
Algorithm Development & Stepwise Refinement
Algorithm Development

In order for a computer to carry out some task it has to be supplied In order for a computer to carry out some task, it has to be supplied
with a program, which is an implementation of an algorithm. This
is expressed in a computer programming language; however it is
possible (and desirable) to talk and reason about algorithms inpossible (and desirable) to talk and reason about algorithms in
higher-level terms.

 Developing a correct algorithm can be a significant intellectual
challenge – by contrast, coding it should be straightforward
(although coding it well may not be!)

 The most widely used notations for developing algorithms are The most widely used notations for developing algorithms are
flowcharts and pseudo-code. These are independent of the
programming language to be used to implement the algorithm.

 A flowchart is a diagram containing lines representing all the
possible paths through the program.

 Pseudo code is a form of “stylised” (or “structured”) natural

1

 Pseudo-code is a form of stylised (or structured) natural
language.

Fl h t

Pseudo-Code

input mark Flowchart

1. input mark
2. complain if mark

mark < 0 or
mark > 100

?yes no below 0 or above
100

3. determine grade

?yes no

complain
mark < 40 ?

from mark:
(70 = A; <40 = C;
otherwise B)

grade = C
mark 70 ?

yes no

otherwise B)
4. print grade

mark 70 ?
yes

grade = A grade = B

no

grade A grade B

print grade

These are
“tools” to help you
design/refine/debug

2

g des g / e e/debug
algorithms

Algorithm Development (contd.)
 One of the problems encountered when writing programs is that of

preciseness. A common fault among algorithms is that the process
described is almost the intended one, but not quite.described is almost the intended one, but not quite.
 Analogy: giving directions, following a recipe. These are rarely
completely precise, but instead rely on the common sense of the
person receiving the instructions However computers are notperson receiving the instructions. However computers are not
equipped with common sense!

 Another common failing is that execution usually results in the
intended process being carried out, but in certain circumstances
(unforeseen or overlooked by the designer) it does not.
 For example, consider the following algorithm to calculate the
flight time of an aircraft using information from the timetable:

Look up departure time
Look up arrival time
S bt t d t ti f i l tiSubtract departure time from arrival time

This algorithm will usually give the correct result, but the
subtraction should take into account the special case when the

3

plane arrives on the day after departure. Also, what about:
Different time zones? Daylight savings time?

 Another required property of an algorithm is that each step can
actually be carried out – in other words, the algorithm is executable.
The point here is to make sure there are no “impossible” or unknown
steps in your algorithm (e.g. algorithm relies on solving a sub-problem
which is known to have no solution; algorithm asserts that a sub-
problem will be solved without specifying how; etc).

 Most processes are supposed to terminate! There are examples of Most processes are supposed to terminate! There are examples of
some which don’t need to, but we assume that all programs we are
interested in should.

 Thus the designer of an algorithm must ensure:
 Preciseness of the algorithm (no ambiguities)
 All possible circumstances are handled All possible circumstances are handled
 The algorithm is executable
 Termination of the algorithm

 Also have to worry about Efficiency
 an algorithm may work correctly but be inefficient – by taking more

time and using more resources than required to solve the problem

4

time and using more resources than required to solve the problem.
 becomes more important for larger programs.

Stepwise RefinementStepwise Refinement

 Break a complex problem down into a number of simpler steps,
each of which can be solved by an algorithm which is smaller and
simpler than the one required to solve the overall problem.

— Smaller and simpler, therefore easier to construct and sketch
in detail
S b l ith th l b b k i t ll ti— Sub-algorithms can themselves be broken into smaller portions

 Refinement of the algorithm continues in this manner until each
step is sufficiently detailed.

Refinement means replacing existing steps/instructions with a— Refinement means replacing existing steps/instructions with a
new version that fills in more details.

 Example: Making tea. Suppose we have a robot which carries out
household tasks We wish to program the robot to make a cup ofhousehold tasks. We wish to program the robot to make a cup of
tea. An initial attempt at an algorithm might be:

1. Put tea leaves in pot
2 Boil water2. Boil water
3. Add water to pot
4. Wait 5 minutes
5. Pour tea into cup

5

5 ou tea to cup

 These steps are probably not detailed enough for the robot. We
therefore refine each step into a sequence of smaller steps:

1. Put tea leaves in pot
might be refined to
1 1 Open box of tea1.1 Open box of tea
1.2 Extract one spoonful of tea leaves
1.3 Tip spoonful into pot
1.4 Close box of tea

Similarly:y
2. Boil water
might be refined to
2 1 Fill kettle with water

5. Pour tea into cup
might be refined to
5.1. Pour tea from pot into cup2.1. Fill kettle with water

2.2 Switch on kettle
2.3 Wait until water is boiled

5.1. Pour tea from pot into cup
until cup is full

6

2.4 Switch off kettle

Suppose the original 5 steps have been refined into sub algorithms Suppose the original 5 steps have been refined into sub-algorithms
where necessary (e.g. it was not necessary to refine step 4 because
it is simple enough for the robot to directly execute).

 Some of the sub-algorithms need further refinement. For example,
the step

2 1 Fill kettle with water2.1. Fill kettle with water
could be refined to
2.1.1. Put kettle under tap
2 1 2 Turn on tap2.1.2. Turn on tap
2.1.3. Wait until kettle is full
2.1.4. Turn off tap

 Others steps may also require further refinement. After a number of
refinements the robot is able to execute every step.

 The program is then constructed by translating the final refinement
of each step into C program statements.

7

Original Algorithm First Refinement Second Refinement

1. Put tea leaves in pot 1.1 Open box of tea

1 2 Extract one spoonful

1.1.1 Take tea box from shelf
1.1.2 Remove lid from box

1.2 Extract one spoonful
1.3 Tip spoonful into pot
1.4 Close box of tea 1.4.1 Put lid on box

1.4.2 Replace tea box on shelf

2. Boil Water 2.1 Fill kettle with water

p

2.1.1 Put kettle under tap
2.1.2 Turn on tap
2 1 3 W it til k ttl i f ll

2.2 Switch on kettle
2 3 Wait until water boiled

2.1.3 Wait until kettle is full
2.1.4 Turn off tap

2 3 1 Wait until kettle whistles

3. Add water to pot

2.3 Wait until water boiled
2.4 Switch off kettle

3.1 Pour water from kettle

2.3.1 Wait until kettle whistles

p

4. Wait 5 Minutes
until pot is full

8

5. Pour tea into cup 5.1 Pour tea from pot into
cup until cup is full

 When using stepwise refinement the designer must know when toWhen using stepwise refinement the designer must know when to
stop refining. They must know when a particular step of the
algorithm is sufficiently described to need no further refinement.

— In this example the designer must know that the instruction
Switch on kettle is directly executable by the robot, but that Fill
kettle with water is not.

 In our case we are issuing instructions to a computer using a high-

level programming language and hence experience will tell us
when a step is directly implementable in that language or not.

 The above algorithm consists of a sequence of steps each of which The above algorithm consists of a sequence of steps, each of which
will be executed exactly once and in order – termination of the last
step implies termination of the algorithm. However, algorithms with
only sequences of steps can’t do much…only sequences of steps can t do much…

— Example: What happens if the tea-box is empty?

9

 If the tea box is empty we wish to specify an extra step: If the tea-box is empty we wish to specify an extra step:
Get new box of tea from cupboard

— This step would not be carried out unless the tea-box is emptyThis step would not be carried out unless the tea box is empty,
and hence an algorithm incorporating this would not be entirely
sequential anymore.

 We can express this by rewriting step 1.1 as
1.1.1. Take tea box from shelf
1.1.2. If box is empty

then get new box from cupboard
1.1.3. Remove lid from box

— Step 1.1.2 expresses both the step to be selected and the
condition under which this selection should be madecondition under which this selection should be made.

 More complicated conditions can use AND, OR, NOT

10

 Another common requirement is the need for iteration Another common requirement is the need for iteration.

— Example: suppose all we have access to is a timer which
waits 1 second. Therefore we cannot simply say “wait 5p y y
minutes”; this step must be refined further, e.g.

4.1. Set counter to 1
4.2. WHILE counter<=300 DO

wait
increase counter by 1increase counter by 1

 Although the above iteration is expressed using “while”, this does
not mean that the program must use a while loop Any of the loopnot mean that the program must use a while loop. Any of the loop
structures supported in C can be used. Similarly, the loop in the
program does not have to use a loop counter which counts from 1
up to 300 e g you may prefer to count down to 0up to 300, e.g. you may prefer to count down to 0…

11

• In most programming languages, you can/should explicitly structure your
program into “modules” that each do some specific task. Why? Makes
programs easier to build, understand, debug, maintain; and encourages
re-use of modules in different programs.

• In C this can be done with a function: a piece of code which is given a• In C, this can be done with a function: a piece of code which is given a
name so that it can be invoked by other parts of the program

#include "stdio.h"
h t k(i t k) {

If refine problem well,
h f ti i f i lchar convert_mark(int mark) {

if (mark < 40) return 'C';
else if (mark >= 70) return 'A';
else return 'B';

each function is fairly
short, & its job is clear.

(Soon, we’ll discuss
details of how to write

}
int main(void) {

int mark;
h g d

deta s o o to te
functions; for now the

point is just WHY)

char grade;
printf("enter the mark: ");
scanf("%d", &mark);
grade = convert mark(mark);g _
printf("You got a %c\n", grade);

return 0;}
• Usually the structure of the refinement process is reflected in the

12

Usually, the structure of the refinement process is reflected in the
structure of the function invocations…

Sources of errors
 Many errors made in analysing the problem, developing an algorithm,

and/or coding the algorithm, only become apparent when you try to
compile run and test the resulting programcompile, run, and test the resulting program.

 The earlier in the development process an error is made, or the later
it is discovered, the more serious the consequences.

Sources of errors:
– Understanding the problem to solve. An error here may be

obvious e g your program does nothing useful at all Or it may beobvious e.g. your program does nothing useful at all. Or it may be
more subtle, and only become apparent when some exceptional
condition occurs e.g. a leap year, incompetent user, …

– Algorithm design. Mistakes here result in logic errors. TheAlgorithm design. Mistakes here result in logic errors. The
program will run, but will not perform the intended task e.g. a program
to add numbers which returns 6 when given 3+2 has a logic error.

– Coding of the algorithm. Often the compiler will complain, butCoding of the algorithm. Often the compiler will complain, but
messages from the compiler can be cryptic. These errors are usually
simple to correct e.g. spelling errors, misplaced punctuation, …

– Runtime. Errors may appear at run time e.g. divide some number by

13

Runtime. Errors may appear at run time e.g. divide some number by
zero. These errors may be coding errors or logic errors.

Sources of errors (contd.)

• Programs rarely run correctly the first time (!)
• Errors are of three types:Errors are of three types:

 syntax errors
 run-time errors

l i logic errors

• Syntax errors: detected by the C compilery y p
 source code does not conform to one or more of C’s grammar rules
 examples of syntax errors:

• undeclared variable• undeclared variable
• missing semicolon at end of statement
• comment not closed

• Often one mistake leads to multiple error messages – can be confusing!

14

Sources of errors (contd.)
• Run-time errors:

 detected and displayed by computer during execution
 occur when program directs computer to perform illegal operation

Example: int x=y/0;
 will stop program execution and display messagewill stop program execution and display message

• Logic errors:
d b f lt l ith caused by faulty algorithm

 do not usually cause run-time errors
 Includes errors that do not prevent execution of program

Example: float f; scanf("%d",&f);
 difficult to detect for large and complex algorithms
 sign of error: incorrect program output sign of error: incorrect program output
 cure: thorough testing and comparison with expected results

15

Sources of errors & how to reduce them
• Errors made in understanding the problem may well require you to restart

from scratch.

Y b t t d t t t di ki th l ti d— You may be tempted to start coding, making up the solution and
algorithm as you go along. This may work for trivial problems, but is a
certain way to waste time and effort for realistic problems.

• A program can be tested by giving it inputs and comparing the observed
outputs to the expected ones.
— Testing is very important but (in general) cannot prove that a programg y p (g) p p g

works correctly.
— For small programs, formal (mathematical) methods can be used to

prove that a program will produce the desired outputs for all possiblep p g p p p
inputs. These methods are rarely applicable to large programs.

• A logic error is referred to as a bug, so finding logic errors is called
debugging.debugging.
— Debugging is a continuous process, leading to an edit-compile-

debug cycle. General idea: insert extra printf() statements
showing the values of variables affected by each major step When

16

showing the values of variables affected by each major step. When
you’re satisfied program is correct, comment out these printf()’s.

Debugging tips – common errors in C

• In a for loop, initialisation and condition end with semicolons.
Wrong – for(initialisation, condition; update)g p

• Must use braces in for and while loops to repeat more than one statement.

• nested structure: first closing brace is associated with innermost structure• nested structure: first closing brace is associated with innermost structure.
Example of “unexpected” behaviour:
if(c=='y') {

scanf("%d", &d);scanf(%d , &d);
while(d!=0) {

sum+=d;
scanf("%d", &d);(,)

} else printf("end"); /* done even when c==‘y’ */
• inequality test on floating point numbers. Example of wrong way:

hil (l ! 0 0) { /* ld h l 1 9 */while(value!=0.0) { /* could have value<1e-9 */
...
value/=2.8; /* now value will be regarded as 0 */

}
17

}

Debugging tips – common errors in C (contd.)

• Should ensure that loop repetition condition will eventually become false.
Example where this doesn’t happen:p pp
do {

...
printf("one more time?");
scanf("%d", &again);

} while(again=1); /* assignment, not equality test */

• loop count off by one, either too many or too few iterations. Or infinite loop,
or loop body never executed. Can be hard to discover!

18

