data-
intensive applications that need to be able to collect large amounts of information and query it
efficiently. This section shows you how to create SQLite database on an Android device, create
a table, insert data into it, and query it using SQL.

Mixing raw SQL with the rest of your application code can get messy very quickly, so Android
uses certain conventions to abstract the database interaction as much as possible from your
application code. For example, each table should be represented by a dedicated class. This
provides a single place to define your table and column names, as well as a standardized way
to create, upgrade, and access the table.

Representing Databases

To create the class representation for a particular table, you need to extend the
SQLiteOpenHelper class and override its onCreate() and onUpgrade() methods to create the

table and upgrade it to a new version, respectively. It’s also customary to define the table name
and all of the columns as static final variables in this class. For example, a table called
messages stored in the SQLite database file messages.db might be represented by a class
called MessageOpenHelper that looks like this:

import android.content.Context;

import android.database.sqlite.SQLiteDatabase;

import android.database.sqlite.SQLiteDatabase.CursorFactory;

import android.database.sqlite.SQLiteOpenHelper;

public class MessageOpenHelper extends SQLiteOpenHelper {

 private static final int DATABASE_VERSION = 1;

 private static final String DATABASE_NAME = "messages.db";

 public static final String TABLE_MESSAGES = "messages";

 public static final String COLUMN_ID = "_id";

 public static final String COLUMN_AUTHOR = "author";

 public static final String COLUMN_MESSAGE = "message";

 private static final String DATABASE_CREATE = "create table "

 + TABLE_MESSAGES + "("

 + COLUMN_ID + " integer primary key autoincrement, "

http://developer.android.com/reference/android/database/sqlite/SQLiteOpenHelper.html

111

 + COLUMN_AUTHOR + " text not null"

 + COLUMN_MESSAGE + " text not null);";

 public MessageOpenHelper(Context context) {

 super(context, DATABASE_NAME, null, DATABASE_VERSION);

 }

 @Override

 public void onCreate(SQLiteDatabase db) {

 db.execSQL(DATABASE_CREATE);

 }

 @Override

 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion)

{

 // This implementation will destroy all the old data, which

 // probably isn't what you want to do in a real application.

 db.execSQL("drop table if exists " + TABLE_MESSAGES);

 onCreate(db);

 }

}

The entire table is defined by the final static variables at the beginning of the class.
DATABASE_VERSION and DATABASE_NAME define the SQLite database version and filename,

while the following four lines define a table called messages with three columns called _id,

author, and message. Finally, the DATABASE_CREATE variable contains the raw SQL to create

the messages table. This is one of the only places you’ll be writing raw SQL, and it’s neatly
contained in a static final variable. Again, this structure is more of a suggested convention than
a hard-and-fast rule.

The constructor for the class needs to pass the database name and version to the superclass.
The job of the onCreate() method is to initialize the SQL table associated with the class. It is

passed a SQLiteDatabase instance representing the database, and all we have to do is execute
the DATABASE_CREATE string that we defined earlier using its execSQL() method. Similarly, the

job of the onUpgrade() method is to upgrade the table to a new version. The above

implementation simply drops the table and recreates it, which may or may not be desirable for
your real-world application.

Accessing the Database

SQLiteOpenHelper methods make it very easy to create and access the underlying database.

All you have to do is instantiate your custom SQLiteOpenHelper and request a database with

either getReadableDatabase() or getWritableDatabase(). For example, to create a

database called messages.db and connect to it, all you need is the following:

MessageOpenHelper dbHelper = new MessageOpenHelper(this);

SQLiteDatabase db = dbHelper.getWritableDatabase();

http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html

 112

The getReadableDatabase() and getWritableDatabase() methods are responsible for

creating the underlying SQLite database if it doesn’t already exist and opening it for reading
and/or writing. The onCreate() method defined by MessageOpenHelper is used to create the

database. The returned SQLiteDatabase object provides methods for altering and querying

tables in the database.

You should always close the database by calling close() on your SQLiteOpenHelper instance

when you are done interacting with the database.

Inserting Rows

Inserting rows into a SQLiteDatabase object is a two-step process. First, you need to create a

ContentValues object to represent the values that you want to insert. A single ContentValues

instance represents a single record, and you define it by passing each column and value to its
put() method. Typically, you’ll want to take the column names from the static variables defined

in your custom SQLiteOpenHelper.

Second, you need to pass that ContentValues object to the SQLiteDatabase’s insert()

method, along with the name of the table that you want to insert into. For example, the following
method (which is defined in the example project’s MainActivity.java) adds a new record to

the messages table each time it is called.

public void saveStringWithDatabase(String value) {

 // Store the author and message in a ContentValues object.

 ContentValues values = new ContentValues();

 values.put(MessageOpenHelper.COLUMN_AUTHOR, AUTHOR_NAME);

 values.put(MessageOpenHelper.COLUMN_MESSAGE, value);

 // Record that ContentValues in a SQLite database

 MessageOpenHelper dbHelper = new MessageOpenHelper(this);

 SQLiteDatabase db = dbHelper.getWritableDatabase();

 long id = db.insert(MessageOpenHelper.TABLE_MESSAGES, null, values);

 Log.d(TAG,

 String.format("Saved new record to database with ID: %d", id));

 dbHelper.close();

 }

Notice how we called dbHelper.close() call when we were done using the database. Also

notice how we access the table name via MessageOpenHelper’s static variable so that it isn’t

accidentally mistyped.

Querying the Database

To retrieve records from a SQLiteDatabase instance, you pass your query information to one of
its query() methods. The various query() overloads provide parameters to all of the standard

SQL query parameters. You can define the columns to select, the selection constraints, the
grouping and ordering behavior, and selection limits.

http://developer.android.com/reference/android/content/ContentValues.html

113

Records are returned as Cursor objects, which you can use to iterate through the selected rows
and cast the contained values to Java types. For example, the following snippet opens
messages.db and selects the _id and message columns from rows that have AUTHOR_NAME in

the author column:

// Load the most recent record from the SQLite database.

MessageOpenHelper dbHelper = new MessageOpenHelper(this);

SQLiteDatabase db = dbHelper.getReadableDatabase();

// Fetch the records with the appropriate author name.

String[] columns = {MessageOpenHelper.COLUMN_ID,

 MessageOpenHelper.COLUMN_MESSAGE};

String selection = MessageOpenHelper.COLUMN_AUTHOR + " = '" + AUTHOR_NAME +

"'";

Cursor cursor = db.query(MessageOpenHelper.TABLE_MESSAGES,

 columns, selection, null, null, null, null);

// Display the most recent record in the text field.

cursor.moveToLast();

long id = cursor.getLong(0);

String message = cursor.getString(1);

Log.d(TAG, String.format("Retrieved info from database. ID: %d Message: %s",

id, message));

prefsText.setText(message);

// Clean up.

cursor.close();

dbHelper.close();

The moveToLast() method moves the cursor to the last selected row, which in this case should

be the most recent record. To extract the values, you use methods like getLong() and

getString(), passing in the column position. Note that this position is defined by the columns

array that we passed to query(), not the order of the columns in the database. When we were

done with the results, we cleaned up by calling close() on both cursor and the

SQLiteOpenHelper.

While this section only covered the basics of Android’s SQLite API, keep in mind that Android
also provides more advanced SQL functionality, including database locking and transactions.

Summary

This chapter discussed three of the most common ways to store data on an Android device. We
began with shared preferences, which provide a convenient way to store key-value pairs. Then,
we learned how to store data in files on the device’s internal storage, which is more flexible than
shared preferences. Finally, we took a brief look at Android’s built-in SQLite capabilities by
creating a SQLite database, inserting some rows, and reading them back out.

The majority of this book discussed how to display and collect information from the user.
Combined with this chapter, you should now be able to collect and store almost any kind of user
data you could possibly need. I hope that, armed with these skills, you’re feeling ready to
venture out into the Android ecosystem and start building your own Android applications. Good
luck!

http://developer.android.com/reference/android/database/Cursor.html

	Table of Contents
	The Story behind the Succinctly Series of Books
	About the Author
	Introduction
	Chapter 1 Setting Up
	The Android SDK
	Installation
	Creating a Project
	Setting Up the Emulator
	Compiling the Application

	Chapter 2 Hello, Android
	App Structure Overview
	Creating a User Interface
	Adding a Button
	Defining String Resources
	Detecting Button Input
	Logging Output
	Creating Another Activity
	Linking Activities With An Intent
	Another Button
	Passing Data with Intents
	Summary

	Chapter 3 The Activity Lifecycle
	Common Activity Transition Events
	Pressing the Power Button
	Rotating the Device
	Tapping the Back Button

	Recreating Destroyed Activities
	Restoring Instance State
	Saving Instance State
	View States

	Example Project
	Summary

	Chapter 4 User Interface Layouts
	Loading an Android Project
	Loading Layouts
	Basic View Attributes
	Size
	Padding
	Margin

	Common Layouts
	Linear Layouts
	Orientation
	Weight

	Relative Layouts
	Relative To Parent
	Relative To Siblings

	List and Grid Layouts
	List Layouts
	Grid Layouts
	Handling Click Events
	Editing The Data Set
	Custom ListView (and GridView) Items

	Nesting Layouts
	Summary

	Chapter 5 User Interface Widgets
	Images
	Adding Drawable Resources
	Scaling Images
	Programmatically Defining the Image Source

	Buttons
	Text Fields
	Styling Text Fields
	Editable Text Fields
	Collecting Text Input

	Checkboxes
	Radio Buttons
	Spinners
	Date/Time Pickers
	Summary

	Chapter 6 Fragments
	Creating a Fragment
	Embedding Fragments in Activities
	Swipe Views
	Adding Tabs

	Summary

	Chapter 7 Application Data
	Shared Preferences
	Internal Storage
	SQLite Databases
	Representing Databases
	Accessing the Database
	Inserting Rows
	Querying the Database

	Summary

