

Microsoft Visual Basic
2013 Step by Step

Michael Halvorson

Published with the authorization of Microsoft Corporation by:
O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, California 95472

Copyright © 2013 by Michael Halvorson
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-6704-4

1 2 3 4 5 6 7 8 9 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Kristen Brown

Editorial Production: Zyg Group, LLC

Technical Reviewer: Tim Patrick

Copyeditor: Richard Carey

Indexer: Bob Pfahler

Cover Design: Twist Creative • Seattle

Cover Composition: Randy Comer

Illustrator: Rebecca Demarest

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents at a glance

Introduction xvii

PART I INTRODUCTION TO VISUAL STUDIO DEVELOPMENT

CHapter 1 Visual Basic 2013 development opportunities
 and the Windows Store 3

CHapter 2 the Visual Studio Integrated Development environment 17

CHapter 3 Creating your first Windows Store application 43

Chapter 4 Windows desktop apps: a walkthrough
 using Windows Forms 79

PART II DESIGNING THE USER INTERFACE

CHapter 5 Working with Windows Store app controls 111

CHapter 6 Working with Windows Forms controls 147

CHapter 7 XaML markup step by step 191

CHapter 8 Using XaML styles 215

CHapter 9 exploring Windows 8.1 design features:
 Command bar, flyout, tiles, and touch 235

CHapter 10 Creating console applications 267

PART III VISUAL BASIC PROGRAMMING TECHNIQUES

CHapter 11 Mastering data types, operators, and string processing 291

CHapter 12 Creative decision structures and loops 341

CHapter 13 trapping errors by using structured error handling 375

Chapter 14 Using arrays, collections, and generics to manage data 397

CHapter 15 Innovative data management with LINQ 435

CHapter 16 Object-oriented programming techniques 459

PART IV DATABASE AND WEB PROGRAMMING

CHapter 17 Database controls for Windows desktop apps 489

CHapter 18 Data access for Windows Store apps 515

CHapter 19 Visual Studio web development with aSp.Net 543

iv Contents at a glance

PART V MICROSOFT WINDOWS PHONE PROGRAMMING

CHapter 20 Introduction to Windows phone 8 development 587

CHapter 21 Creating your first Windows phone 8 application 607

Index 641

About the author 671

 v

Contents

Introduction .xvii

PART I INTRODUCTION TO VISUAL STUDIO DEVELOPMENT

Chapter 1 Visual Basic 2013 development opportunities and the
Windows Store 3

Visual Basic 2013 products and opportunities . 4

An impressive range of development opportunities
and platforms . 5

Taking a multiplatform approach to learning Visual Basic 7

Evaluating the Windows Store . 8

What is the Windows Store? . 8

Accessing the Windows Store . 9

Sales information and price tiers .10

Or your application could be free… .11

Planning ahead for certification .12

Windows Store requirements checklist .12

It’s all in the details .15

Summary. .16

Chapter 2 The Visual Studio Integrated Development
Environment 17

Getting started .18

The Visual Studio development environment .19

Important tools in the IDE .22

Organizing tools in the IDE .24

The Designer and XAML markup .25

Running and testing Windows Store apps .30

Working with the Properties window .33

vi Contents

Organizing the programming tools .36

Moving and docking tools .37

Hiding tool windows .38

Configuring the IDE for step-by-step exercises .39

Exiting Visual Studio .42

Summary. .42

Chapter 3 Creating your first Windows Store application 43
Lucky Seven: A Visual Basic app for the Windows Store44

Programming step by step .44

Designing the user interface .45

Final property settings and adjustments .61

Writing the code .63

A look at the SpinButton_Click event handler .67

Running Windows Store apps .68

Creating a splash screen for your app .70

Building an executable file . 74

Summary. .78

Chapter 4 Windows desktop apps: A walkthrough using
Windows Forms 79

Inside Windows desktop apps .80

Visual Basic and Windows desktop apps .81

Creating a Windows desktop app .83

Setting properties .93

The picture box properties .97

Naming objects for clarity .98

Writing the code .99

Behind the scenes in the SpinButton_Click event handler101

Running the Lucky Seven desktop app .103

Building an executable file .104

 Contents vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Publishing a Windows desktop app .105

Summary. .107

PART II DESIGNING THE USER INTERFACE

Chapter 5 Working with Windows Store app controls 111
Understanding Windows Store app controls .112

Roots in Windows Presentation Foundation and XAML 112

Designing for Windows 8.1 .113

Using the TextBox control to receive input .113

Assigning TextBox contents to a variable .118

Multiline TextBox controls. .120

Check spelling in a TextBox control .124

Using the FlipView control to display a series of images127

Using the MediaElement control to play entertainment media133

Use the WebView control to display live web content141

Summary. .146

Chapter 6 Working with Windows Forms controls 147
Using the DateTimePicker control .148

Controls for gathering input .154

Using the CheckBox control .155

Using group boxes and radio buttons .159

Processing input with list boxes .164

Adding menus by using the MenuStrip control .169

Menu features .170

Adding access keys to menu commands .172

Processing menu choices .175

Adding toolbars with the ToolStrip control .180

viii Contents

Using dialog box controls .183

Event handlers that manage common dialog boxes 185

Summary. .190

Chapter 7 XAML markup step by step 191
Introduction to XAML .192

XAML in the Visual Studio IDE .192

XAML in Blend for Visual Studio .193

XAML elements .194

Namespaces in XAML markup .196

Examining XAML project files .196

Adding XAML elements using the Code Editor .202

Summary. .213

Chapter 8 Using XAML styles 215
Introduction to XAML styles .215

Where did StandardStyles.xaml go? .216

Creating new XAML styles .217

Considering the scope of a style .218

Sample markup for a new XAML style .219

Referencing a style .220

Using explicit and implicit styles .220

Practicing XAML styles .221

Building new styles from existing styles .228

IDE shortcuts for applying styles .231

Summary. .233

Chapter 9 Exploring Windows 8.1 design features:
Command bar, flyout, tiles, and touch 235

Creating a command bar to manage common tasks236

Command bar features .237

Designing your command bar .238

Command bar practice step by step .240

 Contents ix

Using the Flyout control to collect input and display information243

Designing custom tiles for your app .249

The Assets folder .249

Required tiles and uses .249

Programming live tiles .257

Planning for touch input .259

XAML controls handle touch automatically 259

Common gestures .260

Usability considerations .262

Security and permissions settings .263

Summary. .266

Chapter 10 Creating console applications 267
Console applications in Visual Studio .268

Creating a console application .268

Modules and procedures .270

The Sub Main() procedure .271

Interactive math games .275

Find the number .275

Simulating dice .280

Building, publishing, and running console apps .284

Summary. .288

PART III VISUAL BASIC PROGRAMMING TECHNIQUES

Chapter 11 Mastering data types, operators, and
string processing 291

Strategies for declaring variables and constants .292

The Dim statement .292

Defining constants .295

Guidelines for naming variables and constants296

Data types and the ListBox control .297

x Contents

Operators and formulas .304

Arithmetic operators .305

Advanced arithmetic operators .308

Shortcut operators .313

How Visual Basic calculates formulas .314

Converting data types .315

The ToString method .316

The Parse method .316

The Convert class .318

Older type conversion functions and their uses319

Processing strings with the String class .320

Common tasks .320

Sorting text .322

Working with ASCII codes .323

Sorting strings in a text box .325

Examining the Sort Text program code .328

Protecting text with basic encryption .331

Using the Xor operator .334

Examining the encryption program code .336

Summary. .339

Chapter 12 Creative decision structures and loops 341
Event-driven programming .342

Using conditional expressions .343

If…Then decision structures .344

Testing several conditions in an If…Then decision structure344

Using logical operators in conditional expressions349

Short-circuiting by using AndAlso and OrElse 352

Mastering Select Case decision structures .353

Using comparison operators with a Select Case structure355

Mastering For…Next loops .361

Using a loop to fill a TextBox with string data362

 Contents xi

Complex For…Next loops .363

The Exit For statement .367

Writing Do loops .368

Avoiding an endless loop .369

Converting temperatures .370

Using the Until keyword in Do loops .372

Summary. .373

Chapter 13 Trapping errors by using structured error handling 375
Processing errors by using the Try…Catch statement376

When to use error handlers .376

Setting the trap: the Try…Catch code block 377

Path name and drive errors .378

Windows Store apps and built-in exception handling383

Writing a flash drive error handler .384

Using the Finally clause to perform cleanup tasks385

More complex Try…Catch error handlers .387

The Exception object .387

Specifying a retry period .390

Using nested Try…Catch blocks .392

Comparing error handlers with defensive programming techniques . . .393

The Exit Try statement .394

Summary. .395

Chapter 14 Using arrays, collections, and generics to
manage data 397

Working with arrays of variables .398

Creating an array .398

Declaring an array with set elements .399

Setting aside memory .400

Working with array elements .401

Declaring an array and assigning initial values402

Creating an array to hold temperatures .404

The GetUpperBound and GetLowerBound methods 404

xii Contents

Setting an array’s size at runtime .409

Preserving array contents by using ReDim Preserve414

Using ReDim for three-dimensional arrays .415

Processing large arrays by using methods in the Array class416

The Array class .416

Get your sort on .422

Working with collections .422

Creating collections and generic lists .423

Declaring generic collections .424

Sample app with generic list and background image425

Summary. .433

Chapter 15 Innovative data management with LINQ 435
LINQ tools and techniques .435

Fundamental query syntax .436

Extracting information from arrays .437

Using LINQ with collections .450

Using LINQ with XML documents .454

Summary. .458

Chapter 16 Object-oriented programming techniques 459
Inheriting a form by using the Inheritance Picker .460

Creating your own base classes .466

Adding a new class to your project .467

Inheriting a base class .476

Polymorphism .480

Syntax for overriding methods and properties480

Referring to the base class with MyBase . 481

Experimenting with polymorphism .481

Summary. .486

 Contents xiii

PART IV DATABASE AND WEB PROGRAMMING

Chapter 17 Database controls for Windows desktop apps 489
Database programming with ADO.NET .490

Database terminology .490

Working with an Access database .492

The Data Sources window .501

Using toolbox controls to display database information506

SQL statements and filtering data .509

Summary. .514

Chapter 18 Data access for Windows Store apps 515
Data binding in XAML .516

A variety of data sources .516

Binding elements .516

Binding a control to a class .517

Using a collection as a source of data .522

Accessing data in XML documents .526

Reading an XML file .526

Searching for items in an XML file. .533

Writing to an XML file .536

A user interface for data entry .540

Summary. .541

Chapter 19 Visual Studio web development with ASP.NET 543
Inside ASP.NET . 544

Web Forms .545

ASP.NET MVC .546

Web Pages (with Razor) .547

HTML5 and JavaScript .548

Building a Web Forms website with ASP.NET. .550

Software requirements for ASP.NET development 550

Essential steps .551

Webpages vs. Windows Forms .552

xiv Contents

Using the Web Designer .557

Adding server controls to a website .561

Writing event handlers for webpage controls .563

Customizing the website template .570

Displaying database records on a webpage .573

Editing document and site master properties .581

Summary. .584

PART V MICROSOFT WINDOWS PHONE PROGRAMMING

Chapter 20 Introduction to Windows Phone 8 development 587
Opportunities in the Windows Phone 8 platform .588

Key Windows Phone 8 features .589

Hardware requirements .590

Integration and collaboration .590

The Windows Phone Store .591

What is the Windows Phone Store? .591

Accessing the Windows Phone Store .591

How much money do developers make? .595

Planning ahead for certification .595

Working with Windows Phone SDK 8.0 .596

Downloading the SDK .598

Comparing Windows Phone 8 and Windows Store platforms600

Differences .601

Similarities .603

Summary. .605

Chapter 21 Creating your first Windows Phone 8 application 607
Creating a Windows Phone project .608

Designing the Golf Caddy user interface .614

Writing the code .617

Testing Windows Phone apps .620

 Contents xv

Application life cycle considerations .626

Closing or deactivating? .626

The PhoneApplicationSerivce class .628

Life cycle management with the IsolatedStorageSettings class . . .636

Setting options in the Window Phone manifest file637

Summary. .639

Index 641

About the author 671

 xvii

Introduction

Microsoft Visual Basic 2013 is an important upgrade and enhancement of the popu-
lar Visual Basic programming language and compiler, a technology that enjoys an

installed base of millions of programmers worldwide. Visual Basic 2013 is not a stand-
alone product but a key component of Microsoft Visual Studio 2013—a comprehensive
development system that allows you to create powerful applications for Microsoft
Windows 8.1, the Windows desktop, the web, Windows Phone 8, and a host of other
environments.

Whether you purchase one of the commercial editions of Visual Studio 2013 or you
download Visual Basic Express 2013 for a free test-drive of the software, you are in for
an exciting experience. The latest features of Visual Basic will increase your productivity
and programming prowess, especially if you enjoy using and integrating information
from databases, entertainment media, webpages, and websites. In addition, an impor-
tant benefit of learning Visual Basic and the Visual Studio Integrated Development
Environment (IDE) is that you can use many of the same tools to write programs for
Microsoft Visual C# 2013, Microsoft Visual C++ 2013, HTML5 and JavaScript, and other
popular languages.

Microsoft Visual Basic 2013 Step by Step is a comprehensive introduction to Visual
Basic programming using the Visual Basic 2013 software and Windows 8.1. I’ve
designed this practical, hands-on tutorial with a variety of skill levels in mind. In my
opinion, the best way to master a complex technology like Visual Basic is to follow the
premise that programmers learn by doing. Therefore, by reading this book and working
through the examples, you’ll learn essential programming techniques through carefully
prepared tutorials that you can complete on your own schedule and at your own pace.

Although I have significant experience with college teaching and corporate proj-
ect management, this book is not a dry textbook or an “A to Z” programmer’s refer-
ence; instead, it is a practical hands-on programming tutorial that puts you in charge
of your learning, developmental milestones, and achievements. By using this book,
programmers who are new to this topic will learn Visual Basic software development
fundamentals in the context of useful, real-world applications; and intermediate Visual
Basic programmers can quickly master the essential tools and techniques offered in the
Visual Basic 2013 and Windows 8.1 upgrades.

I’ve taken a multiplatform approach in this book, so in addition to learning Visual
Basic programming skills you’ll learn to create a wide variety of applications, including
Windows Store apps, Windows Forms (Windows desktop) apps, console apps, web apps

xviii Introduction

(ASP.NET), and Windows Phone 8 apps. Each of these application types has a place and
a purpose in real-world development.

To complement this comprehensive approach, the book is structured into 5 topically
organized parts, 21 chapters, and dozens of step-by-step exercises and sample pro-
grams. By using this book, you’ll quickly learn how to create professional-quality Visual
Basic 2013 applications for the Windows operating system, Windows Phone 8 platform,
and a variety of web browsers. You’ll also have fun!

Who should read this book

This is a step-by-step programming tutorial for readers who enjoy learning to do new
things by doing them. My assumption is that you already have some experience with
programming, possibly even an earlier version of Visual Basic, and that you are ready to
learn about the Visual Studio 2013 product in the context of building applications that
you can market in the Windows Store, Windows Forms (Windows desktop) for personal
and enterprise purposes, web (ASP.NET) applications that run in browsers, and apps for
the Windows Phone 8 platforms.

This book’s content will supply you with concrete Visual Basic coding techniques as
well as a broad overview of programming strategies suitable for Visual Basic develop-
ment. The book’s extensive collection of step-by-step exercises has a broad focus; they
are written for technical people who understand programming and are not simply
targeted toward hobbyists or absolute beginners. In addition, you will learn about the
capabilities of the Windows 8.1 operating system and the specific design guidelines that
Microsoft recommends for Windows 8.1 and Windows Phone 8 applications.

assumptions
This book is designed to teach readers how to use the Visual Basic programming
language. You will also learn how to use the Visual Studio 2013 IDE and development
tools. This book assumes no previous experience with Visual Studio 2013, but it is
written for readers who understand programming and are not absolute beginners. I
assume that you are familiar with programming basics or have studied some version of
BASIC or Visual Basic in the past and are now ready to move beyond elementary skills
to platform-specific techniques.

If you have no prior knowledge of programming or Visual Basic, you might want to
fill in some of the gaps with my introduction to Visual Basic 2012 and Windows Store
development, Start Here! Learn Visual Basic 2012 (Microsoft Press, 2012). From time

 Introduction xix

to time, I will refer to the exercises in that book to give you additional resources for
your learning.

Microsoft Visual Basic 2013 Step by Step also assumes that you have acquired and
are running the Windows 8.1 operating system and that you want to learn how to
create applications for the Windows Store platform and other environments. To make
the most of your programming practice, you will need to know a little about how to
perform common tasks in Windows 8.1, how to customize the Start page and user
interface, how to work with information on the web, and how to adjust basic system
settings. If you also have Windows 8.1 installed on a tablet or touchpad device, all the
better, because a fundamental design emphasis of Windows 8.1 is to make touch and
gestures a natural way to manipulate content. You can build your applications on a
laptop or desktop running Visual Studio 2013 and Windows 8.1 and then test out the
applications on your tablet or touchpad.

In terms of the Visual Studio software, I assume that you are using one of the full,
retail versions of Visual Studio 2013, such as Visual Studio Professional, Premium, or
Ultimate. This will enable you to create the full range of application types that I describe
in this book, including Windows Store apps, Windows Forms (Windows desktop) apps,
console apps, Web Forms (ASP.NET) apps, and Windows Phone 8 apps.

If you don’t have access to a full, retail version of Visual Studio 2013, you can experi-
ment with the Visual Studio 2013 software by downloading free versions of the suite
designed for specific platforms. These limited-feature or “Express” versions of Visual
Studio 2013 are called Express for Windows, Express for Windows Desktop, Express for
Windows Phone, and Express for Web. The Visual Studio website (http://www.microsoft.
com/visualstudio) provides access to the retail and Express versions of Visual Studio, and
it explains the differences among all of the available versions.

Who should not read this book

You might be disappointed with this book if you are already a knowledgeable Visual
Basic programmer and are just looking to explore the new features of Visual Studio
2013. The Step By Step series is targeted toward readers who are professional develop-
ers but who have little to no previous experience with the topic at hand. If you are an
advanced Visual Basic developer, you are likely to grow weary of the step by step exer-
cises that introduce essential features such as decision structures, XAML markup, data
access strategies, or using the .NET Framework.

http://www.microsoft.com/visualstudio
http://www.microsoft.com/visualstudio

xx Introduction

Developers who have a lot of experience will feel that I’m exploring the obvious—
but what is obvious to experienced programmers often isn’t obvious at all to someone
who is learning to use a new development platform. If Windows Store or Windows
Phone programming with Visual Basic is a new concept for you, this is the place to start.

Organization of this book

This book is divided into five sections, each of which focuses on a different aspect
or technology within the Visual Studio software and the Visual Basic programming
language. Part I, “Introduction to Visual Studio development,” provides an overview of
the Visual Studio 2013 IDE and its fundamental role in .NET application creation and
then moves into step-by-step development walkthroughs on the Windows Store and
Windows Forms (Windows desktop) platforms.

Part II, “Designing the user interface,” continues the focus on application creation in
the Visual Studio IDE, emphasizing the construction of Windows Store apps, Windows
Forms (Windows desktop) apps, and console apps. In particular, you’ll learn how to
work with XAML markup, XAML styles, important controls, and new Windows 8.1
design features, including command bar, flyout, tiles on the Windows Start page, and
touch input.

Part III, “Visual Basic programming techniques,” covers core Visual Basic program-
ming skills, including managing data types, using the .NET Framework, structured error
handling, working with collections and generics, data management with LINQ, and
fundamental object-oriented programming skills.

Part IV, “Database and web programming,” introduces data management tech-
niques in Windows desktop and Windows Store applications, including binding data to
controls and working with XML documents and Microsoft Access data sources. You’ll
also get an overview of ASP.NET web development strategies, along with a complete
walkthrough of web development on the Web Forms (ASP.NET) platform.

Finally, Part V, “Microsoft Windows Phone programming,” provides an overview
of the features and capabilities presented by the Windows Phone 8 platform. You’ll
identify key hardware characteristics in the Windows Phone ecosystem, the market-
ing opportunities tendered by the Windows Phone Store, and you’ll create a complete
Windows Phone 8 app step by step.

 Introduction xxi

Finding your best starting point in this book
This book is designed to help you build skills in a number of essential areas. You can use
it if you’re new to programming, switching from another programming language, or
upgrading from Visual Studio 2010 or Visual Basic 2012. Use the following table to find
your best starting point in this book.

If you are … Follow these steps

New to Visual Basic programming 1. Install the sample projects as described in
the section “Installing the code samples,”
later in this Introduction.

2. Learn essential skills for using Visual
Studio and Visual Basic by working
sequentially from Chapter 1 through
Chapter 21.

3. Use the companion book Start Here!
Learn Microsoft Visual Basic 2012 for
additional instruction as your level of
experience dictates.

Upgrading from Visual Basic 2010 or 2012 1. Install the sample projects as described in
the section “Installing the code samples.”

2. Read Chapter 1, skim Chapters 2 through
4, and complete Chapters 5 through 21.

Interested primarily in creating Windows
Store apps for Windows 8.1

1. Install the sample projects as described in
the section “Installing the code samples.”

2. Complete Chapters 1 through 3, Chapter
5, Chapters 7 through 16, and Chapter
18.

Interested primarily in creating Windows
Forms (Windows desktop) apps for
Windows 8.1, Windows 8, or Windows 7

1. Install the sample projects as described in
the section “Installing the code samples.”

2. Complete Chapters 1 through 2, Chapter
4, Chapter 6, Chapter 10, and Chapters 11
through 17.

xxii Introduction

Conventions and features in this book

This book presents information using the following conventions designed to make the
information readable and easy to follow:

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

■■ The names of all program elements—controls, objects, methods, functions,
properties, classes, variable names, and so on—appear in italics.

■■ As you work through steps, you’ll occasionally see tables with lists of properties
that you’ll set in Visual Studio. Text properties appear within quotes, but you
don’t need to type the quotes.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you type (including some code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (for example, File | Close)
means that you should select the first menu or menu item, then the next, and
so on.

System requirements

You will need the following hardware and software to work through the examples in
this book:

■■ The Windows 8.1 operating system. (Depending on your Windows configura-
tion, you might also require Local Administrator rights to install or configure
Visual Studio 2013.) Note that while the full versions of Visual Studio 2013 do
support earlier versions of Windows, such as Windows 8 and Windows 7 SP1,
the features described in this book require Windows 8.1, and the screen shots
will all show this environment.

 Introduction xxiii

■■ A full retail edition of Visual Studio 2013, required for completing all of the
exercises in this book (Visual Studio 2013 Professional, Premium, or Ultimate).
The Visual Studio website (http://www.microsoft.com/visualstudio) explains the
differences among these versions. Alternatively, you can experiment with the
Visual Studio 2013 software by downloading free versions of the suite designed
for specific platforms. The limited-feature versions of Visual Studio 2013 are
called Express for Windows, Express for Windows Desktop, Express for Windows
Phone, and Express for Web. You will need to download all four of these
Express versions to get the necessary software to complete the book’s exercises.
(However, even with these Express editions, there will be a few gaps; for exam-
ple, you will be unable to complete Chapter 10, “Creating console applications.”)

■■ An Internet connection to view Visual Studio help files, try out the Windows
Store and Windows Phone Store, and download this book’s sample files.

■■ A computer with 1.6 GHz or faster processor.

■■ 1 GB RAM (32-bit) or 2 GB RAM (64-bit).

■■ 16 GB available hard disk space (32-bit) or 20 GB (64-bit) for Windows 8.1.

■■ DirectX 9 graphics device with WDDM 1.0 or higher driver.

■■ 1024 × 768 minimum screen resolution.

If you want to use touch for user input, you’ll need a multitouch-capable laptop,
tablet, or display. A multitouch-capable device is optional for the exercises in this book,
although one is useful if you want to understand what such devices are capable of.
Typically, a programmer will develop software on a desktop or laptop computer and
then test multitouch functionality on a multitouch-capable device.

Although this book develops applications for Windows Phone 8, a Windows Phone is
not required to complete the book’s step-by-step exercises.

http://www.microsoft.com/visualstudio

xxiv Introduction

Code samples

Most of the chapters in this book include step-by-step exercises that let you interac-
tively try out new material learned in the main text. All sample projects can be down-
loaded from the following page:

http://aka.ms/VB2013_SbS/files

Follow the instructions to download the Visual_Basic_2013_SBS_Sample_Code.zip file.

Installing the code samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book:

1. Unzip the Visual_Basic_2013_SBS_Sample_Code.zip file that you downloaded
from the book’s website. (Name a specific directory along with directions to
create it, if necessary.) I recommend My Documents\Visual Basic 2013 SBS for
the files.

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

Using the code samples
The code samples .zip file for this book creates a folder named Visual Basic 2013 SBS
that contains 19 subfolders—one for each of the chapters in the book that have exer-
cises. To find the examples associated with a particular chapter, open the appropriate
chapter folder. You’ll find the examples for that chapter in separate subfolders. The
subfolder names have the same names as the examples in the book. For example, you’ll
find an example called Music Trivia in the My Documents\Visual Basic 2013 SBS\Chapter
02 folder on your hard drive. If your system is configured to display file extensions of
the Visual Basic project files, look for .sln as the file extension. Depending on how your
system is configured, you might see a Documents folder rather than a My Documents
folder.

 Introduction xxv

Acknowledgments

This book is a very substantial revision of an earlier Visual Basic Step by Step book
published by Microsoft Press. In fact, in almost every way, it is an entirely new book,
and it is the first programming title that I have written specifically to be a multiplatform
guidebook, covering Visual Basic development on the Windows Store, Windows Forms,
Web Forms, and Windows Phone platforms. I am very grateful to the many talented
programmers and editors who offered their ideas and contributions to this volume.

At Microsoft Press, I would like to thank Devon Musgrave for his early enthusiasm
for the project and for connecting me to team members in the Visual Studio product
group. At O’Reilly Media, I would like to thank again Russell Jones, who discussed many
of the topics in this book with me and offered technical and practical suggestions for
completing the work on schedule. I am also grateful to Tim Patrick, a technical reviewer
and experienced author and developer, who worked on both this Step by Step volume
and the companion book, Start Here! Learn Microsoft Visual Basic 2012. (Perhaps we
will work on a history book someday as well, Tim!)

Within the editorial group at O’Reilly Media, I would like to thank Kristen Brown, for
scheduling the editorial review and answering questions about the design; and Richard
Carey, for his skillful copy editing and managing all style and localization issues that
arose. (It is good to work with you again, Richard!) I would also like to thank Rebecca
Demarest, Kim Burton-Weisman, and Linda Weidemann for their important artistic,
editorial, and technical contributions.

I am also most grateful to the Microsoft Visual Studio 2013 development team for
providing me with the preview and release candidate software to work with. In addi-
tion, I would like to thank the Microsoft Windows 8.1 team for their support and offer
my special thanks to the many MSDN forum contributors who asked and answered
questions about Visual Basic and Windows programming.

Finally, I offer thanks and admiration to my immediate family for their continued
support of my writing projects and various academic pursuits. Once again I was able
to involve my son, Henry Halvorson, with the creation of electronic music and artwork,
and his contributions appear in Chapters 3, 4, 5, and 9.

xxvi Introduction

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site at oreilly.com:

http://aka.ms/VB2013_SbS/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback is our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

You can also learn more about Michael Halvorson’s books and ideas at
http://michaelhalvorsonbooks.com.

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress
http://michaelhalvorsonbooks.com

 1

PART I

Introduction to Visual
Studio development

CHAPTER 1 Visual Basic 2013 development opportunities
 and the Windows Store. .3

CHAPTER 2 The Visual Studio Integrated Development
 Environments. .17

CHAPTER 3 Creating your first Windows Store application43

CHAPTER 4 Windows desktop apps: A walkthrough using
 Windows Forms .79

 3

C H A P T E R 1

Visual Basic 2013
development opportunities
and the Windows Store

after completing this chapter, you will be able to

■■ Describe the development opportunities provided by Microsoft Visual Basic 2013.

■■ Understand requirements for distributing applications in the Windows Store.

Are you ready to start working with Microsoft Visual Basic 2013? In this chapter, you’ll get an over-
view of the features and capabilities of the Microsoft Visual Studio 2013 development system and

the different editions of Visual Studio that you can purchase or download for free. You’ll learn about
emerging hardware and software platforms and their uses and the impressive range of applications
that you can create for these platforms, including Windows Store apps for Windows 8.1; Windows
desktop apps for Windows 7, Windows 8, and Windows 8.1; Windows Phone 8 apps; web apps; con-
sole apps; and much more.

You’ll also learn about the Windows Store, an exciting new distribution point for apps designed
especially for Windows 8.1. You’ll review a checklist of planning tasks to consider before you begin
building a Windows Store application, and you’ll learn the procedures for selling and distributing
apps through the Windows Store. After you have a clear list of the Windows Store requirements and
program features in mind, you’ll be ready to build your own programs, including Windows Store apps
that you can distribute to millions of potential customers worldwide.

Before we begin, a word about terminology. This book has been designed and tested using the
Windows 8.1 operating system. The Windows Store apps that you create will run under Windows 8.1
and will target the .NET Framework version 4.5.1. You will also learn to create Visual Basic programs
using the Windows Forms and console app models, which run on what is now known as the “Windows
desktop.” These types of apps will run under Windows 8.1, Windows 8, Windows 7, and earlier versions
of Windows, provided that the Windows installation has the proper .NET Framework files installed.

Yet another type of application you will create in this book, using Visual Studio and a technol-
ogy called ASP.NET, are Web Forms apps. These apps run in a web browser, such as Internet Explorer.
Finally, you’ll create mobile phone apps during the course of this book, using Visual Studio and the
Windows Phone SDK 8.0. These apps run on the Windows Phone 8 platform.

4 part I Introduction to Visual Studio Development

Visual Basic 2013 products and opportunities

I’m going to assume that you have purchased this book because you want to learn how to program
in Visual Basic. In fact, my underlying assumption is that you might already have some development
experience—perhaps even with an earlier version of Visual Basic—and that you are ready to learn
about the Visual Studio 2013 product in the context of the Windows Store, Windows Forms, Windows
Phone, and Web Forms platforms. Enhancing your Visual Basic development skills is an excellent
choice; there are over four million Visual Basic programmers in the world developing innovative solu-
tions, and Microsoft’s newest operating system, Windows 8.1, presents many amazing opportunities
for Visual Basic programmers.

“Visual Basic” essentially has two meanings in the software development marketplace. In a nar-
rower engineering sense, Visual Basic is the name of a programming language with specific syntax
rules and logical procedures that must be followed when a developer creates code for a compiler with
the goal of making an executable program or application. However, Visual Basic is also used in a more
comprehensive product-related sense to describe the collection of tools and techniques that develop-
ers use to build Windows-based applications with a particular software suite. In the past, develop-
ers could purchase a stand-alone version of Visual Basic, such as Microsoft Visual Basic .NET 2003
Professional Edition, but these days Visual Basic is sold only as a component within the Visual Studio
software suite, which also includes Microsoft Visual C#, Microsoft Visual C++, and other development
tools.

The Visual Studio 2013 development suite is distributed in several different product configurations,
including Professional, Premium, and Ultimate, along with a subset of Visual Studio tools designed
for test engineers, known as Visual Studio 2013 Test Professional. In addition to these retail products,
you can experiment with the Visual Studio 2013 software by downloading free versions of the suite
designed for specific development platforms. These limited-feature or “Express” versions of Visual
Studio 2013 are called Express for Windows, Express for Windows Desktop, Express for Windows
Phone, and Express for Web.

The full retail versions of Visual Studio 2013 have different prices and feature sets, with Ultimate
being the most comprehensive (and expensive) development package. The Visual Studio website
(http://www.microsoft.com/visualstudio) explains the differences among all of these versions. Typically,
the full retail versions of Visual Studio are also available for a 30-day free trial period that can be
extended to 90 days. These trial versions are more feature-rich than the Express products. In addi-
tion, the faculty, staff, and students of recognized academic institutions can download full editions
of Visual Studio 2013 through the Microsoft DreamSpark program, and these free downloads don’t
expire.

I wrote this book to highlight the features and development opportunities provided by Visual
Studio 2013 Professional and Visual Studio 2013 Premium. If you are using Visual Studio Ultimate,
you will also have what you need to complete the exercises in this book—and then some. The extra
features included in Visual Studio Ultimate primarily relate to larger team development projects and
enterprise-computing scenarios that go beyond the scope of this book.

http://www.microsoft.com/visualstudio

 CHAPTER 1 Visual Basic 2013 development opportunities and the Windows Store 5

You can also complete most of the exercises in this book if you install all four of the Express edi-
tions of Visual Studio 2013, and then switch among them as directed. (That is, you can complete most
of the exercises in this book if you install Visual Studio 2013 Express for Windows, Visual Studio 2013
Express for Windows Desktop, Visual Studio 2013 Express for Web, and Visual Studio 2013 Express for
Windows Phone 8.) I will let you know which Express product is necessary for each chapter and when
the individual Express products have limitations that will restrict your ability to compete the exercises.
Occasionally, the instructions in this book will apply only to the full retail editions of Visual Studio
2013, such as Chapter 10, “Creating console applications.”

Collectively, the chapters in this volume are designed to open up an exciting new world of techni-
cal and business opportunities to Visual Basic 2013 programmers. The book’s extensive collection of
step-by-step exercises has a broad focus, and they are written for technical people who understand
programming and are not simply hobbyists or absolute beginners. In short, the exercises in this
book will give you a taste of real-world programming practices and experiences. If you have no prior
knowledge of Visual Basic or Visual Studio, you might want to fill in some of the gaps with my com-
prehensive introduction to Visual Basic 2012 and Windows 8 development, Start Here! Learn Visual
Basic 2012 (Microsoft Press, 2012). From time to time, I will refer to the exercises in that book to give
you additional resources for your learning.

an impressive range of development opportunities
and platforms
How has Visual Basic programming evolved over time, and what opportunities are available now to
Visual Basic 2013 programmers? Before we start writing code, let’s briefly examine some of the recent
trends in software development and Windows programming.

Microsoft released Visual Basic 1.0 in 1991. From its initial announcement at Windows World, the
product impressed software developers because it innovatively combined an advanced Visual Basic
language compiler with an Integrated Development Environment (IDE) that allowed programmers to
build Windows applications by visually arranging controls on a Windows form and then customizing
the controls with property settings and Visual Basic code. From these modest beginnings, Visual Basic
grew into a powerful development tool that was closely aligned with Windows programming, capable
of creating fast and efficient Windows-based applications that could run on a variety of hardware
platforms.

In the early 2000s, Visual Basic programmers were concerned primarily with creating applications
for Windows that helped businesses manage data effectively. Visual Basic’s ability to graphically dis-
play information and provide access to it with powerful user interface controls gained many support-
ers for the product, and the installed base grew into the millions. Over the past decade, the leading
Visual Basic applications have been database front-ends, inventory management systems, web appli-
cations and utilities, purchasing tools, CAD programs, scientific applications, and games.

However, in the 2010s, the explosion of Internet connectivity and online commerce has dramati-
cally changed the landscape for software developers. In the past, most applications for Windows ran
on a server or a desktop PC. Today, laptops, tablet devices, and smartphones are everywhere, and

6 part I Introduction to Visual Studio Development

often the same person owns three or four device types. Consumers need to move applications and
information seamlessly across these devices, and software developers need the tools that will allow
them to create applications that work on multiple platforms or that can be ported easily from one
device to the next.

The Visual Studio 2013 product team took the challenge of coding for diverse platforms seriously,
and they have created a software suite that allows developers to leverage their existing work while
also letting them target a variety of different application models. The following list highlights the
major development platforms and opportunities for Visual Basic programmers (some of which are
supported only by the full retail versions of Visual Studio 2013):

■■ Windows 8.1 Visual Basic developers can create Windows Store apps for Windows 8.1 that
run on a wide range of devices, including desktop PCs, laptops, and Microsoft Surface tablets.
(Note: To create new Windows Store apps for Windows 8, you need to use Microsoft Visual
Studio 2012.)

■■ Windows 8, Windows 7, and Windows Server Visual Basic developers can create desktop
applications for earlier versions of Windows and distribute them in a variety of ways. You can
create desktop applications using the Windows Forms (“Win forms”) model or the Windows
Presentation Foundation (WPF) model.

■■ Windows Phone 8 Using Visual Studio 2013, Visual Basic programmers can create appli-
cations that run on the Windows Phone 8 platform and take advantage of its unique fea-
tures. You will learn to write mobile phone apps for Windows Phone devices in Chapter
20, “Introduction to Windows Phone 8 development,” and Chapter 21, “Creating your first
Windows Phone 8 application.”

■■ Web development Developers can use Visual Basic, HTML5, CSS3, or JavaScript to create appli-
cations that will run on the web and look great in a variety of browsers. A technology known as
ASP.NET allows Visual Basic programmers to build websites, web applications, and web services
quickly without knowing all the details about how the information will be stored on the web. The
full list of options is explored in Chapter 19, “Visual Studio web development with ASP.NET.”

■■ Console applications and device drivers Visual Basic programmers can write applications
that run in command-line mode, which is sometimes called the Windows text console or DOS
window. While console apps primarily handle “behind the scenes” calculations, they can also
use libraries in the .NET Framework. I describe console programming in Chapter 10.

■■ Office applications Visual Basic programmers can still build macros and other tools that
enhance the functionality of Microsoft Office applications, such as Excel, Word, Access, and
PowerPoint.

■■ Xbox 360 Visual Basic programmers can write games for the Xbox using Visual Studio and
Microsoft XNA Game Studio (version 4.0 and later).

■■ Windows Azure applications for web servers and the cloud Visual Basic is powerful
enough to write applications that will be used on sophisticated web servers, distributed data
centers, and a version of Windows designed for cloud computing known as Windows Azure.

 CHAPTER 1 Visual Basic 2013 development opportunities and the Windows Store 7

This is an amazing list of application types! Although this list might seem daunting at first, the
good news is that the fundamental Visual Basic programming skills that you will explore here remain
the same from platform to platform, and there are numerous tools and techniques that help you to
port work easily between them. This book provides a solid introduction to many of the core skills that
you will use, and especially the new tools provided by Visual Studio 2013 to help you develop your
solution for Windows 8.1, the Windows desktop, and Windows Phone 8. However, after you master
the core Visual Basic programming skills, you can move on to specific platforms by acquiring materi-
als specifically related to those markets.

taking a multiplatform approach to learning Visual Basic
As you have probably discovered by now, applications for Windows 8.1 are often called Windows
Store apps. Yes, the connection between Windows 8.1 and the Windows Store is that direct. However,
Microsoft understands that not all developers are prepared to write applications only for Windows 8.1
because developers still need to support earlier versions of Windows, and many developers are
designing apps for web browsers, which must be run on a variety of platforms. For this reason, I am
describing Visual Basic programming techniques for a wide range of programming platforms in this
book. You will learn how to create Windows Store apps, Windows desktop apps, console apps, Web
apps, and Windows Phone apps.

In some cases, I will discuss Visual Basic programming techniques related to a specific platform in
a chapter, such as Chapter 3, “Creating your first Windows Store application.” In other cases, I move
back and forth between the platforms, showing how the Visual Basic language, or Visual Studio
features related to different platforms, might be adapted to unique situations. An example of this
approach is Chapter 14, “Using arrays, collections, and generics to manage data,” in which I provide
data management instruction using examples from both the Windows Store and the Windows desk-
top (Windows Forms) platforms.

I have taken this comprehensive approach in Microsoft Visual Basic 2013 Step by Step because
Visual Studio 2013 Professional has been designed to support all of these application types. The
current reality is that Visual Basic programming is a multiplatform endeavor, and intermediate Visual
Basic programmers need exposure to many environments as they expand and enhance their develop-
ment skills. At the same time, Windows Store programming is quite new, so I spend a little more time
exploring this platform than the others.

8 part I Introduction to Visual Studio Development

Evaluating the Windows Store

Because the Windows Store provides a new and potentially profitable way of selling and distributing apps
to a wide audience, I want to begin this book with a description of what the Windows Store is and how you
can use it to reach potential customers. In addition to providing a strong business incentive to developing
Windows Store apps, I want you to become familiar with the technical requirements of the Windows Store
before you begin this type of development so that you know what you will need to do before you get too
far along in a big Windows Store project. Microsoft recommends this “up-front education” too, because
teams that are creating apps for the Windows Store can be most productive when they know all the certi-
fication requirements in advance.

What is the Windows Store?
The Windows Store is an electronic marketplace that allows consumers to search for and acquire
applications for Windows. The Windows Store is designed to distribute apps for Windows 8 and
Windows 8.1, much like Apple’s Mac App Store allows consumers to download Mac software, and the
Windows Phone Store allows consumers to download products for devices running Windows Phone 8.

Note The Windows Phone Store is described in detail in Chapter 20.

The Windows Store allows developers to reach a global marketplace in ways that have been dif-
ficult or impossible in the past. Through the Windows Store, Windows-based apps can be monetized,
either by charging for an application or by including advertising in the application. Programs down-
loaded from the Windows Store are certified and ready to run; after you meet the requirements for
preparing an app for the marketplace, the details about downloading and deploying the application
are handled by the Store.

Throughout this book, you will learn how to create apps to run on Windows 8.1 by using Visual
Basic and Visual Studio 2013. At this point, you just need to learn how products are bought and sold
in the Windows Store, and to review a Windows Store checklist that identifies which features are nec-
essary for certification and distribution to the global marketplace.

 CHAPTER 1 Visual Basic 2013 development opportunities and the Windows Store 9

accessing the Windows Store
If you are running Windows 8.1 on your computer, you will see a Windows Store tile on the Windows
Start page, which is the gateway to accessing the Windows Store. If you are not currently running
Windows 8.1, you can learn about the Windows Store at http://www.windowsstore.com/, but you won’t
be able to access the Windows Store itself, because it is designed for use only within Windows 8.1.

The following illustration shows what the Windows Store looks like when you first access it.
Because the list of featured products is always changing, your screen will look different.

http://www.windowsstore.com/

10 part I Introduction to Visual Studio Development

If you right-click in the Windows Store, you'll see a navigation pane that allows you to browse for
the top paid and the top new Windows Store apps. In addition, you'll see useful product categories,
such as Games, Social, Entertainment, Photo, Music & Video, Sports, and Books & Reference. When
you select a category and an item, you’ll see an app listing page similar to the following screen:

The app listing page is the place where software vendors get a chance to promote their products
and describe app benefits. It is tremendously important to present your app in the best possible light
here. The application name, description, feature list, age rating, price, and screen shots are all signifi-
cant factors in making a good impression on your audience. As people purchase or download your
app, the rating system (based on five possible stars for the highest level of customer satisfaction) is
also an important factor in drawing people to your app.

Installing an app from the Windows Store is extremely simple; you just click the Install button, and
within moments, the app will be deployed on your Start page and available for use. A reliable Internet
connection is required to download the app and (often) to feed the app data as the program runs.

Sales information and price tiers
Windows-based apps can be distributed free via the Windows Store, or they can be sold for a price.
A setting called a price tier sets the fee for the app that you plan to sell. You can set the price tier
that you like; tiers start at 1.49 USD and move up in increments of 0.50 USD to 4.99 USD, with higher
product prices available.

 CHAPTER 1 Visual Basic 2013 development opportunities and the Windows Store 11

If you plan to sell apps via the Windows Store, it is important to understand a little about how that
process might work, even before you begin development. For the first 25,000 USD of an app’s sales,
you will receive 70% of the revenues that Microsoft receives for the product. If and when an applica-
tion receives more than 25,000 USD in sales, you will receive 80% of the revenues over 25,000 USD.
Keep in mind that your product will be sold internationally, and in some countries, the amount that
Microsoft receives will be reduced to account for taxes required by local laws.

It is also required that you register to be a Windows Store developer before you can sell products
through Microsoft’s new electronic marketplace. The initial annual cost for a developer account in the
United States was 49 USD for an individual and 99 USD for a company. You will also need to complete
some registration paperwork containing contact information and other details.

Or your application could be free…
Of course, it is not necessary that you sell your application. You can also offer it as a free download to
users all over the world. This might be useful if you want to provide general information or a public
service or if you want to draw attention to your company or make its products or services more usable.
For example, you might want to create a Windows Store app that presents the menu and other services
provided by a restaurant, or publish news highlights and photos from an information service.

Within these free applications, you could then decide to use online advertising tools to generate
revenue, or you could simply distribute information and know that you had fostered communication
about your product throughout the world. The Windows Store has a special marketing category for
free apps, as shown in the following illustration:

12 part I Introduction to Visual Studio Development

Whether you sell or distribute your app for free is up to you and the needs of your business and
your customers!

planning ahead for certification
Before you begin serious development on your project, Microsoft recommends that you review the
certification requirements carefully for Windows Store apps so that you aren’t surprised by the neces-
sary steps. For the most part, these steps are simply good development practices that will make your
programs robust and high quality. Microsoft is enforcing high standards so that customers come to
trust the Windows Store and all of the software distributed through it. We all have a lot riding on the
success of the Windows Store.

The Visual Studio Professional IDE contains a Store submenu on the Project menu, with eight com-
mands pertaining to the Windows Store, as shown in the following illustration:

Before you begin serious development on a project that you intend to submit to the Windows
Store, you should run the first three commands on the Windows Store submenu. The Open Developer
Account command will get you signed up with Microsoft as an individual or a company. This enables
the submission process and allows you to get more information. The Reserve App Name command
lets you reserve a name for your application within the store. You want to do this before you get too
far along (and then learn that you need to change the name). The Acquire Developer License com-
mand lets you get a temporary developer license, which you might have already done during your
work in Visual Studio.

A helpful blog for developers preparing for the Windows Store is available at http://blogs.win-
dows.com/windows/b/appbuilder/. Here you’ll find Microsoft employees and other industry experts
explaining key application concepts and answering pertinent questions. For example, in addition
to the Windows Store checklist shown in Table 1-1 in this chapter, you’ll need to fill out a complete
package manifest for your project and practice other safe programming practices. You can also find
useful information in the MSDN article “Take your app to market” at http://msdn.microsoft.com/en-us/
library/windows/apps/br230836.aspx.

Windows Store requirements checklist
The formal certification process begins when you upload your app to the Windows Store. Table 1-1
contains a checklist recommended by Microsoft for developers who are creating apps for the Store.
Most of these items are required for certification and will be evaluated when you register with
Microsoft and fill out the required submission pages online. The certification requirements can be

http://blogs.windows.com/windows/b/appbuilder/
http://blogs.windows.com/windows/b/appbuilder/
http://msdn.microsoft.com/en-us/library/windows/apps/br230836.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/br230836.aspx

 CHAPTER 1 Visual Basic 2013 development opportunities and the Windows Store 13

updated periodically, but this checklist will help you get started. The point is that you need to do
some preparation before you get online and submit your app for certification. You should have the
necessary information ready, and be sure that it has been proofread carefully.

TABLE 1-1 Windows Store submission checklist

Submission page Field name Description

Name App Name Provide a name for your app that is 256
characters or less. Pick a name that will
capture your customers’ attention. It is best
to keep this name short.

Selling Details Price Tier Prepare to specify a selling price for your
app (or set the price to “free”).

Free Trial Period Allow your customer to download the app
for a free trial period. If the customer does
not buy it in the set period of time, it will
stop working.

Countries/Regions Identify the market for your product.

Release Date Set the app’s release date.

Category Assign a category for your app so that
customers can find it in the Windows Store.
There is a helpful list of predefined catego-
ries to choose from.

Accessible App If your app has been designed to meet
Microsoft’s accessibility guidelines, indicate
that here.

Minimum DirectX Feature Level Indicate the video and hardware require-
ments for your application.

Minimum System RAM Indicate how much RAM your app requires.
You might want to double-check the basic
system requirements for the devices that
your app will run on.

Advanced Features In-App Offers Provide information about products that
users can purchase from within your app,
including what the customer must pay and
how long the purchased feature can be
used.

Ratings Age Rating Specify an appropriate age rating for your
app, using the levels provided.

Rating Certificates If you are selling a game, you might need
to provide a rating certificate from a ratings
board, depending on where you plan to sell
your app.

Cryptography Question 1 Indicate whether your app makes use of
cryptography or encryption.

Question 2 Verify that any use of cryptography is
within the allowable limits imposed by
the Bureau of Industry and Security in the
United States Department of Commerce.

Packages Package Upload Control Provide the path to your app’s completed
package.

14 part I Introduction to Visual Studio Development

Submission page Field name Description

Description Description Provide clear and concise marketing copy
that describes your application, its features,
and its benefits. Review this information
carefully before posting. It must be 10,000
characters or less.

App Features (Optional) Provide up to 20 features of your
app. (Each feature must be 200 characters
or fewer.)

Keywords (Optional) Provide up to seven concise key-
words describing your app.

Description of Update Provide a description of how this new
version of your app updates the previous
version. (Leave blank for the first release of
your app.)

Copyright and Trademark Info Provide a brief copyright notice, 200 char-
acters or fewer.

Additional License Items (Optional) Provide 10,000 characters or
fewer.

Screenshots Up to 8 quality screen shots of your app as
it is running. Each can have a description
of up to 200 words. The minimum size of
the image must be 1366 × 766 pixels. You
can capture these screens using the Store |
Capture Screenshots command in Visual
Studio.

Promotional Images (Optional) Provide other promotional images
for your app (up to four).

Recommended Hardware (Optional) Provide up to 11 notes about the
hardware requirements for your app.

App Website Provide the website URL for your product.

Support Contact Provide a contact URL for customers so
that they can get support or ask additional
questions. Prepare to be very responsive to
customer questions and feedback.

Privacy Policy Prepare an appropriate statement about
your privacy policy regarding data col-
lected about users.

In-App Offer Description Provide information about products that
users can purchase from within your app,
including what the customer must pay
and how long the purchased feature can
be used. (This field was indicated above as
well. Use the same information.)

Notes to Testers Notes Give the evaluators at Microsoft additional
information about your app so that they
can test its functionality. For example,
describe hidden features or provide user
name and password information if needed.

 CHAPTER 1 Visual Basic 2013 development opportunities and the Windows Store 15

It’s all in the details
The value of the preceding checklist becomes apparent when you look again at the content for
Windows Store apps within the Windows Store. The more you know about your customers and your
product’s central features before you get started, the easier it will be to make design and layout deci-
sions as you create your application. In the following screen illustration, notice how important the
ratings, description, and features categories are for the featured app, as well as the value of the screen
shot that visually describes the product.

The Details page (not shown, but accessible via the Details link) presents additional information,
including release notes, supported processors, supported languages, and application permissions. The
Reviews page (also not shown) contains comments from actual customers.

Now that you have reviewed the basic marketing and distribution mechanisms for apps in the
Windows Store, it is time to get started building Visual Basic apps in Visual Studio. Although many of
the apps that you will create in this book will be demonstration programs designed to teach discrete
elements of the Visual Basic programming language, you should always keep an eye on the end-goal
of your learning—creating software that other people can use.

16 part I Introduction to Visual Studio Development

Summary

Each chapter in this book concludes with a Summary section that offers a review of what the chapter
has presented. You can use these sections to quickly recap what you have learned in each chapter
before you move on to the one that follows.

This chapter has introduced development opportunities for Visual Basic programmers, including
the many opportunities available to users of Visual Studio 2013. You’ve learned about the applica-
tion types that you can create with Visual Studio 2013 and about the specific tools and platforms that
are described by this book. You’ve also learned about the Windows Store, an incredible distribution
point and marketing opportunity for software developers who want to sell or freely distribute their
products. You’ve learned how the Windows Store operates and about some of the requirements you’ll
need to satisfy to distribute apps for Windows 8.1 via the Windows Store. Although the process will
require some up-front planning, as well as technical and marketing expertise, the upside is significant.
The Windows Store has the potential to reach millions of customers worldwide.

In Chapter 2, “The Visual Studio Integrated Development Environment,” you’ll explore the Visual
Studio 2013 IDE, including how to run and test Visual Basic programs, how to use the development
tools in the IDE, and how to adjust important compiler settings.

 17

C H A P T E R 2

the Visual Studio Integrated
Development environment

after completing this chapter, you will be able to

■■ Use the Visual Studio 2013 Integrated Development Environment.

■■ Load and run Windows Store apps.

■■ Work with XAML markup in the Designer.

■■ Use the Properties windows to change property settings.

■■ Organize Visual Studio programming windows and tools.

■■ Configure the IDE for step-by-step exercises.

This chapter gives you the skills you need to get up and running with the Visual Studio 2013
Integrated Development Environment (IDE)—the place where you will write Microsoft Visual Basic

programs. My assumption is that you have written programs before in some earlier version of Visual
Basic and that you need only a refresher on how the main IDE tools work. However, I plan to cover
some essential IDE skills here, including a few things about how Visual Studio 2013 works in relation
to XAML markup and Windows Store programming.

This chapter begins with a review of essential Visual Studio menu commands and programming pro-
cedures. You’ll open and run a simple Windows Store app named Music Trivia; you’ll change a property
setting; and you’ll practice moving, sizing, docking, and hiding tool windows. You’ll also learn how to
configure the IDE to match this book’s step-by-step instructions. This final exercise is especially impor-
tant, because the programming exercises that follow will rely on those specific settings.

Before you begin this chapter, you need to install Visual Studio 2013. For more information about
that process and the options available to you, see the Introduction and Chapter 1, “Visual Basic 2013
development opportunities and the Windows Store.”

Not enough beginning material here? Keep in mind that this is a book for programmers who have used
some version of Visual Basic or Visual Studio in the past. As a book in the Microsoft Press Developer
Step by Step series, this tutorial is designed to inform new-to-topic programmers and teach funda-
mental techniques and features. Although I do review essential techniques such as setting properties
and moving around tool windows, you’ll find a lot more introductory tips, tricks, and techniques in my
companion book Start Here! Learn Microsoft Visual Basic 2012 (Microsoft Press, 2012).

18 part I Introduction to Visual Studio Development

Getting started

To boot up Visual Studio and get working in the IDE, complete the following steps. Depending on the
edition of Visual Studio that you have, you will use slightly different commands and see slightly dif-
ferent things, but the differences will not be substantial. (In the screen shots that follow, you will see
Visual Studio 2013 Professional.)

Start Visual Studio 2013

1. On the Windows Start page, click Visual Studio 2013.

If this is the first time you are starting Visual Studio, the program will take a few moments to
configure the environment. You might be prompted to get a developer license for Windows,
which typically requires that you create a Windows Live account or enter existing account
information. At the time of this writing, developer licenses were free and valid for a month
before they needed to be renewed. You will likely encounter a similar registration scenario.

2. If you are prompted to identify your programming preferences, select Visual Basic
Development Settings, as shown in the following screen:

3. Click Start Visual Studio in the Choose Default Environment Settings dialog box.

When Visual Studio starts, you see the IDE on the screen with its familiar menus, tools, and
component windows. You also should see a Start page containing a set of tabs with links,
learning resources, news, and project options.

 CHAPTER 2 The Visual Studio Integrated Development Environment 19

The screen shown here offers a typical Visual Studio Professional setup. I captured the screen at a
resolution of 1024 × 768, which might be smaller than you are using on your computer, but I wanted
you to see the content as clearly as possible. In the e-book versions of this text, you will see the
images in color.

You have a number of display options when you work in Visual Studio 2013. For visual clarity, I
chose the Light color theme for my work, primarily because it produces the clearest screen illustra-
tions in a printed book. However, when you first open Visual Studio, you might see the Dark color
theme, which displays white text on a dark background. Although the Dark color theme is restful and
emphasizes the code and user interface elements of your program, you might want to change it if
matching my screens is important to you.

If you see the Dark color theme and want to change it, do so now by choosing the Options com-
mand on the Tools menu, click General in the Environment category, select Light in the Color Theme
drop-down list box, and click OK. This first screen illustration depicts the Light theme.

The Visual Studio development environment

In the Visual Studio IDE, you can open a new or existing Visual Studio project or you can explore the
many online resources available to you for Visual Basic programming. In the 2013 product, one of the
first new features that you might see is your login name in the upper-right corner of the IDE. By sign-
ing in to Visual Studio each time that you start the IDE, you can save your Visual Studio settings to the

20 part I Introduction to Visual Studio Development

cloud and have them move from machine to machine as you work on projects in different locations.
You’ll see my sign-in name in screens throughout the book.

Right now, let’s open an existing Visual Studio project that I created for you, entitled Music Trivia,
which asks a trivia question about a musical instrument and then displays an answer to the question
along with a digital photo of the instrument. All of the Windows Store apps that I create in this book
target the Windows 8.1 operating system. (The Windows Forms and console apps will run on any ver-
sion of Windows 7, Windows 8, or Windows 8.1.)

Note The following steps ask you to open and run a Windows Store app in the IDE. If you
haven’t downloaded this book’s sample files yet, you should do so now, because you’ll be
asked to open a specific program on your hard disk. The Introduction explains how to lo-
cate and download what you need.

Open an existing Visual Studio project

1. On the Start page, on the left side of the screen, click the Open Project link.

You’ll see the Open Project dialog box. (You can also display this dialog box by clicking the
Open Project command on the File menu or by pressing Ctrl+Shift+O.) As you probably know
by now, the Open Project dialog box is straightforward because it resembles the familiar Open
dialog box in many other Windows applications.

tip In the Open Project dialog box, you see a number of storage locations along
the left side of the window. The Projects folder under Microsoft Visual Studio 2013
is particularly useful. By default, Visual Studio saves your programming projects
in this Projects folder, giving each project its own subfolder. However, this book
uses a different Projects folder to organize your programming coursework, the My
Documents\Visual Basic 2013 SBS folder.

2. Browse to the My Documents\Visual Basic 2013 SBS folder on your hard disk.

This folder is the default location for the book’s extensive sample file collection, and you’ll find
the files there if you followed the instructions in “Code samples” in the Introduction. Again, if
you didn’t copy the sample files, close this dialog box and copy them now.

If you click the Chapter 02 folder, your Open Project dialog box will look like this. The number
“12” in the Music Trivia icon indicates that the project was created with the 12th version of
Visual Basic, or Visual Basic 2013.

 CHAPTER 2 The Visual Studio Integrated Development Environment 21

3. Open the Chapter 02\Music Trivia folder, and then double-click the Music Trivia solution file.
(If your system shows file name extensions, this file will end with .sln.)

4. Visual Studio loads the Music Trivia page, properties, and program code for the solution,
which is a Windows Store app designed for Windows 8.1. Solution Explorer, a tool window on
the right side of the screen, lists some of the files in the solution.

Visual Studio provides a special option named Always Show Solution to control several options
related to solutions within the IDE. The option’s check box is located on the Projects And Solutions
| General tab of the Options dialog box, which you open by clicking the Options command on the
Tools menu. If the check box is selected (the default position), a subfolder is created for each new
solution, placing the project and its files in a separate folder beneath the solution.

If you keep the default selection for Always Show Solution, a few options related to solutions
appear in the IDE, such as commands on the File menu and a solution entry in Solution Explorer. If
you like creating separate folders for solutions and seeing solution-related commands and settings, I
suggest that you keep the default (selected) option for this check box. You’ll learn more about these
options at the end of the chapter.

22 part I Introduction to Visual Studio Development

project and solution terminology
In Visual Studio, programs under development are typically called projects or solutions because
they contain many individual components, not just one file. Visual Basic 2013 programs include
a project file (.vbproj), a solution file (.sln), and several supporting files organized into various
subfolders. A Windows Store app will also have one or more markup files (.xaml) and an Assets
folder.

A project contains files and other information specific to a single programming undertaking.
A solution contains all the information for one or more projects. Solutions are therefore useful
mechanisms to manage multiple related projects. The samples included with this book typically
have a single project for each solution, so opening the project file (.vbproj) has the same effect
as opening the solution file (.sln). But for a multiproject solution, you will want to open the
solution file.

Important tools in the IDE

Take some time now to identify the programming tools and windows in the Visual Studio 2013 IDE.
If you’ve written Visual Basic programs before, you’ll recognize most of these programming tools.
Collectively, these features are the components that you use to construct, organize, and test your
Visual Basic programs. A few of the programming tools also help you learn more about the resources
on your system, including the larger world of databases and website connections available to you.

My assumption is that you’ve used Visual Studio, Word, and other Windows-based applications
enough to know quite a bit about menus, toolbars, the Help system, and familiar commands such as
New Project, Close Project, Start Debugging, and Save All. You can see the full list of toolbars at any
time by right-clicking any toolbar in the IDE.

The Help menu is especially useful in Visual Studio, and you can also access an extensive collection
of Visual Studio and Visual Basic programming resources online at http://msdn.microsoft.com/. You’ll
often be asked to reference online topics on the Microsoft Developer Network (MSDN) as you use this
book.

The following illustration shows some of the tools and windows in the Visual Studio Professional
IDE. Don’t worry that this illustration looks different from your current development environment
view. You’ll learn more about these elements (and how you adjust your views) as you work through
the chapter.

http://msdn.microsoft.com/

 CHAPTER 2 The Visual Studio Integrated Development Environment 23

The main tools visible in this Visual Studio IDE are the Designer, the Solution Explorer, the
Properties window, and the Extensible Application Markup Language (XAML) tab of the Code Editor.
You might also see more specialized tools such as the Toolbox, Document Outline window, Device
window, Data Sources window, Server Explorer, and Object Browser; alternatively, these tools might
appear as tabs within the IDE. Because no two developers’ preferences are exactly alike, it is difficult
to predict what you’ll see if your Visual Studio software has already been used. (What I show is essen-
tially the fresh-download, or out-of-the-box, view with the Designer displaying a sample application
in development.)

Note Note that from time to time, the menus in the IDE change based on what you are do-
ing in Visual Studio.

A new feature in Visual Studio 2013 is the Feedback button, which appears as a "thought bubble"
or smile icon at the top of the screen, to the left of the Quick Launch text box. You can use the
Feedback button to let Microsoft know about the features in Visual Studio that you like or do not like.
You can also use the button to access MSDN Forums and report a bug in the software.

24 part I Introduction to Visual Studio Development

If a tool isn’t visible and you want to see it, click the View menu and then select the tool. Because
the View menu has expanded steadily over the years, Microsoft has moved some of the less fre-
quently used View tools to a submenu called Other Windows. Check there if you don’t see what you
need.

A few new Visual Studio 2013 features that you can see now include more colorful icons in the
toolbars and Solution Explorer (folder icons are now yellow), and the scroll bar in the Code Editor con-
tains a “caret position” indicator, which shows the relative position of the insertion point in the open
document.

Organizing tools in the IDe
Your IDE might not look exactly like the image I’ve shown because the exact size and shape of the
tools and windows in the IDE depend on how your particular development environment has been
configured. With Visual Studio, you can align and attach, or dock, windows to make visible only the
elements that you want see. You can also partially conceal tools as tabbed documents along the
edge of the development environment and then switch back and forth between documents quickly.
For example, if you click the Toolbox label on the left side of the screen, the Toolbox panel will fly
out, ready for use. If you click another tool or window in the IDE, the Toolbox panel will return to its
concealed position.

Your development environment will probably look best if you set your monitor and Windows
desktop settings so that they maximize your screen space, but even then, things can get a little
crowded. In fact, many professional Visual Studio programmers use two monitors to display different
views of the software.

The purpose of all this tool complexity is to add many new and useful features to the IDE while
providing clever mechanisms for managing the clutter. These mechanisms include features such as
docking, autohiding, floating, and a few other window states that I’ll describe later. Visual Studio 2013
also hides rarely used IDE features until you begin to use them, which has also helped to clean up the
IDE workspace.

If you’re just writing your first Windows Store app with Visual Studio, the best way to deal with
feature overload is to hide the tools that you don’t plan to use often to make room for the impor-
tant ones. The crucial windows and tools for intermediate Visual Basic programming tasks—the ones
you’ll start using right away in this book—are the Designer window, the Properties window, Solution
Explorer, and the Toolbox. You won’t use the Document Outline, Server Explorer, Data Sources, Class
View, Object Browser, Device, or Debug windows until later in the book, so feel free to hide them by
clicking the Close button on the title bar of any window that you don’t want to see.

In the following exercises, you’ll review the behavior of the essential tools in the Visual Studio
IDE. You’ll also learn about XAML markup, the design language used to define the user interface in
Windows Store apps.

 CHAPTER 2 The Visual Studio Integrated Development Environment 25

the Designer and XaML markup
If you completed the previous exercise (“Open an existing Visual Studio project”), the Music Trivia
project is loaded in the Visual Studio development environment. However, the user interface, or page,
for the project might not yet be visible in Visual Studio. (More sophisticated projects might contain
several pages, but this first example program needs only one.) To make the page of the Music Trivia
project visible in the IDE, you display it by using Solution Explorer.

Note If you don’t currently have the Music Trivia project loaded, go back to and complete
the exercise in this chapter titled “Open an existing Visual Studio project.”

Display the Designer window

1. Locate the Solution Explorer window near the upper-right corner of the Visual Studio devel-
opment environment. If you don’t see Solution Explorer, click the View menu and then select
Solution Explorer to display it.

Note From here on in this book, you’ll sometimes see a shorter method for describ-
ing menu choices. For example, “Choose View | Solution Explorer” means “Click the
View menu and then select Solution Explorer.”

When the Music Trivia project is loaded, Solution Explorer looks like this:

26 part I Introduction to Visual Studio Development

Like most basic Windows Store applications, this Visual Basic solution contains an App.xaml
file that holds global project settings and resources; an Assets folder that contains an assort-
ment of logo files and a splash screen for the project; a certificate file containing temporaries
keys; a deployment package manifest, containing build and distribution settings for your file;
and one or more user interface windows, or pages, which you can identify because they have
the extension .xaml.

Near the top of Solution Explorer, the Music Trivia program is identified as a Windows 8.1
project. This means that it is designed for the Windows 8.1 platform and uses features within
the Windows 8.1 operating system.

In Visual Studio 2012, there was also a Common folder that was visible in Windows Store proj-
ects, containing common classes and XAML styles, but those items are now hidden from view.

2. Click the expansion arrow to the left of the MainPage.xaml file in the Solution Explorer window.

With the MainPage.xaml file expanded, Solution Explorer looks like this:

In this Windows Store project, the main page of the Music Trivia program is defined by the
MainPage.xaml file.

You can open MainPage.xaml in Design view so that you can examine and modify the user
interface with graphical design tools, or you can open the file in the Code Editor, where you
can modify the user interface with XAML, the user interface definition language designed for
Windows Store apps and other computer programs.

tip If you’ve created Windows Presentation Foundation (WPF) apps in an earlier ver-
sion of Visual Studio, this is the same XAML markup language (with some important
updates) that you might already have worked with to create the user interface for
Visual Basic applications. Essentially, Windows Store apps are a successor to WPF-
style apps.

 CHAPTER 2 The Visual Studio Integrated Development Environment 27

Below the MainPage.xaml file, you will see a second file, named MainPage.xaml.vb. This file is
also associated with the user interface of the Music Trivia project. MainPage.xaml.vb is called
a code-behind file because it contains a listing of the Visual Basic program code connected to
the user interface defined by MainPage.xaml. As you learn how to create Windows Store apps
using Visual Basic and Visual Studio, you’ll become very adept at customizing this file.

Solution Explorer is the gateway to working with the various files in your project—it is an
essential tool. When you double-click a file in Solution Explorer, it opens the file in an appro-
priate editor, if direct editing of the file is allowed.

3. Double-click the MainPage.xaml file in Solution Explorer to display the project’s user interface
in the Designer window, if it is not already visible. If necessary, use the vertical scroll bar to
adjust your view of the user interface.

The Music Trivia page is displayed in the Designer, as shown here:

Notice that a tab with the file name MainPage.xaml is visible near the top of the Designer win-
dow, along with additional tab names. You can click a tab at any time to display the contents
of the various open files.

As noted earlier, the MainPage.xaml file is the visual representation of the program’s user
interface. However, you can readily examine the XAML markup used to define the user
interface by double-clicking the XAML tab of the Code Editor at the bottom of the Designer
window.

Because you can’t see the entire user interface now, you might want to resize the Designer so
that you can see more of the program.

28 part I Introduction to Visual Studio Development

4. Move the pointer to the right edge of the Designer window (the outside edge of the scroll
bar) until the pointer changes to a double-headed arrow (the resizing pointer). Then drag the
window's edge to the right to enlarge the window.

The Designer window will get larger, and the Solution Explorer and Properties windows will
get smaller. Your screen will look something like this:

Now you’ll examine the XAML markup that defines the user interface elements that you are
looking at in the Designer.

5. Return the Designer to its original size, and then double-click the XAML tab to display the
XAML markup for the page in the Code Editor.

 CHAPTER 2 The Visual Studio Integrated Development Environment 29

6. Scroll to the top of the window to see the entire document.

You’ll see the following:

The XAML contents of MainPage.xaml appear in the Code Editor, and it is this structured
information that controls how Visual Studio and Windows will display the application’s user
interface and graphics. If you know some WPF or HTML, this should look somewhat familiar.
XAML contains markup—instructions whose primary purpose is to tell a program how to
display things on the screen. The XAML markup shown here is displayed between <Page> and
</Page> tags and is further indented to make the information readable. (Windows Phone
apps also use XAML markup to define the user interface.)

The first seven lines below <Page> define the resources used to create the user interface.
Below these lines, the <Grid> … </Grid> section defines the objects in the user interface.
This XAML content defines two TextBlock controls, one Image control, one TextBlock control,
and one Button control. If you look at the screen illustration of the Designer again, you can
see how many of these elements appear visually. (Two of them are currently hidden, so those
are not visible.) You can even see specific property settings for the objects being assigned
through individual property names (like HorizontalAlignment) and values (like Left).

30 part I Introduction to Visual Studio Development

You’ll learn a lot more about XAML markup in later chapters. For now, you should know that
the Designer window allows you to see both a preview of the user interface and the XAML
markup that defines the specific characteristics of objects that appear on the preview page.
Visual Studio programmers often want to see both panes of information side by side as they
work on a program. In fact, if you’ve built an HTML application in the past for the web, this
whole concept might seem a little familiar, because a number of web design tools also display
page layout at the top of the screen while showing HTML code at the bottom.

tip There are some handy buttons along the bottom of the Designer window and
Code Editor that allow you significant control over the split-screen behavior of these
elements. At the lower left of the Designer window are XAML and Design tabs, as
well as a handy Document Outline button that opens a separate window to display
the objects within the user interface organized by type. At the lower right of the
Designer window are Vertical Split, Horizontal Split, and Expand Pane/Collapse Pane
buttons, which control how the Designer window and Code Editor are arranged.
Expand Pane/Collapse Pane is especially useful; it is a toggle that allows you to view
the windows one at a time or side by side.

7. Click the Design tab to display the project’s main page in the Designer window again.

8. Click the Expand Pane button to display the XAML markup that renders the page in a window
below the Designer window.

Now you’ll try running this simple program within Visual Studio.

running and testing Windows Store apps
Music Trivia is a simple Windows Store app written in Visual Basic 2013. I created it to familiarize you
with the programming tools in Visual Studio. The page you see now has been customized with five
objects, and I’ve added three lines of program code to a code-behind file to make the program ask
a simple question and display the appropriate answer. You’ll learn more about creating objects like
these and adding Visual Basic code to a code-behind file in Chapter 3, “Creating your first Windows
Store application.” For now, try running the program in the Visual Studio IDE.

run the Music trivia program

1. Click the Start button (the right-facing arrow next to the words Local Machine) on the
Standard toolbar to run the Music Trivia program in Visual Studio.

tip You can also press F5 or click the Start Debugging command on the Debug
menu to run a program in the Visual Studio IDE.

 CHAPTER 2 The Visual Studio Integrated Development Environment 31

Visual Studio loads and compiles the project into an assembly, an EXE file that contains data
and code in a form that can be used by the computer. This particular assembly also contains
information that is useful for testing, or debugging, which is a fundamental part of the soft-
ware development process. If the compilation is successful, Visual Studio runs the program in
the IDE. (This is known as running the program on a local machine, as opposed to running on
a remote computer somewhere on the web or in a software simulator of some kind.)

While the program is running, an icon for the program appears on the Windows taskbar. After
a moment, you will see the Music Trivia user interface running as any application would under
Windows 8.1. (You might also see some numbers along the top edge of the screen that are
used for debugging purposes; I’ve removed these from the book’s screen shots for clarity.)

Otherwise, the program looks just like the preview version did within the Visual Studio
Designer:

Music Trivia now asks you a question: What Rock And Roll Instrument Is Often Played With
Sharp, Slapping Thumb Movements?

2. Click the Answer! button to reveal the solution to the question, and the program displays the
answer (The Bass Guitar) below the question. A photo of a bass player also appears on the
page.

32 part I Introduction to Visual Studio Development

3. Close the app by dragging the title bar (or top portion of the screen) to the bottom of the
screen (or however you normally terminate an app).

When you move the mouse cursor to the top edge of the screen, it changes to a hand, which
provides some visual feedback as you drag the title bar to the bottom of the screen to ter-
minate the program. After the application closes, you can press the Windows key or click the
Visual Studio program icon on the desktop to activate the IDE again.

The Music Trivia application might continue to run for a moment or two as the Visual Studio
IDE catches up with the terminate-program request that you just issued. (For example, you
might see the phrase Running in the Visual Studio title bar, which indicates that a program in
the IDE is still executing.) You can force an immediate stop to any running application in the
Visual Studio IDE by clicking the Stop Debugging button on the toolbar.

After the program has stopped running, you will notice a few changes in the IDE. For example,
you will likely see an Output window at the bottom of the IDE with information about how
the assemblies in the application were compiled and executed. This is the expected behavior
within Visual Studio after a program has been compiled and run. The Output window provides
a fairly detailed listing of what happened during compilation, a process that involves several
stages and the loading of a number of files and resources called libraries. This record of the
process is especially valuable when the compilation fails due to an unforeseen programming
mistake or error.

 CHAPTER 2 The Visual Studio Integrated Development Environment 33

4. After you’ve reviewed the content of the Output window, click its Close button to hide it.

You won’t read much more about the Output window in the early chapters of this book, but if
you encounter an inadvertent error as you write your own programs, you’ll find this tool use-
ful. Most of the time, you can simply close the window to allow more room for examining your
code.

Working with the Properties window

Like earlier versions of Visual Studio, Visual Studio 2013 has a Properties window in the IDE to allow
you to change the characteristics, or property settings, of one or more user interface elements on a
page. A property setting is a quality of one of the objects in your program, such as its position on the
screen, its size, the text displayed on it, and so on. For example, you can modify the text block object
that asks the question about musical instruments by specifying a different font or font size using
property settings.

The Properties window contains a list of the properties for the object that is currently selected in
the Designer window. For example, if a button object is selected in the Designer, the properties for
the object will be visible in the Properties window. The first property listed at the top of the Properties
window is the Name property, and you will use this property to name your objects if you plan to
customize them using Visual Basic code. (By default, all new XAML objects are unnamed.) Although
there are a lot of properties for each object on a page, Visual Studio assigns default values for most
of them, and you can quickly find the properties that you want to set by arranging them using the
Arrange By drop-down box at the top of the Properties window.

You can change property settings from the Properties window while you are working on a page,
you can modify a property setting by editing the XAML markup for a page, and you can add Visual
Basic code to a page’s code-behind file to instruct Windows to change one or more property settings
while a program is running.

As you’ll learn later, you can also customize the event handlers for objects on a page by using the
Event Handlers button (which looks like a lightning bolt) near the top of the Properties window. Event
handlers are custom Visual Basic routines that run when the user interacts with the objects on a page
by clicking, tapping, dragging, and other actions.

Use the following exercise to review how to set properties. You’ll modify the text in the button
object and change the font weight and style of the first text block object. (If you don’t need a prop-
erty setting review, skip ahead to the section “Organizing the programming tools.”)

Change properties

1. Click the Answer button on the page that is currently loaded in the Designer window.

To work with an object on a page, you must first select the object. When you select an object,
the property settings for the object are displayed in the Properties window.

34 part I Introduction to Visual Studio Development

2. Press F4 to display the Properties window, if it is not currently visible.

The Properties window might or might not be visible in Visual Studio, depending on how it
has been configured and used on your system. It usually appears below Solution Explorer on
the right side of the IDE.

You’ll see a window similar to the following:

The Properties window lists all the property settings for the selected button object, which I
named AnswerButton while creating the program. Properties are listed in nested groups, and
the default view displays the properties alphabetically by category. (Brush is first, Appearance
is second, Common is third, and so on.) When you expand the property groups, the property
names are generally listed on the left side, and the property values are listed on the right.
Some property settings, like Brush, are updated by selecting color values with a design tool, so
there are a variety of ways to set properties—not just entering text via the keyboard.

3. In the Common property group (containing the most typical properties for a button object),
see that the Content property is set to Answer!

Answer! is the text that currently appears on the page’s main button, and you can change it to
whatever you would like using the Properties window. Remove the exclamation point now to
practice changing a property.

4. Click after Answer! in the Content text box, remove the exclamation mark (!), and then press
Enter.

The Content property setting is changed to Answer in three places: within the Properties win-
dow, on the page in the Designer window, and within the XAML markup in the Code Editor.

 CHAPTER 2 The Visual Studio Integrated Development Environment 35

tip Instead of pressing the Enter key to change a property setting, you can simply
click another location in the Properties window. (For example, click in another text
box.) Just be careful not to inadvertently adjust another property setting by clicking
around.

Now you’ll change the font style of the text block object to remove the bold and italic. The
text block object currently contains the text Music Trivia.

5. Click the Music Trivia text block object on the page. A text block object is an excellent way to
display descriptive text on a page.

6. In the Properties window, click the Text property group (not the Text property in the Common
group that is currently visible).

7. Click the Bold button to remove the bold formatting.

8. Click the Italic button to remove the italic formatting.

Visual Studio records your changes and adjusts the property settings accordingly. Your screen
should look like this:

36 part I Introduction to Visual Studio Development

You’ve just updated three properties, and the process is very similar to earlier versions of Visual
Studio, although in this case you are adjusting XAML properties related to a Windows Store app. Keep
this fundamental skill in mind—you’ll have numerous font, color, and style options to choose from as
you complete this book.

Objects and properties: a terminology review
Here are some things to keep in mind as you work with objects and properties in a Visual Basic
program. First, remember that each user interface element in a program (including the page
itself) has a set of definable properties. You can set properties at design time by using the
Properties window or by editing properties in the XAML markup for the page that defines one
part the program’s user interface.

Properties can also be set or referenced in Visual Basic code to make changes to program
elements while the application runs. (User interface elements that receive input often use
properties to receive information into the program.) Property settings are easy to grasp if you
view them in terms of something from everyday life. Consider the following bicycle analogy I’ve
used for several years to describe object and property terminology.

A bicycle is an object that you might use to ride from one place to another. Because a
bicycle is a physical object, it has several inherent characteristics. It has a brand name, a color,
gears, brakes, and wheels, and it’s built in a particular style. (It might be a road bike, a moun-
tain bike, or a tandem bike.) In Visual Basic terminology, these characteristics are properties of
the bicycle object.

Most of the bicycle’s properties were defined when the bicycle was built. But others (tires,
travel speed, and options such as reflectors and mirrors) are properties that change while
the bicycle is used. The bike might even have intangible (that is, invisible) properties, such as
manufacture date, current owner, value, or rental status. And to add a little more complexity, a
company or shop might own one bicycle or (the more likely scenario) an entire fleet of bicycles,
all with different properties. As you work with Visual Basic, you’ll set the properties of a variety
of objects, and you’ll organize them in very useful ways. Working with properties is a funda-
mental task in object-oriented programming and Visual Studio 2013.

Organizing the programming tools

To give you complete control over the shape and size of the elements in the IDE, Visual Studio lets
you move, resize, dock, and automatically hide when not needed (a feature called autohide) most of
the interface elements that you use to build programs. These skills are essential, because they will
be used over and over in this book. If you want to review how the tools are used, read the follow-
ing sections and practice the techniques. If you already feel up to speed, skip ahead to the section
“Configuring the IDE for step-by-step exercises.”

 CHAPTER 2 The Visual Studio Integrated Development Environment 37

Moving and docking tools
To move one of the tool windows in Visual Studio, simply click its title bar and drag the window to a
new location. If you position the window somewhere in the middle of the IDE and let go, it will float
over the surface of Visual Studio, unattached to other tool windows. If you drag a window along the
edge of another window, it attaches to that window, or docks itself.

Dockable windows are advantageous because they always remain visible. (They don’t become
hidden behind other windows.) If you want to see more of a docked window, simply drag one of its
borders to view more content.

If you want to completely close a window, click the Close button in the upper-right corner of the
window. You can always open the window again later by clicking the appropriate command on the
View menu.

autohide
If you want an option somewhere between docking and closing a window, you might try autohiding a
tool window at the side, top, or bottom of the Visual Studio IDE by clicking the tiny Auto Hide push-
pin button on the right side of the tool’s title bar. This action removes the window from the docked
position and places the title of the tool at the edge of the development environment on an unob-
trusive tab. When you autohide a window, you’ll notice that the tool window remains visible as long
as you keep the mouse pointer in the area of the window. When you click another part of the IDE (or
move the mouse away), the window slides out of view.

To restore a window that you have autohidden, click the tool tab at the edge of the development
environment. (You can recognize a window that is autohidden because the pushpin in its title bar is
pointing sideways.) By clicking the tool tab repeatedly at the edge of the IDE, you can use the tools
in what I call peekaboo mode—that is, to quickly display an autohidden window, click its tab, check or
set the information you need, and then click its tab again to make it disappear. If you ever need the
tool displayed permanently, click the Auto Hide pushpin button again so that the point of the pushpin
faces down, and the window then remains visible.

tabbed documents, manual docking, and docking guides
Another useful capability of Visual Studio is the ability to dock the Code Editor or the Designer win-
dows as tabbed documents. A tabbed document is a window with a tab handle that partially hides
behind other windows. This is the default way that document windows are displayed.

You can also manually dock programming tools such as the Properties window where you would
like by dragging the tool and using the docking guides that appear as tiny squares on the perimeter
of the IDE. A centrally located guide diamond will also help you manually dock tool windows by giv-
ing you a preview of where the tool will go.

38 part I Introduction to Visual Studio Development

The docking guides are changeable icons that appear on the surface of the IDE when you move
a window or tool from a docked position to a new location. Because the docking guides are associ-
ated with shaded, rectangular areas of the IDE, you can preview the results of your docking maneu-
ver before you actually make it. Your window orientation changes will not stick until you release the
mouse button.

Mastering the docking and autohiding techniques might take some practice when you are first
using them, so you might want to experiment a little.

Hiding tool windows
To hide a tool window, click the Auto Hide pushpin button on the right side of the title bar to conceal
the window beneath a tool tab on the edge of the IDE, and click it again to restore the window to its
docked position. You can also use the Auto Hide command on the Window menu (or right-click a title
bar and select Auto Hide) to autohide a tool window. Use the following procedure when you need to
use autohide.

Use the auto Hide feature

1. Locate the Auto Hide pushpin button on the title bar of the Properties window.

The pushpin is currently in the down, or pushed-in, position, meaning that the Properties
window is “pinned” open and autohide is disabled.

 CHAPTER 2 The Visual Studio Integrated Development Environment 39

2. Click the Auto Hide button on the Properties window title bar, and the Properties window
slides off the screen and is replaced by a small tab named Properties.

Note The benefit of enabling autohide is that the process frees up additional work
area in Visual Studio. But the hidden window is also quickly accessible.

3. Click the Properties tab, and the Properties window should immediately reappear.

4. Click the mouse elsewhere within the IDE, and the window disappears again.

5. Finally, display the Properties window again, and then click the pushpin button on the
Properties window title bar. The Properties window returns to its familiar docked position, and
you can use it without worrying about it sliding away.

Spend some time moving, resizing, docking, and autohiding tool windows in Visual Studio now to
create your version of the perfect work environment. As you work through this book, you’ll want to
adjust your window settings periodically to adapt your work area to the new tools you’re using.

Configuring the IDE for step-by-step exercises

Like the tool windows and other environment settings within the IDE, the compiler and personal
settings within Visual Studio 2013 are highly customizable. It is important to review a few of these
settings now so that your version of Visual Studio is configured in a way that is compatible with the
step-by-step programming exercises that follow. You will also learn how to customize Visual Studio
generally so that as you gain programming experience, you can set up Visual Studio in the way that is
most productive for you.

If you just installed Visual Studio, you are ready to start this book’s programming exercises. But if
your installation of Visual Studio has been on your machine for a while or if your computer is a shared
resource used by other programmers who might have modified the default settings (perhaps in a
college computer lab), complete the following steps to verify that your settings related to projects,
solutions, and the compiler match those that I use in the book.

adjust project and compiler settings

1. Click the Options command on the Tools menu to display the Options dialog box.

The Options dialog box is your window to many of the customizable settings within Visual
Studio. To assist you in finding the settings that you want to change, Visual Studio organizes
the settings by category.

2. Expand the Projects And Solutions category, and then click the General item within it.

This group of check boxes and options configures the Visual Studio project and solution settings.

40 part I Introduction to Visual Studio Development

3. So that your software matches the settings used in this book, adjust your settings to match
those shown in the following dialog box:

In particular, I recommend that you clear the check marks (if you see them) from the Always
Show Solution and Save New Projects When Created check boxes. The first option, when
selected, shows additional solution commands in the IDE, which is not necessary for solutions
that contain only one project (the situation for most programs in this book).

Clearing the second option causes Visual Studio to postpone saving your project until you
click the Save All command on the File menu and provide a location for saving the file. This
delayed-save feature allows you to create a test program, compile and debug the program,
and even run it without actually saving the project on disk—a useful feature when you want to
create a quick test program that you might want to discard instead of saving. (An equivalent
situation in word-processing terms is when you open a new Word document, enter an address
for a mailing label, print the address, and then exit Word without saving the file.) With this
setting cleared, the exercises in this book prompt you to save your projects after you create
them, although you can also save your projects in advance by selecting the Save New Projects
When Created check box.

You’ll also notice that I have browsed to the location of the book’s sample files (Visual Basic
2013 SBS) in the top text box on the form to indicate the default location for this book’s sam-
ple files. Most of the projects that you create will be stored in this folder, and they will have a
“My” prefix to distinguish them from the completed project I provide for you to examine. (Be
sure to change this path to the location of the book’s sample files on your computer.)

After you have adjusted these settings, you’re ready to check the Visual Basic compiler settings.

 CHAPTER 2 The Visual Studio Integrated Development Environment 41

4. Click the VB Defaults item in the expanded Projects And Solutions section.

Visual Studio displays a list of four compiler settings: Option Explicit, Option Strict, Option
Compare, and Option Infer. Your screen likely looks like this:

Although a detailed description of these settings is beyond the scope of this chapter, you’ll
want to verify that Option Explicit is set to On and Option Strict is set to Off—the default
settings for Visual Basic programming within Visual Studio. Option Explicit On is a setting that
requires you to declare a variable before using it in a program—a very good programming
practice that I want to encourage. Option Strict Off allows variables and objects of different
types to be combined under certain circumstances without generating a compiler error. (For
example, a number can be assigned to a text box object without error.) Although this is a
potentially worrisome programming practice, Option Strict Off is a useful setting for certain
types of demonstration programs.

Option Compare determines the comparison method when different text strings are com-
pared and sorted. For more information about comparing strings and sorting text, see
Chapter 14, “Using arrays, collections, and generics to manage data,” and Chapter 15,
“Innovative data management with LINQ.”

Option Infer was a new setting in Visual Basic 2008. When you set Option Strict to Off and
Option Infer to On, you can declare variables without explicitly stating a data type. Or rather, if
you make such a declaration, the Visual Basic compiler will infer (or take an educated guess
about) the data type based on the initial assignment you made for the variable. You’ll learn
more about the feature in Chapter 11, “Mastering data types, operators, and string processing.”

As a general rule, I recommend that you set Option Infer to Off to avoid unexpected results in
how variables are used in your programs. I have set Option Infer to Off in most of the sample
projects included in the sample files.

42 part I Introduction to Visual Studio Development

5. Feel free to examine additional settings in the Options dialog box related to your program-
ming environment and Visual Studio. When you’re finished, click OK to close the Options
dialog box.

You’re ready to exit Visual Studio and start programming.

Exiting Visual Studio

When you’re finished using Visual Studio for the day, save any projects that are open and close the
development environment.

exit Visual Studio

1. Save any changes you’ve made to your program by clicking the Save All button on the
Standard toolbar.

You’ve made a few changes to your project, so you should save your changes now.

2. On the File menu, click the Exit command.

The Visual Studio program closes. You are now ready to create a program from scratch in
Chapter 3.

Summary

This chapter introduced you to Visual Studio 2013 and the IDE that you use to open and run Visual
Basic programs. You can create applications for the various Windows platforms by opening new or
existing projects in Visual Studio and then adding to the project with the assorted programming
tools. In this chapter, you learned how to display the user interface of a Windows Store app, how to
examine XAML objects on the page, and how to change property settings.

As you toured the Visual Studio IDE, you reviewed how to open and run an application, how to
examine XAML markup in the Code Editor, and how to manipulate tool windows in the IDE. You
also learned how to customize settings in Visual Studio by using the Options command on the Tools
menu.

The Visual Studio IDE is a busy place, and I have reviewed a few essential IDE techniques so that
you will be able to complete the step-by-step programming exercises that follow. However, there is
much more to learn. If you would like more information, consult my companion tutorial for Visual
Basic programming entitled Start Here! Learn to Program in Visual Basic 2012 (Microsoft Press, 2012).

In the next chapter, you’ll create your first Windows Store application from scratch, a lucky number
slot machine game.

 43

C H A P T E R 3

Creating your first Windows Store
application

After completing this chapter, you will be able to

■■ Design the user interface for a Windows Store app.

■■ Use XAML controls in the Toolbox.

■■ Work with random numbers, digital photos, and sound effects.

■■ Write Visual Basic program code for an event handler.

■■ Create a splash screen for your Windows Store app.

■■ Save, test, and build a Windows Store app.

As you learned in Chapter 2, "The Visual Studio Integrated Development Environment," the
Microsoft Visual Studio 2013 IDE is ready to help you build your Visual Basic applications. In this

chapter, you'll dive right in and create a Visual Basic program for the Windows Store. As a complete
walkthrough exercise, this chapter describes the essential steps that you will complete each time that
you create a Visual Basic application in the Visual Studio 2013 IDE. In future chapters, you'll learn
more about the diversity of application types that you can create with Visual Studio, including apps
for the Windows Store, the Windows desktop, the console, the web, and Windows Phone. After you
learn the core Visual Basic programming skills, you'll find that all of these application types have much
in common.

In this chapter, you'll learn how to create a Las Vegas-style slot machine for the Windows Store.
You'll design the user interface for the program with XAML controls in the Toolbox, and you'll adjust
property settings and resize objects on the page with tools in the IDE. As part of the process, you'll
use the TextBlock control to display random numbers, the Image control to insert a digital photo-
graph, and the MediaElement control to play a sound effect when the user spins the number 7. To
create the core functionality of the Windows Store app, you'll write Visual Basic program code for an
event handler. Finally, you'll create a splash screen for the app, save and test the app in the IDE, and
build an executable file that can be launched from the Windows Start page.

44 part I Introduction to Visual Studio Development

Lucky Seven: A Visual Basic app for the Windows Store

The Windows Store app that you're going to construct is Lucky Seven, a game program that simulates
a lucky number slot machine. Lucky Seven has a simple user interface and can be created and com-
piled in just a few minutes by using Visual Studio 2013. Here's what your program will look like when
it's finished:

Programming step by step

The Lucky Seven user interface contains one button, three text block objects to display lucky num-
bers, a digital photo depicting cash winnings, and a text block containing the title "Lucky Seven." I
produced these elements by creating five visible objects on the Lucky Seven page and then changing
several properties for each object. I also added a MediaElement control to the page, which is not vis-
ible at runtime, to play a special sound effect when the user wins the game.

After I designed the basic user interface, I added program code for the Spin button to process the
user's button clicks and to display random numbers on the page. Finally, I created a splash screen for
the app and prepared it for distribution by using tools in the Visual Studio IDE.

To re-create Lucky Seven, you'll follow five essential programming steps that will be the same for
most of the projects that you create with Visual Studio. You'll design the user interface with Toolbox

 CHAPTER 3 Creating your first Windows Store application 45

controls, adjust important property settings, write Visual Basic code, prepare a splash screen and
other required elements, test the program, and build an executable file.

Designing the user interface

In this exercise, you'll start building Lucky Seven by first creating a new project and then using XAML
controls for Windows Store apps to construct the user interface.

Create a new project

1. Start Visual Studio 2013.

2. On the Visual Studio File menu, click New Project.

The New Project dialog box opens, as shown here:

The New Project dialog box provides access to the major template types available for creating
applications with Visual Studio. On the left side of the dialog box is a list of the many template
types available. Because the most recent language selection I made in this dialog box was
Visual Basic, the Visual Basic templates are currently visible, but other programming templates
and resources are also offered, including those for Visual C#, Visual C++, and JavaScript.

46 part I Introduction to Visual Studio Development

3. In the Visual Basic template group, click the Blank App (XAML) project if it is not already
selected.

When you use the Blank App template, Visual Studio will create a basic Windows Store app
project with default tiles, splash screen, manifest, and startup code, but no predefined con-
trols or layout. Note that other app types are available (which we'll get to later), including
Windows (that is, Windows desktop), Web, and Windows Phone.

4. In the Name text box, type My Lucky Seven.

Visual Studio assigns the name My Lucky Seven to your project. (You'll specify a folder loca-
tion for the project later.)

Important I'm recommending the "My" prefix here so that you don't confuse your
new app with the Lucky Seven project I've created for you on disk. However, you'll
see that I don't use the "My" prefix myself in the instructions, sample projects, or
screen shots in the book—I am leaving that for your use.

If the New Project dialog box contains Location and Solution Name text boxes, you need to
specify a folder location and solution name for your new programming project now. Refer
to Chapter 2, in the section "Configuring the IDE for step-by-step exercises," to learn how to
adjust when these text boxes appear. As I noted in Chapter 2, I will be asking you to specify
a location when you first save your project—a step that is typically near the end of each
exercise.

5. Click OK to create the new project in Visual Studio.

Visual Studio prepares the IDE for a new programming project and displays Visual Basic code
associated with the blank application template. Your screen will look like this:

 CHAPTER 3 Creating your first Windows Store application 47

What you see here is standard startup code for a Windows Store app created in Visual Studio
2013, and the code is stored in the file App.xaml.vb within the project. Although each project
contains an App.xaml file, your work in this chapter will begin with the app's user interface,
which is stored in the MainPage.xaml file.

Note The section beginning #If DEBUG Then near the center of this illustration dis-
plays debugging information on the screen when the Windows Store app is executed
in debugging mode, and it is designed for testing purposes. This code was present
in the final Visual Studio 2013 software release and displays information about how
long various tasks are taking during the execution of the Visual Studio app, including
the frame rate for the user interface thread and how long it took (in milliseconds) to
load the user interface. If you want to suppress the debugging information, remove
the code between the #If DEBUG and #End If statements. For more information
about the meaning of the debugging counters that appear at the top of the screen
during testing, see EnableFrameRateCounter on http://msdn.microsoft.com.

You'll display that user interface now in the Designer and enhance it with Toolbox controls.

http://msdn.microsoft.com

48 part I Introduction to Visual Studio Development

Navigate the Designer

1. Open Solution Explorer if it is not currently visible, and then double-click the file MainPage.xaml.

Visual Studio opens MainPage.xaml in a Designer window and shows the upper-left corner of
the app's main page. Below this page, you'll see the Code Editor with several lines of XAML
markup associated with the user interface page in the Designer. As you add controls to the
app page in the Designer, the Code Editor reflects the changes by displaying the XAML state-
ments that will create the user interface. Your screen should look like this:

Each time that you create a Windows Store app with Visual Basic and Visual Studio, you'll
use Toolbox controls and XAML markup to design the user interface. This technique will be
new to Visual Basic programmers who have primarily created Windows applications by using
the technology known as Windows Forms. (You will have used the Toolbox but not XAML
markup.) However, XAML will be somewhat familiar to programmers who have created
Windows applications using Windows Presentation Foundation (WPF) or Windows Phone.

Now let's review how the Designer works.

2. Click the scroll box in the Designer's vertical scroll bar, and drag it down.

When you drag a scroll box in the Designer window, you can see more of the user interface
you are working on.

 CHAPTER 3 Creating your first Windows Store application 49

3. Click the scroll box in the Designer's horizontal scroll bar, and drag it right. (Likewise, when
you drag a horizontal scroll box, you can see hidden parts of the user interface.)

Near the lower-left corner of the Designer, you'll see a Zoom tool, which allows you to zoom
in on the current application page (to see more detail) or zoom out (to see more of the page).
The current value of the Zoom tool is 67%. You can select a different value by clicking the
Zoom tool's drop-down button.

4. Click the Zoom drop-down button, and then click Fit All.

The entire application page now fits within the Designer. Depending on your screen resolu-
tion and the amount of screen space you have designated for the other IDE tools, you'll see a
somewhat smaller version of the page.

tip If your mouse has a mouse wheel, you can move quickly from one zoom setting
to the next by holding down the Ctrl key and rotating the mouse wheel. This feature
works whenever the Designer is active.

It is important to be able to quickly view different parts of the application page in different
sizes while you build it. Sometimes you want to see the entire page to consider the layout of
controls or other elements, and sometimes you need to view portions of the page up close.
It's up to you to adjust the Designer window so that you can see the user interface clearly as
you work with it.

Now set the Designer to its full-size setting.

5. Click the Zoom drop-down button, and then click 100%.

6. Adjust the Designer's vertical and horizontal scroll bars so that you can see the upper-left
edge of the page.

Seeing the edge of the page will help you orient yourself to the application window that the
user sees.

Now you'll add a Toolbox control to the page.

Open the toolbox and use the TextBlock control

1. If the Toolbox is not currently visible, click the Toolbox tab or click the Toolbox command on
the View menu.

The Toolbox window contains a large collection of user interface controls that you can add to
your application. Because you are building a Windows Store app for Windows 8.1, the types
of controls that are displayed in the Toolbox are so-called XAML controls—that is, structured
elements that control the look and feel of an application and can be successfully organized on
a page by the XAML parser within Visual Studio.

50 part I Introduction to Visual Studio Development

There are also other collections of Toolbox controls for other types of applications (Windows
Forms controls, HTML controls for web applications, Windows Phone controls, and so on),
but you don't have to worry about that now—Visual Studio automatically loads the proper
controls into the Toolbox when you open a new solution.

Your screen should look like this:

For convenience, the Toolbox controls have been organized into several groups: Advertising,
Common XAML Controls (those controls that appear in many applications), and All XAML
Controls (a list of all the XAML controls for Windows Store apps that are configured for use
with Visual Studio).

Remember that the Toolbox window is like any other tool window in the Visual Studio IDE. You
can move it, resize it, or pin it as needed. You can choose to keep the Toolbox open while you
add controls to a new page (pinning it to the side of the IDE), or you can choose to use the
Toolbox window's autohide feature so that the Toolbox collapses after each control has been
selected.

2. Click the TextBlock control in the Toolbox, and move the mouse pointer to the Designer window.

The mouse pointer changes to crosshairs. The crosshairs are designed to help you draw the
rectangular shape of the TextBlock control on the page. You can also create a TextBlock with
the default size by double-clicking the control in the Toolbox.

 CHAPTER 3 Creating your first Windows Store application 51

3. Click and drag to create a large rectangle-sized text block object that fills the top-left corner
of the page.

When you release the mouse button, Visual Studio creates a XAML text block object. TextBlock
is designed to display text on your page and, in this case, can create a welcoming banner for
your Windows Store app. You can update the text stored in the TextBlock object on your page
by setting the Text property, either with the Properties window, XAML markup, or program
code.

4. In the Properties window, change the Text property of the text block object to Lucky Seven
and press Enter.

Visual Studio displays "Lucky Seven" in the Properties window and in the Designer window.
Now you'll increase the point size of the title and apply other formatting effects.

5. In the Properties window, in the Text category, click the Font Size text box, type 98, and press
Enter.

The Font Size text box offers a variety of font sizes up to 72, but in this case, you're typing a
larger number to create a big impact on the screen.

tip At any time, you can delete an object and start over again by selecting the ob-
ject on the page and then pressing Delete. Feel free to create and delete objects to
practice creating your user interface.

6. In the Properties window, in the Brush category, click the Foreground property, if it is not
already selected.

The Foreground property controls the color of the text in the text block.

7. Click the Solid Color Brush button.

The Solid Color Brush button is the second tile from the left near the top of the dialog box.
(This button might also be the default selection, but it will cause no harm if you click it again.)

When the Solid Color Brush button is selected, you'll see the Color Resources editor.

8. If you'd like more room to see the content of the Properties window, enlarge the window or
configure the tool as a floating window so that you can see the Color Resources editor clearly.

9. Near the bottom of the editor, select the number containing the pound (#) sign.

This eight-digit number is known as a hexadecimal color value—that is, a number expressed
in base-16 arithmetic that specifies color by using RGBA values. When you specify a new color
for text, you can specify individual values for red, green, and blue (R, G, and B), or you can use
a standardized name, such as Red, DarkRed, White, Black, Purple, Lime, or Aquamarine.

52 part I Introduction to Visual Studio Development

10. Type DarkRed and press Enter.

Note that after you press Enter in the Color Resources editor, Visual Studio converts "DarkRed"
to the hexadecimal value #FF8B0000, as shown in the following screen:

11. Return the Properties window to its docked position if you moved or enlarged it.

Now you'll add three TextBlock controls below the Lucky Seven banner to display the randomly
chosen numbers in the game. Each time that the user clicks Lucky Seven's Spin button, three new
numbers will appear in these text blocks. If one of the numbers is a 7, the user wins and a sound is
played.

add text blocks for the random numbers

1. Double-click the TextBlock control in the Toolbox.

Visual Studio creates a text block object on the page. In this case, the text block object is quite
small, but you can resize it.

2. In the Properties window, click the Text category, click the FontSize box, type 72, and then
press Enter.

Visual Studio expands the text block object to accommodate text in 72-point font.

 CHAPTER 3 Creating your first Windows Store application 53

3. In the Properties window, click the Common category, click the Text box, type 0, and press
Enter.

0 will be an initial value for the first lucky number in the program.

4. At the top of the Properties window, change the Name property of the text block object to
FirstNum.

It is not required that all objects be named in your user interface, but it is important to name
objects that will be referenced in program code. Because you'll be controlling the value of this
lucky number in a Visual Basic event handler, you'll give it the name FirstNum here.

5. Drag the FirstNum text block object below the "u" in Lucky Seven.

Your page should look something like this:

6. Double-click the TextBlock control in the Toolbox to create another text block object.

This object will hold the second lucky number on the page.

7. Using the Properties window, set the Name property of the object to SecondNum, set the
FontSize property to 72, and set the Text property to 0.

54 part I Introduction to Visual Studio Development

8. Move the new SecondNum object to the right of the FirstNum object, directly below the "y" in
Lucky Seven.

Now you'll create the third lucky number for the page.

9. Double-click the TextBlock control in the Toolbox to create the last text block object.

10. Using the Properties window, set the Name property of the object to ThirdNum, set FontSize
to 72, and set Text to 0.

11. Move the ThirdNum object to the right of the SecondNum object, directly below the first "e" in
Lucky Seven.

When you've finished, your four text block objects should look like those in this screen shot.
(You can move your objects if they don't look quite right.)

Now you'll add a button control to the page.

add a button control

1. Click the Button control in the Toolbox, and then move the mouse pointer over the application
page.

2. Drag the pointer down and to the right. Release the mouse button to complete the button.

 CHAPTER 3 Creating your first Windows Store application 55

3. In the Properties window, in the Common category, change the Content property to Spin and
press Enter.

Note that a button object's contents are set via the Content property, rather than Text (like a
text block object), because buttons can contain artwork and other data.

4. In the Properties window, change the button object's Name property to SpinButton.

5. In the Properties window, in the Text category, change the FontSize property to 24.

6. Resize the SpinButton object so that it is 81 pixels high and 95 pixels wide.

7. Move the button object so that it is to the right of the third lucky number on the page. Snap
lines will appear again as you move the object, and the top edge of the button will snap to the
top edge of the three numbers when aligned.

Your screen should look like this:

Now you'll add an image to the page to graphically display the payout you'll receive when you
draw a 7 and hit the jackpot. An Image control is designed to display bitmaps, icons, digital photos,
and other artwork—a major design feature of most Windows Store apps. One of the most common
uses for an Image control is to display a PNG or JPEG file.

56 part I Introduction to Visual Studio Development

add an image

1. Click the Image control in the Toolbox.

2. Using the control's drawing pointer, create a large rectangular box below the lucky numbers
and the Spin button on the page.

3. If necessary, adjust the Zoom setting in the Designer window so that you can see more of the
page in the Designer. For example, a Zoom setting of 50% might be useful.

It would be good if the image object covered most of the remaining area of the page below
the numbers and the Spin button. Sometimes it is useful to reduce the size of a page in the
Designer with the Zoom control to make these types of operations easier.

Now you'll add a suitable photo to the project by using Solution Explorer and the Assets
folder, a special container for resource files in your project.

4. If Solution Explorer is not visible now, open it by clicking Solution Explorer on the View menu.

As you've already learned, Solution Explorer provides access to most of the files in your
project, and prominently listed in Solution Explorer is the Assets folder, a container for your
project's logo, splash screen, and other files. You'll add a digital photo to the Assets folder in
the following step, which will make it available to your program.

5. Right-click the Assets folder in Solution Explorer to display a shortcut menu of useful Visual
Studio commands.

6. Point to the Add command, and then click Existing Item.

7. In the Add Existing Item dialog box, browse to the My Documents\Visual Basic 2013 SBS\
Chapter 03 folder and click Coins.jpg, a JPEG file containing coins from around the world—a
visual representation of winnings in the Lucky Seven app.

 CHAPTER 3 Creating your first Windows Store application 57

8. Click Add to add the photo to your project in the Assets folder.

Visual Studio inserts the file, and it appears now in Solution Explorer under Assets, as shown in
the following illustration:

When a file has been added to the Assets folder, it becomes part of the project you are work-
ing on, and it can be referenced via the Properties window. Most importantly, it becomes part
of the project when the project is compiled for distribution—there is no need to remember
where the file was originally located on your hard disk, because a copy will now travel with the
project.

9. Select the image object (if it is not already selected) so that its properties are visible in the
Properties windows.

10. In the Properties window, in the Common category, click the Source text box, and then click
Coins.jpg.

You might need to expand the Properties window a little to see the drop-down list box arrow
in the Source text box.

After the file has been selected, a photo of coins from around the world fills the image object
in the Designer.

58 part I Introduction to Visual Studio Development

11. Adjust the spacing of the image so that it takes up much of the left side of the page in the
Designer.

When you've finished, your page should look like this:

12. In the Properties window, change the Name property of the image object to CoinImage.

Naming the image object is an important step, because you'll be referring to this object in
Visual Basic code. Often you'll see me include the name of the control at the end of an object
name so that its object type is clear.

Now you'll add a sound effect to the program so that the game plays a sound when the user spins
a 7. You'll add this sound effect with the MediaElement control, which plays audio and video files in a
Windows Store app. The sound you'll play is stored in a short WAV file named ArcadeRiff, created by
Henry Halvorson.

 CHAPTER 3 Creating your first Windows Store application 59

play audio media with the MediaElement control

1. In the Toolbox, expand the All XAML Controls category and double-click the
MediaElement control.

Visual Studio places a new media player object in the upper-left corner of the page. Like other
new objects in the Designer, you can now move the object to a new location and customize it
with property settings. However, the MediaElement control is essentially a behind-the-scenes
tool; it is not visible to the user unless the control is displaying a video clip. For now, you can
leave the media element object where it is.

The Source property of the MediaElement control specifies the name of the media file that will
be loaded into the control for playback. Before you can assign this property, you need to add
a valid media file to the Assets folder, just as you did for the image control.

2. Right-click the Assets folder in Solution Explorer to display the shortcut menu.

3. Point to the Add command, and then click Existing Item.

4. In the Add Existing Item dialog box, browse to the My Documents\Visual Basic 2013 SBS\
Chapter 03 folder and click ArcadeRiff.wav.

5. Click Add to add the music file to your project in the Assets folder.

Visual Studio inserts the file, and it appears now in Solution Explorer under Assets.

Now you're ready to name the media element object and assign it a music asset by using the
Source property.

6. Click the media element object in the Designer window. (Zoom in on the Designer if neces-
sary—remember that the object is invisible but it can be selected. You can always find it by
clicking the MediaElement entry in the XAML tab of the Code Editor.)

7. In the Properties window, change the Name property to CoinSound.

8. Expand the Media category, scroll down to the Source property, and click the Source list box.

Your new media file (ArcadeRiff.wav) appears in the list.

Click the ArcadeRiff.wav file to link it to the CoinSound object.

Your screen will look like this (notice the entries in Solution Explorer and the Properties
window):

60 part I Introduction to Visual Studio Development

The Properties window exposes a few other important media element properties that you can
examine and adjust if desired.

For example, the AutoPlay check box is enabled by default, which directs the media control to
automatically play the specified media file when the page loads. Because you don't want the
sound to play until it is needed, disable that now.

9. Remove the check mark from the AutoPlay check box.

There are some other options you might notice now (but not adjust). The Position property
specifies the location within the media file where playback will begin; this option is very useful
if there is a specific place in the song or video where you want to start.

The IsLooping property is a Boolean value that allows you to run the media file over and over
again if you like. Finally, Volume allows you to set an initial volume level for the media play-
back, which you can adjust with property settings in an event handler while the program is
running.

 CHAPTER 3 Creating your first Windows Store application 61

Final property settings and adjustments

Your Lucky Seven page is almost complete. You just need to make a few final property settings, write
the Visual Basic code, and design a splash screen that runs when your project starts.

Before you begin these tasks, let's think a little more specifically about how the program will oper-
ate when it runs. The game starts when the user opens the program and clicks the Spin button. When
the Spin button is clicked, the app generates three random numbers and displays them in text block
objects on the page. If and when the player hits the jackpot (that is, when at least one 7 appears in
the text block objects), the object containing the photo of coins appears, and then the media element
control plays a "celebration" sound.

Although the flow of events is pretty straightforward, the program needs to continue operating
after the first "win." So, when the user clicks the Spin button, the coins image needs to disappear and
remain hidden until another 7 appears, at which point the image is displayed again and the sound
effect also run.

To get this behavior to work correctly, you need to find a mechanism to make the image object
visible and invisible when you want. That can be accomplished by setting the image object's Visibility
property, which is assigned Visible or Collapsed (invisible) values as needed. In fact, most objects in
a Windows Store app can be made visible or invisible if you set this property—it is a built-in tool to
control what appears on the screen. Give it a try here.

Set the Visibility property

1. Click the image object on the page.

2. In the Properties window, click the Appearance category, and then click the Visibility property.

3. In the drop-down list box that appears, click the Collapsed property.

The image object on the page disappears. Don't worry—this is the desired effect. The object
is not gone, it is just currently invisible. You'll make it reappear by using program code in an
event handler.

Now you'll adjust the background color for the page. The default color value for Windows Store
apps is Black, but a more colorful value can make the game more appealing. You can adjust this color
by selecting the Grid object on the page and adjusting values in the Brush category by using the
Properties window.

62 part I Introduction to Visual Studio Development

Set the page's background color

1. Select the Grid object by clicking the background page in the Designer (not one of the objects
that you've just added).

You can tell when you've selected the Grid object because its properties will fill the Properties
window.

As you'll learn in Chapter 7, "XAML markup step by step," each of the objects in a Windows
Store app is defined by XAML markup codes and data that can be entered or adjusted in the
Code Editor. The Grid object is the base layout element for a page, and all of the elements
on a page are nested within this Grid object. In addition to serving as a useful container for
objects, the Grid object also has settings that you can adjust, such as the background color
that appears for your app. You'll set this now.

2. Click the Brush category, click the Background property, and then click the Solid Color Brush
button.

3. Near the bottom of the Color Resources editor, select the number containing the pound (#)
sign, replace the contents with Green, and press Enter.

The alphanumeric value for green (#FF0080000) appears in the text box, and the background
color of the Grid object changes to green. Feel free to experiment with other color values if
you like.

OK—that's it for the user interface design walkthrough. Save your work now, before you write
the program code.

Save changes

1. Click the Save All command on the File menu to save all your additions to the Lucky Seven
project.

The Save All command saves everything in your project—the project file, the pages, the code-
behind files, the assets, the package manifest, and other related components in your applica-
tion. Because this is the first time that you have saved your project, the Save Project dialog
box opens, prompting you for the name and location of the project. (If your copy of Visual
Studio is configured to prompt you for a location when you first create your project, you won't
see the Save Project dialog box now—Visual Studio just saves your changes.)

2. Browse and select a location for your files. I recommend that you use the My Documents\
Visual Basic 2013 SBS\Chapter 03 folder (the location of the book's sample files), but the loca-
tion is up to you. Because you used the "My" prefix when you originally opened your project,
this version won't overwrite the practice file that I built for you on disk.

 CHAPTER 3 Creating your first Windows Store application 63

3. Clear the Create Directory For Solution check box.

When this check box is selected, it creates a second folder for your program's solution files,
which is not necessary for solutions that contain only one project (the situation for most pro-
grams in this book).

4. Click Save to save your files.

tip If you want to save just the item you are currently working on (the page, the
code module, or something else), you can use the Save command on the File menu.
If you want to save the current item with a different name, you can use the Save As
command.

Writing the code

Now you're ready to write the code for the Lucky Seven program. Because most of the objects you've
created already "know" how to work when the program runs, they're ready to receive input from the
user and process it. The inherent functionality of objects is one of the great strengths of Visual Studio
and Visual Basic—after objects are placed on a page and their properties are set, they're ready to run
without any additional programming.

However, the "meat" of the Lucky Seven game—the code that actually calculates random numbers,
displays them in boxes, and detects a jackpot—is still missing from the program. This computing logic
can be built into this Windows Store app only by using program statements—code that clearly spells
out what the program should do at each step of the way. Because the Spin button drives the program,
you'll associate the code for the game with an event handler designed for that button.

In the following steps, you'll enter the Visual Basic code for Lucky Seven in the Code Editor.

Use the Code editor

1. In the Visual Studio Designer, click the SpinButton object.

2. Open the Properties window, and close the Brush category.

3. Near the top of the Properties window and to the right of the Name property and the
Properties button, click the Event Handler button (a square button displaying a lightning bolt
icon).

A collection of actions or events that a button object can respond to fills the Properties win-
dow. Typical events that a button might recognize include Click (a mouse click), DragOver (an
object being dragged over a button), Tapped (a button being touched by a finger), and Drop
(an object being dragged over and dropped on a button).

64 part I Introduction to Visual Studio Development

Because Visual Basic is, at its core, an event-driven programming language, much of what you
do as a software developer is create user interfaces that respond to various types of input
from the user, and then you write event handlers that manage the input. Most of the time,
you will need to write event handlers only for a few events associated with the objects in your
programs. (However, the list of events is quite comprehensive to give you many options.)

To create an event handler for a particular event, you double-click the text box next to the
event in the Properties window. Because you want to generate three random numbers each
time that the user clicks the Spin button in your program, you'll write an event handler for the
button's Click event.

4. Double-click the text box next to the Click event in the Properties window.

Visual Studio inserts an event handler named SpinButton_Click in the Click text box, and opens
the MainPage.xaml.vb code-behind file in the Code Editor. Your screen should look like this:

Inside the Code Editor are program statements associated with the MainPage template that
you opened when you started this project. This is Visual Basic program code, and you might
notice right away that some of the code is organized into concise units, known as procedures.
Near the bottom of the file is a new event handler procedure that you just created, called
SpinButton_Click.

 CHAPTER 3 Creating your first Windows Store application 65

The Sub and End Sub keywords designate a procedure, and the keywords Protected and
Private indicate how the procedure will be used. You'll learn more about these keywords later.

When you double-clicked the Click text box in the Properties window, Visual Studio automati-
cally added the first and last lines of the SpinButton_Click event procedure, as the following
code shows. (Your event procedure will not wrap as this one does. In print, I need to respect
the book's margins.)

Private Sub SpinButton_Click(sender As Object, e As RoutedEventArgs) Handles SpinButton_
Click

End Sub

The body of a procedure fits between these lines and is executed whenever a user activates
the interface element associated with the procedure. In this case, the event is a mouse click,
but as you'll see later in the book, it could also be a different type of event. Programmers refer
to this sequence as "triggering" or "firing" an event.

tip You might also notice lines of text with green type in the Code Editor. In the
default settings, green type indicates that the text is a comment, or an explanatory
note written by the creator of the program, so that it might be better understood
or used by others. The Visual Basic compiler does not execute, or evaluate, program
comments.

5. Type the following program code, and press the Enter key after the last line:

Dim generator As New Random
CoinImage.Visibility = Windows.UI.Xaml.Visibility.Collapsed

FirstNum.Text = generator.Next(0, 9)
SecondNum.Text = generator.Next(0, 9)
ThirdNum.Text = generator.Next(0, 9)

If (FirstNum.Text = "7") Or (SecondNum.Text = "7") Or
 (ThirdNum.Text = "7") Then
 CoinImage.Visibility = Windows.UI.Xaml.Visibility.Visible
 CoinSound.Play()
End If

As you enter the program code, Visual Studio formats the text and displays different parts of
the code in color to help you identify the various elements. When you begin to type the name
of an object property, Visual Basic also displays the available properties for the object that
you're using in a list box, so you can click the property or keep typing to enter it yourself.

66 part I Introduction to Visual Studio Development

Your screen should now look like this:

Note If Visual Basic displays an additional error message, you might have misspelled
a program statement. Check the offending line against the text in this book, make
the necessary correction, and continue typing. (You can also delete a line and type it
again from scratch.)

In Visual Studio, program statements can be composed of keywords, properties, object
names, variables, numbers, special symbols, and other values. As you enter these items in the
Code Editor, Visual Studio uses a feature known as IntelliSense to help you write the code.
With IntelliSense, as Visual Studio recognizes language elements, it will automatically com-
plete many expressions.

6. Click the Save All button to save your changes.

 CHAPTER 3 Creating your first Windows Store application 67

A look at the SpinButton_Click event handler

The SpinButton_Click event handler is executed when the user clicks the Spin button on the page.
Essentially, the event handler performs four main tasks:

1. It declares a random number generator named generator in the program.

2. It hides the digital photo.

3. It creates three random numbers and displays them in text block objects.

4. It displays the Coins.jpg photo and plays a sound when the number 7 appears.

Let's look at each of these steps individually.

The random number generator is declared by this line of code:

Dim generator As New Random

You've probably declared and used variables before in programs. But notice the variable type
here—the generator is declared using the type Random, which has been specifically designed to
support the creation of so-called "pseudo-random" numbers—that is, numbers that don't follow a
particular pattern and appear in a specific range. You'll use random numbers often in this book, and
you'll learn much more about data types and conversion in Chapter 11, "Mastering data types, opera-
tors, and string processing."

Hiding the photo is accomplished by the following line:

CoinImage.Visibility = Windows.UI.Xaml.Visibility.Collapsed

As you learned earlier, the Visibility property determines whether or not an object on a page is vis-
ible. This specific syntax uses the objects in the .NET Framework to collapse (or hide) the photo of the
coins. (This line is designed to restore the program to a neutral state if a previous spin had displayed
the coins.)

The next three lines handle the random number computations. Does this concept sound strange?
You can actually make Visual Basic generate unpredictable numbers within specific guidelines—that
is, you can create random numbers for lottery contests, dice games, or other statistical patterns. The
generator instance's Next method in each line creates a random number between 0 and 9—just what
you need for this particular slot machine application.

FirstNum.Text = generator.Next(0, 9)
SecondNum.Text = generator.Next(0, 9)
ThirdNum.Text = generator.Next(0, 9)

The last group of statements in the program checks whether any of the random numbers is 7. If
one or more of them is, the program displays the graphical depiction of a payout and plays the sound
effect to announce the winnings.

68 part I Introduction to Visual Studio Development

If (FirstNum.Text = "7") Or (SecondNum.Text = "7") Or
 (ThirdNum.Text = "7") Then
 CoinImage.Visibility = Windows.UI.Xaml.Visibility.Visible
 CoinSound.Play()
End If

Each time the user clicks the Spin button, the SpinButton_Click event handler is executed, or called,
and the program statements in the handler are run again. However, if you click the Spin button many
times in rapid succession, you might miss one or more of the sound effects, because the media ele-
ment object can play only one sound effect at a time.

Running Windows Store apps

Congratulations! You're ready to run your first Windows Store app. To run a Visual Basic program
from the IDE, you can do any of the following:

■■ Click Start Debugging on the Debug menu.

■■ Click the Start Debugging button on the Standard toolbar. (You'll typically see "Local Machine"
next to this button, because you debug on the local computer by default.)

■■ Press F5.

Try running your Lucky Seven program now. If Visual Basic displays an error message, you might
have a typing mistake or two in your program code. Try to fix it by comparing the printed version in
this book with the one you typed, or load Lucky Seven from your hard disk and run it.

Note I assume that you have named your project My Lucky Seven, but the instructions and
screen shots below will show Lucky Seven because you might be running the sample proj-
ect that I created.

run the Lucky Seven program

1. Click the Start Debugging button on the Standard toolbar.

The Lucky Seven program compiles and runs. After a few seconds, the user interface appears,
just as you designed it.

2. Click the Spin button.

The program picks three random numbers and displays them in the labels on the page. When
a 7 appears, your screen will look like this:

 CHAPTER 3 Creating your first Windows Store application 69

The presence of a 7 also triggers the sound effect, which lasts a few seconds and sounds a bit
like an electronic slot machine. You win!

3. Click the Spin button 15 or 16 more times, watching the results of the spins in the number text
blocks.

About half the time you spin, you hit the jackpot—pretty easy odds. (The actual odds are
about 2.8 times out of 10; you're just lucky at first.) Later on, you might want to make the
game tougher by displaying the photo only when two or three 7s appear, or by creating a run-
ning total of winnings.

4. When you've finished experimenting with your new creation, close the Windows Store app.

The program stops, and the IDE reappears on your screen. Click the Stop Debugging button
on the toolbar to end the program. Now you'll add a splash screen to the project.

70 part I Introduction to Visual Studio Development

Creating a splash screen for your app

A splash screen is a transitional image that appears when your app first launches. Every Windows
Store app must have a splash screen, which consists of an image (or text) and a surrounding back-
ground color. The splash screen is stored in the Assets folder within Solution Explorer, and every new
Windows Store app has a basic splash screen that is created by default. You'll also see tile images in
the Assets folder, which you'll learn to customize in Chapter 9, "Exploring Windows 8.1 design features:
Command bar, flyout, tiles, and touch."

Although you can create a splash screen with Microsoft Paint or another third-party graphics
program, you can also create a simple splash screen within Visual Studio. Just remember that a splash
screen appears very briefly when you first launch your app. Accordingly, this is not the place to put
elaborate program instructions or copyright information. You'll want to avoid placing advertisements
or version information on a splash screen.

Instead, use the splash screen to offer a preview of the functionality of your app in some unique
way. Consider an image or photo that will be easily adapted to other countries and cultures (that is,
easily localizable) and that can be displayed effectively in different screen resolutions. Notice that
Portable Network Graphics (.png) format is used because this file type is capable of displaying alpha
transparency and 24-bit color images. When part of an image is formatted as transparent, the back-
ground color will be displayed behind it. (You'll see this in most splash screens and tiles in Windows
Store and Windows Phone apps.)

Create a Lucky Seven splash screen

1. In Solution Explorer, open the Assets folder, and then double-click the file SplashScreen.scale-
100.png.

2. This action opens the Image Editor Designer in Visual Studio, and loads the SplashScreen.
scale-100.png file into the editor. Your screen looks like this:

 CHAPTER 3 Creating your first Windows Store application 71

The Solution Explorer and Properties windows are still visible. However, the Image Editor is
active, and the design canvas is surrounded by graphics editing tools. The "X" shape in the
center of the canvas is simply the default image for the SplashScreen.scale-100.png file. This is
the image that you want to replace now.

3. Click the Selection tool in the upper-left corner of the Image Editor, select the entire "X"
shape, and press Delete.

You now have a blank canvas on which to create your splash screen image. The alpha checker-
board pattern that you see is a color scheme that allows you to more easily see the transpar-
ent portions of your image—that is, what you see displayed as the checkerboard now will be
replaced by the background when your splash screen is actually displayed on the screen.

4. Click the Ellipse tool on the left side of the Designer, and then create a circle shape in the
middle of the splash screen.

You can use the X- and Y-axis indicators in the lower-right corner of the screen to create your
circle if you like. You can also use the Selection tool to move your shape to the center of the
screen if you like.

72 part I Introduction to Visual Studio Development

Your Image Editor will look like this:

5. Use the Ellipse tool to add four or five smaller circles around the edge of the circle that you
have created.

Typical splash screens show simple geometric shapes like this. Consider using a simplified ver-
sion of your company logo.

Your simple splash screen now looks like this:

 CHAPTER 3 Creating your first Windows Store application 73

You could add additional effects to this splash screen, embellishing it with colors, images, text,
or animation. However, for this first walkthrough, you have something that will work just fine.

6. Click the Save All command on the File menu to save your changes.

7. Press F5 to run the project, and examine your splash screen.

Notice that the splash screen comes and goes in just a few moments. Did you notice the
ellipse shapes and the black background color?

8. Close the program, and then close the Image Editor Designer.

Now your project is complete—it is time to test and deploy the app by adding it to the Windows
Start page on your local computer. However, note that if this were a commercial Windows Store app
being prepared for distribution to other users via the Windows Store, you would now add additional
items to your app as described in Table 1-1. For more information, see Chapter 1, "Visual Basic 2013
development opportunities and the Windows Store."

74 part I Introduction to Visual Studio Development

Sample projects on disk
If you didn't build the My Lucky Seven project from scratch (or if you did build the project and
want to compare what you created to what I built for you as I wrote the chapter), take a mo-
ment to open and run the completed Lucky Seven project, which is located in the Visual Basic
2013 SBS\Chapter 03 folder on your hard disk (the default location for the practice files for this
chapter). If you need a refresher course on opening projects, see the detailed instructions in
Chapter 2.

This book is a step-by-step tutorial, so you will benefit most from building the projects on
your own and experimenting with them. But after you have completed the projects, it is often a
good idea to compare what you have with the practice file "solution" that I provide, especially if
you have unexpected results. To make this easy, I will give you the name of the solution files on
disk before you run the completed program in most of the step-by-step exercises.

After you have compared the My Lucky Seven project to the Lucky Seven solution files on
disk, reopen My Lucky Seven and prepare to compile it as an executable file. If you didn't cre-
ate My Lucky Seven, use my solution file to complete the exercise.

Building an executable file

Your last task in this chapter is to complete the development process and create an application for
Windows, or an executable file. Windows applications created with Visual Studio have the file name
extension .exe and can be run on any system that contains Windows and the necessary support files.
If you end up distributing your application via the Windows Store, the complete deployment pack-
age will be posted securely in the Store and made available to customers who would like to download
it. However, you can also deploy your application to individual computers running Windows directly
from within Visual Studio.

Because you just created a Windows Store app that targets the Windows 8.1 operating system, you
need to be running Windows 8.1 to run this particular program. You won't post the sample app to the
Windows Store yet, because it has not been registered or thoroughly tested. But you can deploy the
app on your own computer, which does not have as many registration requirements as the Windows
Store interface.

To assist in the testing and compilation process, Visual Studio allows you to create two types of
executable files for your Windows application project: a debug build and a release build.

 CHAPTER 3 Creating your first Windows Store application 75

Debug builds are created automatically by Visual Studio when you create and test your program.
They are stored in a folder called bin\Debug within your project folder. The debug executable file
contains debugging information that makes the program run slightly slower.

Release builds are optimized executable files stored in the bin\Release folder within your project.
To customize the settings for your release build, you click the ProjectName Properties command on
the Project menu, and then click the Compile tab, where you'll see a list of compilation options that
looks like the following screen. The Solution Configurations drop-down list box on the Standard
Visual Studio toolbar indicates whether the executable is a debug build or a release build.

The process of preparing an executable file for a specific computer is called deploying the application.
As noted, when you deploy an application with Visual Studio, the IDE handles the process of copying
all the executable and support files that you will need to register the program with the operating sys-
tem and run it. Visual Studio allows you to deploy applications locally (on the computer you are using)
or remotely (on a computer attached to the network or Internet).

In the following steps, you'll deploy a release build for the My Lucky Seven application locally and
create an application icon for the program on the Windows Start page.

76 part I Introduction to Visual Studio Development

Deploy a release build for the Lucky Seven app

1. Click the Solution Configurations drop-down list box on the Standard toolbar, and then click
the Release option. Visual Studio will prepare your project for a release build, with the debug-
ging information removed. The build output path is set to bin\Release\.

2. On the Build menu, click the Deploy Lucky Seven command.

The Build command creates a bin\Release folder in which to store your project (if the folder
doesn't already exist) and compiles the source code in your project. The Output window
appears to show you milestones in the assembly and deployment process. The result is an
executable file named Lucky Seven.exe, which Visual Studio registers with the operating sys-
tem on your computer.

Visual Studio deploys the application locally because Local Machine is currently selected on
the toolbar next to the Start button. This is the desired behavior here, but you can also deploy
applications on a remote machine (that is, a computer attached to yours via a network or the
Internet) by selecting the Remote Machine option. If you select this option, you'll be presented
with a dialog box asking for more information about the remote connection. Remember that
remote deploying is mostly designed for testing purposes. The best way to install completed
applications via the Internet is through the Windows Store.

When you deploy an application built for the Windows 8.1 user interface, Windows automati-
cally creates a new program icon for the application on the Start page. You can use this icon
to launch the program whenever you want to run it. Try running My Lucky Seven now from
the Start page on your computer.

3. Open the Windows Start page, and browse to the list of applications that are currently
installed.

4. There are two possible locations for your new app: the main Start page, or the secondary Start
page containing a longer list of app tiles. (This is where my Windows 8.1 system put the new
Lucky Seven program.)

 CHAPTER 3 Creating your first Windows Store application 77

Because you didn't create a colorful Start page tile for your app, the default (gray) tile is
shown. Your screen will look similar to this (note the Lucky Seven app in the second column):

5. Click the Lucky Seven application icon, and the Lucky Seven program will load and run in
Windows.

6. Test the application again, clicking Spin several times and building up a few wins. When you
are finished, close the app.

7. Return to Visual Studio, and close the Output window and the Lucky Seven properties page.
Note that you can view and change compilation options whenever you want—the properties
page is always available.

8. On the File menu, click Exit to close Visual Studio and the My Lucky Seven project.

9. Click Save if you are prompted to, and the Visual Studio IDE will close.

Congratulations on completing your first Windows Store app!

78 part I Introduction to Visual Studio Development

Summary

This chapter described how to create a Windows Store app named Lucky Seven by using Visual Studio
2013. The development process has much in common with earlier versions of Visual Basic and Visual
Studio. You add Toolbox controls to a page, set properties, write program code, test the application,
and prepare it for deployment. However, the XAML Toolbox for Windows Store apps is significantly
different than the Toolbox used to create Windows Forms apps for the Windows desktop. In this
chapter, we reviewed how to use XAML controls step by step. In the next chapter, you'll review how
to use the Windows Forms Toolbox to create a desktop application for Windows 8.1, Windows 8, or
Windows 7.

While creating the Lucky Seven slot machine game, you practiced using the TextBlock control, the
Button control, the Image control, the MediaElement control, and setting the Grid control's back-
ground color. You also learned how to create a splash screen with the Visual Studio Image Editor.
Finally, you tested and deployed your application to the Windows Start page. With a little more work,
you'll also be able to deploy applications like Lucky Seven to the Windows Store.

 79

C H A P T E R 4

Windows desktop apps:
a walkthrough using
Windows Forms

After completing this chapter, you will be able to

■■ Create a Windows desktop app using Windows Forms.

■■ Build a user interface using the Windows Forms Designer.

■■ Use controls in the Windows Forms Toolbox.

■■ Write Visual Basic code for event handlers.

■■ Run, test, and deploy a Windows desktop app.

Chapter 3, “Creating your first Windows Store application,” offered step-by-step instructions for
building a Windows Store app using Visual Basic and the Visual Studio 2013 IDE. Windows Store

apps represent a major new business opportunity for software developers, and as the platform grows,
you will be well positioned to benefit from the improved functionality of Windows as well as the
impressive reach of the Windows Store’s global distribution system.

However, there are additional factors to consider as you choose development platforms for your
Visual Basic applications. For example, you might work in an organization that continues to support
earlier versions of Windows while also transitioning into Windows Store app development. Or you
might work in a shop that has significant source code investments in earlier versions of Visual Basic,
such as user interfaces designed for Windows Forms or Windows Presentation Foundation (WPF).
That is, although the Windows Store might represent the future of application programming, current
software platforms and technologies are equally important. This chapter introduces the support for
earlier versions of Windows and Visual Basic that is built into Visual Studio 2013.

First, you’ll learn how to create Windows desktop apps for Windows 8.1, Windows 8, and Windows 7
using an efficient Visual Studio technology known as Windows Forms. The term “Windows desktop
app” is simply a new term for what Windows programmers have long described as “Windows-based
applications”—that is, fully functional programs that run in a frame on the Windows desktop and
that contain title bars, menus, dialog boxes, buttons, and other controls. In this chapter, you’ll revisit
the Lucky Seven slot machine that you built in Chapter 3, but this time you’ll build the project as a
Windows desktop app in Visual Studio 2013.

80 part I Introduction to Visual Studio Development

You’ll construct the user interface for the slot machine game using controls in the Windows Forms
Toolbox, and you’ll build the application window or form by using the Windows Forms designer in the
IDE. Next, you’ll customize the form and its controls by using property settings, and you’ll generate
the random numbers and special effects by adding Visual Basic code to two event handlers. You’ll
also play music using the My.Computer.Audio object in the .NET Framework. As you create this appli-
cation, I’ll point out the similarities and differences between Windows desktop apps and Windows
Store apps and how to switch back and forth between the two platforms as you need to. In Part II,
“Designing the user interface,” you’ll see plenty of coding examples for both platforms.

This chapter will be especially helpful to programmers who have had previous experience with
Visual Basic. Fundamentally, you’ll learn that you can quickly translate your existing development skills
to the Visual Studio 2013 IDE. If you have been using Windows Forms, you’ll see that you can main-
tain your existing programs rather easily, while benefiting from the new improvements to the Visual
Studio 2013 product. And throughout the book, you’ll learn what is new and improved about the
Visual Basic language.

Inside Windows desktop apps

What is a Windows desktop app, actually? As noted in the preceding section, a Windows desktop app
is essentially a Windows application designed to run under Windows 8.1, Windows 8, or Windows 7.
These “traditional” apps present their features using chrome, or visible and persistent user interface
elements, including a title bar, menu bar, toolbars, menu commands, buttons, dialog boxes, scroll
bars, status bars, and other user interface elements. Although the design guidelines for Windows
Store apps require developers to minimize or eliminate many of these traditional user interface ele-
ments (screen space is at a premium in tablets and mobile devices), Microsoft recognizes that thou-
sands of popular Windows-based apps use these features and that customers want to run these apps
now and in the future.

Windows desktop apps are also structured in different ways than Windows Store apps; they use
different controls and components, make use of different features in the Windows Runtime, and
have different installation and security requirements. To integrate Windows desktop apps into the
Windows 8.1 operating system, Windows 8.1 provides a separate operating environment for the
programs to run in and a distinctive Desktop tile on the Windows Start page to open the environment
and allow for easy interaction between Windows 8.1 and the Windows desktop.

The following illustration shows the Windows version 8.1 Start page with the Desktop tile visible
near the upper-left corner of the screen. (The Desktop tile contains the image of clouds and a moun-
tain top.) Windows desktop apps run in this environment under Windows 8.1, Windows 8, or on the
traditional Windows desktop in Windows 7.

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 81

Visual Basic and Windows desktop apps

Within Visual Studio 2013 Professional, Premium, and Ultimate, the Windows Forms project type
provides a proven model upon which to build Windows desktop apps. Because this program type is
essentially the original user interface model for Visual Basic applications, the Visual Studio IDE is well-
suited to creating Windows Forms apps and offers a Windows Forms Designer and Windows Forms
Toolbox that are mature, feature-rich, and easy to use.

From a technical point of view, Windows Forms is the smart-client component of the .NET
Framework, a set of managed libraries that enable common application tasks such as reading
and writing to the file system. In Visual Studio, a Windows Forms app is built on classes from the
System.Windows.Forms namespace.

When you create a Windows desktop app with Windows Forms technology, you are using controls,
objects, properties, and events that have been available since Visual Studio 2005 and earlier. However,
because you are using the most recent version of Visual Studio, you receive the feature updates and
improvements related to Windows 8.1, the .NET Framework version 4.5.1, and the extended Visual
Basic programming language, which continues to evolve with each new version. As a result, you can
use your existing Windows Forms programming skills to create or maintain a Windows desktop app
in Visual Studio 2013, and as you support your code and add new features, you’ll receive additional
benefits simply by using newer technology.

82 part I Introduction to Visual Studio Development

You can also use Windows Presentation Foundation (WPF) for the user interface and features of
your Windows desktop app in Visual Studio 2013. This mature technology (first introduced in Visual
Studio 2008) allows you to create the user interface for your program by using XAML markup and
efficient WPF controls. However, because using Visual Basic and WPF is similar to creating Windows
Store apps with Visual Basic 2013 (especially in relation to using XAML and WPF-style controls), I will
be emphasizing Windows Store app development in this book and, as an alternative, Windows Forms
app development for the Windows desktop.

Note To create a Windows desktop app in this chapter, you’ll need Visual Studio 2013
Professional, Premium, or Ultimate, which includes templates for Windows desktop apps.
The Microsoft Visual Studio Express 2013 for Windows application does not include
support for Windows desktop apps. However, if you don’t have Visual Studio 2013
Professional or Ultimate, you can download the Microsoft Visual Studio Express 2013
for Windows Desktop application for free via the Microsoft Visual Studio website
(http://www.microsoft.com/visualstudio/). Use it to complete the exercises in this chapter
and elsewhere when Windows Forms programming is discussed.

In the following sections, you’ll create the Lucky Seven Windows desktop app shown in the follow-
ing illustration. Although the user interface looks somewhat different in this version of the program
than it did under Windows 8.1, the Visual Basic program code that drives each application is very
similar. This correspondence is a fundamental emphasis of this chapter—although user interface
technologies vary from platform to platform, the underlying application logic often looks very similar
because it draws on the same Visual Basic language structures and vocabulary.

http://www.microsoft.com/visualstudio/

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 83

Creating a Windows desktop app

In this exercise, you’ll start building Lucky Seven by first creating a new Windows desktop app project
and then using controls in the Windows Forms Toolbox to construct the user interface.

Create a new project

1. Start Visual Studio 2013.

2. On the Visual Studio File menu, click New Project.

tip You can also start a new programming project by clicking the blue New Project
link on the Start page.

The New Project dialog box opens, with project templates listed by category on the left side
of the dialog box. As discussed in Chapter 3, the Visual Basic templates are listed by type,
along with the templates for other languages, such as Visual C#, Visual C++, and JavaScript.

84 part I Introduction to Visual Studio Development

Near the top of the New Project dialog box, you’ll also notice a drop-down list box. This
feature allows you to specify the version of the Microsoft .NET Framework that your applica-
tion will target. This feature is sometimes called multitargeting, meaning that through it you
can select the target environment that your program will run on. For example, if you retain
the default selection of .NET Framework 4.5.1, any computer that your application will run on
must have .NET Framework 4.5.1 installed. (It would typically be a computer running Windows
8.1.) Unless you have a specific need, you can usually leave this setting the way it is. However,
if you want to support earlier versions of Windows (and therefore an earlier version of the
Framework), you can specify a different version.

Note Visual Studio Express 2013 for Windows Desktop does not include the multitar-
geting list box, and the product offers a smaller selection of available templates. But
you’ll be just fine completing the steps in this chapter.

3. Click the Windows category under Visual Basic in the Templates area of the dialog box.

The New Project dialog box looks like this:

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 85

4. Click the Windows Forms Application item in the central Templates area of the dialog box, if it
is not already selected.

Visual Studio prepares the development environment for your Visual Basic Windows desktop
app.

5. In the Name text box, type MyLuckySevenWF.

Visual Studio assigns the name MyLuckySevenWF to your project. (You’ll specify a folder loca-
tion for the project later.) As noted in Chapter 3, I’m recommending the “My” prefix here so
that you don’t confuse your new application with the LuckySevenWF project I’ve created for
you on disk.

I’ve added the “WF” suffix to the project name to indicate “Windows Forms” for clarity.
(However, Windows Forms apps don’t need any special naming scheme.)

6. Click OK to create the new project in Visual Studio.

Visual Studio cleans the slate for a new programming project and displays a blank Windows
form in the Designer that you can use to build your user interface.

Now you’ll enlarge the form and create two buttons in the interface.

Create the user interface

1. Point to the lower-right corner of the form in the Designer until the mouse pointer changes to
a resizing pointer, and then drag to increase the size of the form to make room for the objects
in your program.

As you resize the form, scroll bars might appear in the Designer to give you access to the
entire form you’re creating. Depending on your screen resolution and the Visual Studio tools
you have open, you might not be able to see the entire form at once.

Size your form so that it is about the size of the form shown in the following illustration. If you
want to match my example exactly, you can use the width and height dimensions (560 pixels ×
375 pixels) shown in the lower-right corner of the screen.

To see the entire form without obstruction, you can resize or close the other programming
tools, as you learned in Chapter 2, “The Visual Studio Integrated Development Environment.”
(Return to Chapter 2 if you have questions about resizing windows or tools.)

86 part I Introduction to Visual Studio Development

Now you’ll add a button object to the form.

2. Click the Toolbox tab to display the Windows Forms Toolbox window in the IDE.

This Toolbox contains different controls than the ones that you used in Chapter 3. Rather
than controls for Windows Store apps, this Toolbox contains controls for Windows Forms
apps. Not only are the items named differently, they have different underlying properties and
events. The Windows Forms controls are organized by category, and there are several controls
visible—a testament to how long this style of programming has been around.

3. In the All Windows Forms category, double-click the Button control in the Toolbox, and then
move the mouse pointer away from the Toolbox.

Visual Studio creates a default-sized button object on the form and hides the Toolbox, as
shown here:

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 87

The button is named Button1 because it is the first button in the program. The new button
is selected and enclosed by resize handles. When Visual Basic is in design mode (that is, when
you are creating a program and not executing it), you can move objects on the form by drag-
ging them with the mouse, and you can resize them by using the resize handles. However,
while a program is running, the user can’t move user interface elements unless you’ve
changed a property in the program to allow this.

4. Using the Properties window, change the Name property of the button object to SpinButton.

The Name property is listed near the top of the Properties window. Giving each object a name
in your user interface will make the objects more recognizable in program code. As noted in
Chapter 3, I recommend including the name of the control in the object name if you have the
space for it.

Now you’ll add a second button to the form, below the first button.

add a second button

1. Click the Toolbox tab to display the Toolbox.

2. Click the Button control in the Toolbox (single-click this time), and then move the mouse
pointer over the form.

The mouse pointer changes to crosshairs and a button icon. The crosshairs are designed to
help you draw the rectangular shape of the button on the form, and you can use this method
as an alternative to double-clicking to create a control of the default size.

3. Click and drag the pointer down and to the right. Release the mouse button to complete the
button.

4. Resize the button object so that it is the same size as the first button.

88 part I Introduction to Visual Studio Development

5. Move the two buttons down and to the right a little so that they are not right on the edge of
the form. (Use the snapline feature to help you.)

6. Use the Properties window to change the Name property of the button to EndButton.

tip At any time, you can delete an object and start over again by selecting the object on
the form and then pressing Delete. Feel free to create and delete objects to practice creat-
ing your user interface.

Now you’ll add the labels used to display the random numbers in the program. A label is a special
user interface element in a Windows Forms app designed to display text, numbers, or symbols when
the program runs. When the user clicks the Lucky Seven program’s Spin button, three random num-
bers appear in the label boxes. If one of the numbers is a 7, the user wins.

add the number labels

1. Double-click the Label control in the Toolbox.

Visual Studio creates a label object on the form. The label object is just large enough to hold
the text contained in the object (it is rather small now), but it can be resized.

2. Drag the Label1 object to the right of the two button objects.

Your form looks something like this (note also the position of the two buttons):

3. Double-click the Label control in the Toolbox to create a second label object.

This label object will be named Label2 in the program.

4. Double-click the Label control again to create a third label object.

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 89

5. Move the second and third label objects to the right of the first one on the form.

Allow plenty of space between the three labels because you will use them to display large
numbers when the program runs.

Now you’ll use the Label control to add a descriptive label to your form. This will be the fourth
and final label in the program.

6. Double-click the Label control in the Toolbox.

7. Drag the Label4 object below the two command buttons.

When you’ve finished, your four labels should look like those in the following screen shot. (You
can move your label objects if they don’t look quite right.)

Now you’ll add a picture box to the form to graphically display the payout you’ll receive when you
draw a 7 and hit the jackpot. A picture box is designed to display bitmaps, icons, digital photos, and
other artwork in a Windows Forms program. One of the best uses for a picture box is to display a
JPEG image file. You’ll use the same image that you used in Chapter 3—a photo of coins from around
the world on a dark background.

add a picture

1. Click the PictureBox control in the Toolbox.

The PictureBox control has been a part of the Windows Forms Toolbox since Visual Basic ver-
sion 1. However, recall that when you created the Windows Store app in Chapter 3, you used
the Image control to display the photo on the page. As you switch back and forth between
the two toolboxes, keep in mind that you’ll be using different controls and that these controls
contain different property settings and respond to different events.

90 part I Introduction to Visual Studio Development

2. With the PictureBox control selected, use the pointer to create a large rectangular box below
the second and third labels on the form.

Leave a little space below the labels for their size to grow. When you’ve finished, your picture
box object looks similar to this:

Currently, the object is named PictureBox1 in your program. (You’ll change it to CoinImage
later.)

Now you’ll add the Coins.jpg photo to the project by creating a Resources folder.

add a photo to the resources folder

1. If Solution Explorer is not visible now, open it by clicking Solution Explorer on the View menu.

As you’ve already learned, Solution Explorer provides access to most of the files in your proj-
ect. In Chapter 3, you practiced using the Assets folder in a Windows Store project to custom-
ize your project’s logo, splash screen, and other files. However, the Assets folder is something
unique to Windows Store apps; it is not supplied by default in a Windows desktop app.
Instead, you can create a Resources folder in Solution Explorer, which lets you access impor-
tant files and store them with the project.

The easiest way to create a Resources folder now is to use the smart tag provided by the pic-
ture box object.

2. Select the picture box object on the form if it is not selected already.

If you look carefully at the picture box’s border now, you’ll notice a tiny shortcut arrow called
a smart tag near its upper-right corner. A smart tag is a context-sensitive button that you can
use to quickly change common settings.

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 91

3. Click the smart tag in the picture box object to display the shortcut menu of commands.

4. Click Choose Image to display the Select Resource dialog box.

5. Click Project Resource File, and then click the Import button to create a new Resources folder
and place a file in the folder.

6. Double-click Coins.jpg in the My Documents\Visual Basic 2013 SBS\Chapter 04 folder.

Visual Studio inserts the file, and it appears in the Select Resource dialog box, as shown in the
following illustration:

After an image or file has been added to a project, it becomes part of the application that you
are working on, and it can be referenced via the Solution Explorer and Properties window. It is
also gathered in as part of the application when the final project is compiled for distribution—
obviating the need to track the file or recall where the file was originally located on your hard
disk.

7. Click OK.

In Solution Explorer a Resources folder now appears with the file Coins.jpg in it.

8. In the Picture Box Tasks menu, click Stretch Image in the Size Mode list box.

A photo of coins from around the world fills the picture box object in the Designer.

92 part I Introduction to Visual Studio Development

9. Adjust the spacing of the image so that it takes up much of the right side of the form in the
Designer.

Your screen should look like this (notice especially the Resources folder in Solution Explorer).

Now you’ll add a sound file to the Resources folder so that it can be played when the user wins the
game. This time, you’ll add the resource by using the Visual Studio Project Properties Designer.

add a .wav file to the resources folder

1. Click the LuckySevenWF Properties command on the Project menu.

The Project Properties Designer appears in the IDE with project settings for twelve categories.

2. Click the Resources category.

The Coins.jpg file appears in the Designer. In the upper-left corner of the Designer is a drop-
down list box containing six resource categories, and currently Images is specified. Rather than
list all of the project resources together, the six categories give you a chance to organize your
project assets.

3. Click the Audio category in the drop-down list box.

The list is currently empty. Now you’ll add the ArcadeRiff.wav file to the project. This is the same
electronic music file that you used in Chapter 3 to play an electronic arcade sound effect.

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 93

4. Click the drop-down arrow next to the Add Resource command, and then click Add Existing
File.

5. Browse to the My Documents\Visual Basic 2013 SBS\Chapter 04 folder, click the ArcadeRiff.wav
file, and then click Open.

The ArcadeRiff.wav file appears in the Resources window and is now ready for use in the pro-
gram. You’ll reference this resource later when you write your event handler code.

6. Click the Save All button on the Standard toolbar.

7. Specify My Documents\Visual Basic 2013 SBS\Chapter 04 for the location, and then click Save.

8. Click Yes To All if you are prompted to save or reload the project after the inclusion of the new
resources.

9. Close the Project Properties Designer.

Now you’re ready to further customize the program’s user interface by setting some more
properties.

Setting properties

As you reviewed in Chapters 2 and 3, you can change an object’s properties by selecting the object
on the page (or the form) and then setting properties in the Properties window. You’ll do this now in
your Windows desktop app by changing settings for the two buttons on the form.

Set the button properties

1. Click the first button (SpinButton) on the form.

The button is selected and is surrounded by resize handles.

2. At the top of the Properties window, click the Categorized button.

3. Resize the Properties window (if necessary) so that there is plenty of room to see the property
names and their current settings.

These properties include settings for the background color, text, font height, and width of the
button. Your Properties window should look something like this:

94 part I Introduction to Visual Studio Development

4. If it is not already visible, scroll in the Properties window until you see the Text property
located in the Appearance category.

5. Double-click the Text property in the first column of the Properties window.

The current Text setting (“Button1”) is highlighted in the Properties window.

6. Type Spin, and then press Enter.

The Text property changes to “Spin” in the Properties window and on the button on the form.
Now you’ll change the Text property of the second button to “End.”

7. Open the Object list at the top of the Properties window.

A list of the interface objects in your program appears in a drop-down list box.

8. Click EndButton (the second button) in the list box.

The property settings for the second button appear in the Properties window, and Visual
Studio highlights the button on the form.

9. Delete the contents of the Text property, type End, and press Enter.

The text of the second button changes to “End.”

tip Using the Object list is a handy way to switch between objects in your program. You
can also switch between objects on the form by clicking each object.

Now you’ll set the properties for the labels in the program. The first three labels will hold the ran-
dom numbers generated by the program and will have identical property settings. (You’ll set most of
them as a group.) The descriptive label settings will be slightly different.

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 95

Set the number label properties

1. Click the first number label (Label1), hold down the Shift key, click the second and third num-
ber labels, and then release the Shift key. (If the Properties window is in the way, move it to a
new place.)

A selection rectangle and resize handles appear around each label you click. You’ll change
the TextAlign, BorderStyle, and Font properties now so that the numbers that will appear in
the labels will be centered, boxed, and identical in font and font size. (All these properties are
located in the Appearance category of the Properties window.) You’ll also set the AutoSize
property to False so that you can change the size of the labels according to your precise speci-
fications. (The AutoSize property is located in the Layout category.)

Note When more than one object is selected, only those properties that can be
changed for the group are displayed in the Properties window.

2. Click the AutoSize property in the Properties window, and then click the arrow that appears in
the second column.

3. Set the AutoSize property to False so that you can size the labels manually.

4. Click the TextAlign property, and then click the arrow that appears in the second column.

A graphical assortment of alignment options appears in the list box; you can use these set-
tings to align text anywhere within the borders of the label object.

5. Click the center option (MiddleCenter).

The TextAlign property for each of the selected labels changes to MiddleCenter.

6. Click the BorderStyle property, and then click the arrow that appears in the second column.

The valid property settings (None, FixedSingle, and Fixed3D) appear in the list box.

7. Click FixedSingle in the list box to add a thin border around each label.

8. Click the Font property, and then click the ellipsis button (the button with three dots that’s
located next to the current font setting).

The Font dialog box opens.

9. Change the font to Segue UI, the font style to SemiBold, and the font size to 24, and then click
OK.

The label text appears in the font, style, and size you specified.

Now you’ll set the text for the three labels to the number 0—a good “placeholder” for the
numbers that will eventually fill these boxes in your game. (Because the program produces
the actual numbers, you could also delete the text, but putting a placeholder here gives you
something to base the size of the labels on.)

96 part I Introduction to Visual Studio Development

10. Click a blank area on the form to remove the selection from the three labels, and then click
the first label.

11. Double-click the Text property, type 0, and then press Enter.

The text of the Label1 object is set to 0. You’ll use program code to set this property to a ran-
dom “slot machine” number later in this chapter.

12. Change the text in the second and third labels on the form to 0 also.

13. Resize the three labels so that you can see the number 0 in each label.

14. Move and adjust the final spacing among the labels so that they look proportional.

Your form should now look something like this:

Now you’ll change the Text, Font, and ForeColor properties of the fourth label.

Set the descriptive label properties

1. Click the fourth label object (Label4) on the form.

2. Change the Text property in the Properties window to Lucky Seven.

3. Click the Font property, and then click the ellipsis button.

4. Use the Font dialog box to change the font to Segoe UI, the font style to SemiBold, and the
font size to 18. Then click OK.

The font in the Label4 object is updated, and the label is resized automatically to hold the
larger font size because the object’s AutoSize property is set to True.

5. Click the ForeColor property in the Properties window.

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 97

6. Type DarkRed in the ForeColor property, and then press Enter.

Visual Studio changes the color of the Lucky Seven label (Label4) to DarkRed (139,0,0), which
is the same color you used in the Lucky Seven Windows Store app in Chapter 3.

Now you’ll change the Text property for the form so that “Lucky Seven” appears on the app’s title
bar.

Set the form’s title bar text

1. Click the form in the Designer (not any specific object on the form).

2. In the Properties window, change the Text property to Lucky Seven and press Enter.

Your form now looks like this:

Now you’re ready to set the properties for PictureBox1, the last object on the form.

the picture box properties
When the person playing your game hits the jackpot (that is, when at least one 7 appears in the
number labels on the form), the picture box object will display an image (in .jpg format) of coins from
around the world. I have supplied you with this digitized image in the book’s sample files, but you can
substitute your own image if you like.

Earlier in this chapter, you set the SizeMode property of the PictureBox1 object to accurately posi-
tion the picture in the frame, and you set the Image property to indicate the name of the JPEG file
that you are displaying on the form. Now you need to set the Visible property, which specifies the pic-
ture state when the app starts running. (You don’t always need to make objects visible on the form; as
this app runs, you will toggle the image between visible and invisible settings, based on the numbers
displayed.)

98 part I Introduction to Visual Studio Development

Set the Visible picture box property

1. Click the picture box object on the form.

2. Click the Visible property in the Behavior category of the Properties window, and then click
the arrow in the second column.

The valid settings for the Visible property appear in a list box.

3. Click False to make the coins image invisible when the program starts.

Setting the Visible property to False affects the picture box when the program runs but not
now, while you’re designing it.

tip You can also double-click property names that have True and False settings (so-called
Boolean properties), to toggle back and forth between True and False. Default Boolean
properties are shown in regular type, and changed settings appear in bold.

Naming objects for clarity
Earlier in this chapter, you named the button objects on the form as a good programming practice.
I recommend that you name all of the objects that you will be using in program code to avoid any
confusion. You can name objects by setting the Name property for each object with the Properties
window. In the following exercise, you’ll add a few more object names for the labels containing lucky
numbers. You’ll also name the picture box object that contains the Coins photo.

Set the Name property

1. Click the Label1 object on the form (the first lucky number window), and then change the
object’s Name property to FirstNum.

You might want to list the property settings alphabetically so that the Name property appears
near the top of the list.

2. Click the Label2 object on the form (the second lucky number window), and then change the
object’s Name property to SecondNum.

3. Click the Label3 object on the form, and then change the object’s Name property to
ThirdNum.

4. Click the PictureBox1 object on the form, and then change the picture box’s Name property to
CoinImage.

5. You are finished setting properties for now, so if your Properties window is floating, hold
down the Ctrl key and double-click its title bar to return it to the docked position.

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 99

Writing the code

Now you’re ready to write the code for the Lucky Seven Windows desktop app. As you learned in
Chapter 3, you enter and edit Visual Basic code by using the Code Editor. Although the controls used
to create the user interface for this Windows Form app are different than the ones you used to create
a Windows Store app, the program code is much the same. This is because the underlying Visual Basic
programming language is identical between the two platforms. The only differences you’ll encounter
will be the names of objects and properties and, occasionally, the classes that you use in the .NET
Framework. The core Visual Basic language elements are essentially the same.

Complete the following steps to enter the Lucky Seven Windows desktop app code using the Code
Editor.

Use the Code editor

1. Double-click the End button on the form.

The Code Editor appears as a tabbed document window in the center of the Visual Studio IDE,
as shown here:

Inside the Code Editor are program statements associated with the current form. Program
statements in a Windows Forms app are always grouped in one or more procedures. There
are three types of procedures that you’ll see in Visual Basic code: Sub procedures, Function
procedures, and Property procedures.

EndButton_Click is a Sub procedure that is being declared to handle the event that occurs
when the user clicks the End button in the program. This Sub procedure begins with the Sub
keyword and concludes with the End Sub keywords.

In the Windows Forms paradigm, such a procedure is also called an event handler. This par-
ticular handler is executed when the Click event takes place (or fires), but no value is returned
to the calling routine by the procedure. (Function and Property procedures often do return
values, as you’ll see later in the book.)

100 part I Introduction to Visual Studio Development

When you double-clicked the End button in the IDE, Visual Studio automatically added the
first and last lines of the EndButton_Click event handler and associated those lines with the
button’s Click event, as the following code shows. You might notice other bits of code in the
Code Editor (words like Public and Class), which Visual Studio has added to define important
characteristics of the form. I will describe them more fully later.

Private Sub EndButton_Click(sender As Object, e As EventArgs) Handles Button2.Click

End Sub

The body of a procedure fits between the preceding lines and is executed whenever a user
triggers the action associated with the event handler. In this case, the event is a mouse click,
but it could also be a different type of event.

2. Type End, and then press the Enter key.

Visual Studio recognizes End as a unique reserved word or keyword and displays it in a list
box with Common and All tabs. Microsoft calls this interactive assistance feature IntelliSense
because it tries to intelligently help you write code, and you can browse through various
Visual Basic keywords and objects alphabetically. (In this way, the language is partially discov-
erable through the IDE itself.)

After you press the Enter key, the letters in End turn blue and are indented, indicating that
Visual Basic recognizes End as one of several hundred unique keywords within the Visual Basic
language. You use the End keyword to stop your program and remove it from the screen. In this
case, End is also a complete program statement, a self-contained instruction recognized by the
Visual Basic compiler, the part of Visual Studio that processes, or parses, each line of Visual Basic
source code, combining the result with other resources to create an executable file.

Now that you’ve written the code associated with the End button, you’ll write code for the Spin
button. These program statements will be a little more extensive.

Write code for the Spin button

1. Click the Form1.vb [Design] tab near the top of the Code Editor to display the form again.

When the Code Editor is visible, you won’t be able to see the form you’re working on.
However, it is easy to switch back and forth between the Windows Forms designer and the
Code Editor by clicking the tabs near the top of each window.

2. Double-click the Spin button on the form.

The Code Editor appears, and an event handler associated with the Spin button appears.

Although you changed the text of this button to “Spin,” recall that its name in the program
is SpinButton. The SpinButton_Click event handler executes each time that the user clicks the
Spin button.

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 101

3. Type the following program lines between the Private Sub and End Sub statements. Press
Enter after each line, and press Tab to indent. As you enter the program code, the IDE formats
the text and displays different parts of the program in color to help you identify the various
elements.

Dim generator As New Random
CoinImage.Visible = False

FirstNum.Text = generator.Next(0, 9)
SecondNum.Text = generator.Next(0, 9)
ThirdNum.Text = generator.Next(0, 9)

If (FirstNum.Text = “7”) Or (SecondNum.Text = “7”) Or
 (ThirdNum.Text = “7”) Then
 CoinImage.Visible = True
 My.Computer.Audio.Play(My.Resources.ArcadeRiff, AudioPlayMode.Background)
End If

When you’ve finished, the Code Editor looks as shown in the following screen shot:

4. Click the Save All command on the File menu to save your additions to the program.

Behind the scenes in the SpinButton_Click event handler

The SpinButton_Click event handler is executed when the user clicks the Spin button on the form. The
Handles keyword in the first line of the Sub procedure is the statement that links the button on the
form to the event handler.

102 part I Introduction to Visual Studio Development

The work this routine does is very similar to the Visual Basic code you used in Chapter 3 to drive
the Lucky Seven game designed for the Windows Store. Essentially, the event handler performs four
main tasks:

1. It declares a random number generator named Random in the program.

2. It hides the digital photo of coins.

3. It creates three random numbers and displays them in text block objects.

4. It displays the Coins photo and plays music when the number 7 appears.

As you’ve learned, the random number generator is initialized by the following statement:

Dim generator As New Random

This line declares a random number generator that can be used to calculate single digits that fol-
low no particular numeric pattern. The generator identifier is used later in the procedure.

Hiding the photo is accomplished by the following line:

CoinImage.Visible = False

Although the photo is not visible when the program starts (you changed the image’s Visible prop-
erty in an earlier exercise to accomplish this), this line of code handles the situation when the user has
won the game and needs to have the image hidden again.

The next three lines handle the random number computations. The generator object in each line
is used to create a random number between 0 and 9—just what you need for this particular slot
machine application. These lines are identical to the code in Chapter 3.

FirstNum.Text = generator.Next(0, 9)
SecondNum.Text = generator.Next(0, 9)
ThirdNum.Text = generator.Next(0, 9)

The last group of statements in the program checks whether any of the random numbers is 7. If
one or more of them is, the program displays the graphical depiction of a payout and plays an elec-
tronic arcade sound to announce the winnings.

If (FirstNum.Text = "7") Or (SecondNum.Text = "7") Or
 (ThirdNum.Text = "7") Then
 CoinImage.Visible = True
 My.Computer.Audio.Play(My.Resources.ArcadeRiff, AudioPlayMode.Background)
End If

The sound is created by the same .wav audio file that you used in Chapter 3. However,
because there is no MediaElement control in the Windows Forms Toolbox, I’ve played the sound
using the My.Computer.Audio object provided by the .NET Framework. This object offers the
Play method, which I’ve used to play a sound resource in the project’s Resources folder. The
AudioPlayMode.Background property used in the call to the Play method rings the sound in the back-
ground while the program does its work.

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 103

Each time that the user clicks the Spin button, the SpinButton_Click event handler is executed, or
called, and the program statements in the procedure are run again.

Running the Lucky Seven desktop app

Perfect —you’re ready to run your new Windows desktop app. As you learned in Chapter 2, you can
run an application by clicking the Start button on the Standard toolbar.

Follow these steps to run—and more importantly, test—the MyLuckySevenWF program.

Note If you didn’t build the MyLuckySevenWF project from scratch or if you want to com-
pare what you created to what I built for you, take a moment now to open and run the
completed LuckySevenWF project, which is located in the My Documents\Visual Basic 2013
SBS\Chapter 04 folder on your hard disk (the default location for the practice files for this
chapter).

run the LuckySevenWF program

1. Click the Start button on the Standard toolbar.

The Lucky Seven program compiles and runs. After a few seconds, the user interface appears,
just as you designed it.

2. Click the Spin button several times until you draw one or more 7s.

Each time that you click Spin, the program picks three random numbers and displays them in
labels on the form. When you win, your screen will look something like this:

104 part I Introduction to Visual Studio Development

Because a 7 appears in the first label box, the digital photo depicting the payoff appears, and
the computer plays an arcade sound. You win!

3. Click the Spin button a dozen or more times, watching the results of the spins in the number
boxes.

This is the time to give the program some careful attention. Is the program working cor-
rectly? Does the sound effect work correctly every time? Does the coin image always go away
when you spin again? Do the numbers always look right—and does the spinning pattern look
random—in the spinner windows?

It seems like about half of the time that you spin, you will hit the jackpot. However, in math-
ematical terms, the odds are not actually that good. The actual probability of a win is about
2.8 times out of 10.

4. When you’ve finished experimenting with your new creation, click the End button.

The Windows desktop app stops, and the IDE reappears on your screen.

Building an executable file

Your last task in this chapter is to complete the development process and create a final Windows
desktop app for your computer. Windows desktop apps created with Visual Studio 2013 have the file
name extension .exe and can be run on any system that contains Windows and the necessary support
files. One of the crucial system libraries that Visual Studio programs need is the .NET Framework.
However, this is present on virtually all Windows 8.1, Windows 8, and Windows 7 installations.

As you learned in Chapter 3, you can create two types of executable files for your project at
this point: a debug build or a release build. The Solution Configurations drop-down list box on the
Standard Visual Studio toolbar indicates whether the executable is a debug build or a release build.

Try creating a release build named LuckySevenWF.exe now.

Create an executable file

1. On the Standard toolbar, click Release in the Solution Configurations drop-down list box.

This will prepare Visual Studio to create a release build of your Windows desktop app that
does not contain debugging information. The build will be stored in the Bin\Release folder for
your project.

2. On the Build menu, click the Build LuckySevenWF command. (Your project might have the
“My” prefix in front of the project name.)

The Build command compiles the source code in your project. The result is an executable file
of the Windows desktop app type named LuckySevenWF.exe.

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 105

Now try running this program outside the Visual Studio IDE within the Windows desktop. (The
next command depends on the version of Windows you’re using.)

3. If you have Windows 8 or Windows 8.1, click the Search charm, type run in the Search (apps)
text box, and Press Enter to open the Run dialog box.

If you have Windows 7 or Windows Vista, type run in the Search text box and press Enter to
open the Run dialog box.

4. Click Browse, and then navigate to the My Documents\Visual Basic 2013 SBS\Chapter 04\
MyLuckySevenWF\Bin\Release folder.

5. Click the MyLuckySevenWF.exe application icon, click Open, and then click OK.

The LuckySevenWF program loads and runs in the Windows desktop area.

Because this is a simple test application and it does not possess a formal publisher certificate
that emphasizes its reliability or authenticity, you might see the following message: “The pub-
lisher could not be verified. Are you sure you want to run this software?”

If this happens, click Yes to run the program anyway. (Creating such certificates is beyond
the scope of this chapter, but this program is quite safe—unless you spend a lot of time
gambling!)

6. Click Spin a few times to verify the operation of the game, and then click End.

tip You can also run Windows-based applications, including compiled Visual Basic pro-
grams, by opening Windows Explorer and double-clicking the executable file.

Publishing a Windows desktop app

As you learned in Chapter 3, a Windows Store app is designed to be sold and distributed online via
the Windows Store. Although Windows desktop apps cannot currently be distributed in this manner,
it is simple to distribute or publish a Windows desktop app using ClickOnce Security and Deployment.
ClickOnce assembles your project files into a package that can be located on a web server, a file share,
the local computer (your PC or laptop), or removable media such as a CD-ROM or DVD-ROM.

Complete the following steps to publish a Windows desktop app. (Publish the MyLuckySevenWF
project now, or keep these steps handy for future reference.)

publish with ClickOnce deployment

1. Click the ProjectName Properties command (LuckySevenWF or other) on the Project menu.

The Project Properties Designer opens, with its many tabs and options related to the applica-
tion and its features.

106 part I Introduction to Visual Studio Development

2. Click the Publish tab, where you’ll see a list of deployment options like those shown on the
following screen:

3. In the Publishing Folder Location text box, specify the name of a web server, file server, or
path name to a location on your local computer where you would like to place the setup
package that Visual Studio will create for you.

Note This is not the location for the final, installed application; it is the location for
the setup files that your user will use to install the new Windows desktop app. That
is, you are specifying here a location for users to get the setup package that they
need. (For this reason, a web server makes a lot of sense.)

4. Optionally, click the ellipses box next to the Publishing Folder Location text box if you want to
browse to the deployment location.

If you click this helpful tool, the Open Web Site dialog box appears, which lets you browse to
a folder in your computer’s file system, an Internet Information Services (IIS) location, an FTP
site, or another web location.

Alternatively, you can click the Publish Wizard button, and a wizard will step you through a
series of questions about what you want to deploy and where you want to deploy it.

5. When you’re finished, click the Publish Now button at the bottom of the properties page.

 CHAPTER 4 Windows desktop apps: A walkthrough using Windows Forms 107

6. Visual Studio will copy a convenient setup package for the application to the location you
specified. The user can then install the application on their system.

tip To learn more about security considerations and deploying Windows desktop
applications, click the Security tab on the Project Properties Designer. You can learn
about security issues and adjust security settings as appropriate for your application.

Congratulations! You’ve created a Windows desktop app from scratch by using Windows
Forms and Visual Basic. Save your changes now, and exit Visual Studio.

7. Click the Save All button on the Standard toolbar to save your changes.

8. Close the project properties page by clicking the X on the page’s tab.

9. On the File menu, click Exit to close Visual Studio and the LuckySevenWF project.

The Visual Studio development environment closes.

Summary

This chapter describes how to build a Windows desktop app named LuckySevenWF, using Visual
Basic and the Windows Forms programming model. The development process is similar to what you
accomplished in Chapter 3 with the Windows Store programming model, and the same program (a
lucky number arcade game) was deliberately chosen so that you could compare and contrast the two
methods of creating a Visual Basic 2013 application.

Windows Forms continues to be an important technology for writing Windows-based applications
with Visual Basic. There is a substantial code base in the marketplace that was created using Windows
Forms, and in addition to the practical necessities of maintaining this code, the Windows Forms
Designer and Toolbox are easy to use and mature in ways that the Windows Presentation Foundation
and Windows Store App tools currently are not.

In this chapter, you worked with the Button, Label, and PictureBox controls and customized them
on a form using original artwork and property settings. You learned how to write program code
in the Code Editor and how to publish an application using ClickOnce Security and Deployment.
In Chapter 6, “Working with Windows Forms controls,” you will learn more about Windows Forms
Toolbox controls and many essential features for Windows desktop apps, including menus and
toolbars.

The major limitation of Windows Forms is that its graphics routines are somewhat slower than
equivalent WPF and Windows Store apps, and Windows Forms does not fully support the redesigned
Windows 8 and Windows 8.1 operating systems. The advantage of these platforms consists in secu-
rity, reliability, broader support for touch-based devices, and, of course, a new user interface. We are
simply in an era of transition, and professional Visual Basic programmers will need to acquire skills

108 part I Introduction to Visual Studio Development

worthy of the terrain we currently find ourselves in. This means learning more than one development
platform and finding creative ways to migrate code from model to model.

Fortunately, Visual Studio makes this dynamic interchange more than possible. In fact, as Chapter
3 and this chapter have demonstrated, you can build two user interfaces with different tools and still
maintain the same application logic in Visual Basic code. I will continue to emphasize this similarity
throughout the book, extending the Visual Basic language parallels to web-based (HTML) apps and
Windows Phone 8 apps.

In the next chapter, you’ll return to Windows Store development and some of the essential controls
in the Windows Store Toolbox.

 109

PART II

Designing the user
interface

CHAPTER 5 Working with Windows Store app controls.111

CHAPTER 6 Working with Windows Forms controls147

CHAPTER 7 XAML markup step by step191

CHAPTER 8 Using XAML styles .215

CHAPTER 9 Exploring Windows 8.1 design features:
 Command bar, flyout, tiles, and touch235

CHAPTER 10 Creating console applications267

 111

C H A P T E R 5

Working with Windows Store app
controls

After completing this chapter, you will be able to

■■ Use the TextBox control to manage text input tasks.

■■ Use the FlipView control to display a series of images or photos.

■■ Use the MediaElement control to play entertainment media.

■■ Use the WebView control to display live web content.

You create the user interface for your Windows Store app by using Toolbox controls such as Image,
ListBox, WebView, and DatePicker. In Chapter 3, “Creating your First Windows Store application,”

you learned the basics of using the Button, TextBlock, and Image controls, and you reviewed how to
adjust property settings and build event handlers. In this chapter, you’ll learn to use four additional
Windows Store app controls. The process will deepen your understanding of the Windows 8.1 user
interface and help you establish a foundation for your own programs.

First, you’ll learn how to use the TextBox control to gather lines and paragraphs of textual input
from the user, store them in variables, check spelling, and process the text in interesting ways. Next,
you’ll use the FlipView control to display a collection of graphical images on the screen, which you
can easily navigate through by using touch input or mouse clicks. Because audio and video content
make Windows Store apps fun to use, you’ll learn more about using the MediaElement control to play
entertainment media. Finally, you’ll learn to use the WebView control to display content from one or
more webpages on the surface of your app.

tip In addition to this chapter and the exercises in later chapters, you can learn
much more about essential Windows Store app controls in my companion book
Start Here! Learn Microsoft Visual Basic 2012 (Microsoft Press, 2012). For example, in that
book, in Chapter 3, “Using Controls,” I describe how to use the Ellipse, TextBlock, CheckBox,
and RadioButton controls. In Chapter 4, “Designing Windows 8 Applications with Blend for
Visual Studio,” I demonstrate how to use Blend to add controls to a page and customize
them with animation effects.

112 part II Designing the user interface

Understanding Windows Store app controls

Windows Store app controls are interactive elements that a developer can place on the surface of a
Windows 8.1 app to communicate with the user or manage essential tasks, such as displaying text
or images, launching a video, or browsing a website. Like other programmable controls, Windows
Store app controls typically have the ability to be selected or to receive the focus while a program is
running, and they are manipulated by the familiar input mechanisms of the Windows 8.1 operating
system, such as mouse, keyboard, stylus, touch, and gestures.

All Windows Store app controls come from the Windows.UI.Xaml.Controls namespace, a hierar-
chical library of classes that provides a unique definition and list of programmable features for each
control. Many of the Windows Store app controls share common attributes and capabilities, and in
this way, they work together to enable the rich user experience that is at the heart of Windows 8.1.

When you create a new Windows Store app in Visual Studio 2013, the IDE automatically loads a
collection of Windows Store app controls (also called XAML controls) into the Toolbox, and organizes
them by category. When you use one of these controls to create an object in your application, you are
creating a specific instance of the control definition on the page within your program. Each instance
of the control is unique, so it maintains its own name, content, size, shape, event handlers, and other
defining characteristics.

For example, if you use the Button control in the Toolbox to create three button objects on
a page in your Windows Store app, each button object will have its own name, dimensions, and
programmable functionality. Although these buttons inherit their default characteristics from the
Windows.UI.Xaml.Controls.Button class, you can customize each object individually in the program.
This is one of the core features and advantages of object-oriented programming with Visual Studio
and Visual Basic. Another useful feature is that you can share event handlers among controls.

roots in Windows presentation Foundation and XaML
Windows Store app controls have their roots in Windows Presentation Foundation (WPF) controls and
Extensible Application Markup Language (XAML), an XML-based language used to define and link
various elements in the user interface of a Windows-based application. WPF was added to the Visual
Studio 2008 product as an option for rendering user interfaces, and since 2008 it has supplied a pop-
ular alternative to the Windows Forms programming model. At that time, Microsoft also introduced a
rudimentary WPF Designer and a Toolbox with XAML controls into the Visual Studio IDE.

Although the original WPF Designer and Toolbox were somewhat limited, over time the Visual
Studio components related to WPF have improved. A number of Visual Basic programmers who have
wanted to add cutting-edge graphics, video, and animation features to their applications have used
WPF to prepare applications for the .NET platform. (In fact, WPF was especially designed to support
DirectX, a hardware-accelerated graphics API that is often used in cutting-edge computer games.)

Microsoft also used a subset of WPF to create Microsoft Silverlight, an application framework for
creating Internet applications that is similar in some ways to Adobe Flash. The Silverlight framework is
also associated with Windows Phone development, although in Windows Phone 8 the term Silverlight

 CHAPTER 5 Working with Windows Store app controls 113

is no longer used. However, when you write Windows Phone applications, you still use an optimized
version of XAML controls for the Phone user interface. Windows Phone programming is covered more
fully in Chapter 20, “Introduction to Windows Phone 8 development,” and Chapter 21, “Creating your
first Windows Phone 8 application.”

Designing for Windows 8.1
When Microsoft planned the release of Windows 8, an ambitious new operating system designed
to operate on a very broad spectrum of devices, they chose to base user interface development on
XAML-style controls, including the controls used in WPF and Windows Phone applications. Accordingly,
many of the Windows Store app controls have the same names as WPF controls, and controls in the two
platforms also share many of the same properties and events. In addition, there are some controls (such
as ProgressRing) that support the unique features of the Windows 8 and Windows 8.1 user interface.

Windows Store app controls continue to support high-performance graphics cards and animation
features, and they also use XAML markup to build the user interface so that it can be customized for
different platforms and devices. In this way, Windows 8.1 and Visual Studio 2013 have carried forward
earlier technologies (WPF, Silverlight, and Windows Forms) and combined them in new ways to sup-
port advancements in user interface design, connectivity, and security. On the Windows 8.1 platform,
Visual Studio 2013 adds support for the CommandBar and Flyout controls in Windows Store apps,
which are discussed in Chapter 9, “Exploring Windows 8.1 design features: Command bar, flyout, tiles,
and touch.”

If you have previous experience using WPF or Silverlight controls, this chapter will show you how
some of the essential controls have changed. You’ll also see how the features of Windows 8.1 have
been integrated into the controls and how they have been modified for applications that will be sold
in the Windows Store.

If you have previous experience with Windows Forms, many of these controls will be new to you,
but the essential software development techniques will not be that different from what you have
learned in the past. You’ll still build your applications by adding Toolbox controls to a page, setting
essential properties, writing event handlers, and then compiling and testing your work.

Let’s begin with the TextBox control.

Using the TextBox control to receive input

The TextBox control makes it easy to gather basic, textual input from the user and to put it to work in
your Windows Store app. In addition, TextBox controls can be used to display information quickly on
a page, such as the results of a calculation or the content returned from a database query. Although
most TextBox controls are designed to be just one line long, you can also create multiline TextBox
controls following the same basic procedure and then use them to gather input or display a para-
graph or more of text.

114 part II Designing the user interface

In the following exercises, you’ll learn how to receive input using a TextBox control, assign the
information to a variable, create a multiline TextBox control, and check the spelling in a TextBox. Later
in this chapter, you’ll learn how to transfer data from a TextBox control to a ListBox control.

Use a TextBox control for basic input

1. Start Visual Studio 2013.

2. On the Visual Studio File menu, click New Project.

The New Project dialog box opens.

3. In the Visual Basic template group, click Windows Store and then the Blank App (XAML) project.

Visual Studio prepares the IDE for a basic Windows Store app with no predefined layout.

4. In the Name text box, type My Text Input.

Visual Studio assigns the name My Text Input to your project. As noted in Chapter 3, I’m rec-
ommending the “My” prefix here so that you don’t confuse your new application with the Text
Input project I’ve created for you in the book’s sample files.

5. Click OK to create the new project in Visual Studio.

Visual Studio opens a new programming project and displays the Visual Basic code associated
with the blank application template.

6. Open Solution Explorer in the IDE if it is not currently visible, and then double-click the file
MainPage.xaml.

Visual Studio opens MainPage.xaml in the Designer window.

7. If the Toolbox is not currently visible, click the Toolbox tab or click the Toolbox command on
the View menu.

8. This Toolbox contains Windows Store app (XAML) controls.

9. Click the TextBox control in the Toolbox, move the mouse pointer to the Designer window,
and then drag right and down to create a small, rectangular box on the page.

You’ll find the TextBox control in both the Common XAML Controls and the All XAML Controls
categories. When you release the mouse button, Visual Studio creates a text box object on the
page.

In the XAML tab of the Code Editor, notice that XAML markup for the text box object now
appears, with several properties already assigned, based on the size and shape of the text box.
The Properties window also displays several of these properties.

 CHAPTER 5 Working with Windows Store app controls 115

10. Click the TextBox control in the Toolbox again, and then create a second text box object below
the first one.

11. Resize the text box so that it is the same size and shape as the first one.

Now you’ll create a button object on the form as well.

12. Click the Button control in the Toolbox, and then create a small button object below the two
text boxes.

13. Click the Zoom control in the Designer, and then select 100% zoom to see a bit more of the
application page.

Your IDE will now look something like this:

14. Enlarge the Properties window so that you have plenty of room to make some adjustments to
the new objects’ properties.

15. Change the Name property of the first text box to InputString, and delete contents of the
object’s Text property.

16. Change the Name property of the second text box to Output, and delete contents of the
object’s Text property.

116 part II Designing the user interface

17. Change the Name property of the button object to TestButton, and change the Content
property of the button to Click To Test.

Your screen should look like this:

Now you’ll create an event handler for the button on the page.

18. Double-click the button object.

The TestButton_Click event handler opens in the Code Editor, and the insertion point blinks
between the Sub and End Sub statements.

19. Type the following line of program code:

Output.Text = InputString.Text.Length

This program statement examines the Text property of the first text box on the page
(InputString) and uses the Length property to determine how many characters have been
entered into the text box. It assigns this number to the second text box (Output). The point
of the demonstration program is simply to show how text boxes can be used to gather and
display textual information in a program.

The Length property is one of several methods and properties that can be used with textual
(or String) data. You’ll learn more about the String data type in Chapter 11, “Mastering data
types, operators, and string processing.”

Now run the program to see how the sample project and its text boxes operate.

20. Click the Start Debugging button on the Standard toolbar.

The Text Input program runs, and the Windows Store app you created appears on the screen.

 CHAPTER 5 Working with Windows Store app controls 117

21. Type You can do this! in the first text box, and then click the Click To Test button.

Visual Basic counts 16 characters in the user input you entered and then displays the following
results:

22. Notice that the Length property counted blank spaces and punctuation, as well as the letters
that you typed. Give it another try.

tip Does the top line of your output screen contain debugging information? Recall
from Chapter 3 that you might see a few sets of numbers at the top of your screen
when your app runs in Debugging mode. These numbers summarize how long vari-
ous tasks take during the execution of your Visual Studio app, including the frame
rate for the user interface thread and how long it took to load the user interface.
These numbers will not appear in the Release build for your application, and you can
suppress them in Debugging mode by removing the code between the #If DEBUG
and #End If statements in the App.xaml.vb file. To avoid distraction, I will not show
the debugging numbers in the screen shots in this book.

23. Remove You Can Do This! from the first text box, and then type Microsoft Visual Basic 2013
programming.

24. Click the Click To Test button.

25. Visual Basic counts all the characters that you typed and displays the number 39 in the second
text box. Your screen looks like this:

118 part II Designing the user interface

You’ve demonstrated how to use the TextBox control to manage basic input and output tasks.

26. Experiment further if you like, and when you’re finished, close the application.

27. Click the Save All command on the File menu to save your project, and specify the My
Documents\Visual Basic 2013 SBS\Chapter 05 folder.

Now you’ll store the contents of a TextBox control in a string variable.

assigning TextBox contents to a variable
A variable is a temporary store location for data in a program. As you probably already know, you can
use one or more variables in your code to store words, numbers, dates, and other values. I’ll spend
much more time talking about the advanced uses of variables and operators in Chapter 11, but while
we are looking at the TextBox control, it is worth noting that you can assign the contents of the Text
property to a variable when you are using TextBox for input.

Traditionally, programmers will use the TextBox control’s Text property to manage string input—
that is, textual information such as words, letters, symbols, and so on. You can also use implicit vari-
able declaration to create variables of other types as well. You’ll be using the Dim keyword to declare
the variable in code, which reserves room in memory for the variable when the program runs. Give it
a try now.

Use a string variable to hold TextBox input

1. Open the TestButton_Click event handler in the Code Editor.

You’ll modify the event handler for the button object so that it stores the data entered in the
first text box in a variable named SampleText. Then you’ll use the ToUpper property to change
the letters in the text string to uppercase, and you’ll display the contents of the variable in the
second text box.

 CHAPTER 5 Working with Windows Store app controls 119

2. Replace the line Output.Text = InputString.Text.Length with the following code:

Dim sampleText As String
sampleText = InputString.Text
Output.Text = sampleText.ToUpper

3. Run the revised program.

4. In the first text box, type happy new year.

Your screen looks like this:

5. Click the Click To Test button.

Visual Basic changes the text from lowercase to uppercase. You’ll see the following screen:

6. You’ve demonstrated one of the most fundamental tasks of processing user input—receiving
information in a TextBox control and assigning it to a variable. With a variable in memory, you
can perform any number of tasks with the information.

120 part II Designing the user interface

7. When you’re finished, close the application.

8. Click the Save All command on the File menu to save your changes.

Now you’ll practice managing multiline input with a TextBox control.

Multiline TextBox controls
A multiline TextBox control is simply a TextBox control that has been sized so that it is capable of
displaying more than one line of information. You can also provide access to information beyond
the edges of your TextBox control if you enable vertical and horizontal scroll bars, which are con-
trolled by an instance of the ScrollViewer class that is exposed to container controls like TextBox. The
ScrollViewer class and properties such as VerticalScrollBarVisibility and HorizontalScrollBarVisibility are
easiest to set by adding XAML markup to the page.

When you’re using a multiline TextBox control, a single variable of type String can also be used to
handle an entire paragraph of text. Give it a try in the following exercise.

Manage a paragraph of text with a TextBox control

1. Display the user interface for your Windows Store app (MainPage.xaml) in the Designer.

The text box object that you’ll enlarge is the top one on the page.

2. Hold the mouse over the top border of the text box object until the pointer becomes a resiz-
ing tool.

3. Expand the text box object so that it is four or five lines high (but the same width).

Your screen should look like this:

Now you’ll add a vertical scroll bar to the text box object by setting the VerticalScrollBarVisibility
property using XAML markup. As you learned in Chapter 2, “The Visual Studio Integrated
Development Environment,” and in Chapter 3, “Creating your first Windows Store application,”

 CHAPTER 5 Working with Windows Store app controls 121

the XAML tab of the Code Editor shows the XAML markup that is associated with each object
in the user interface as you create a page for your Windows Store application.

When you add a new control to a page, a new line of XAML is added to the Code Editor, and
you can edit this markup directly as an alternative to manipulating objects on the page or
setting properties in the Properties window. In this case, you’ll edit the XAML markup for the
InputString text box directly.

4. In the XAML tab of the Code Editor, below the Designer, locate the XAML markup for the
InputString text box control. (The first text box on the page.)

5. After the markup x:Name=”InputString”, enter the following property setting:

ScrollViewer.VerticalScrollBarVisibility=”Visible”

6. Press the Spacebar after you finish typing, to create a blank space between the property set-
ting you just added and the HorizontalAlignment property setting on the same line.

You’re using the VerticalScrollBarVisibility property of the ScrollViewer class to add a vertical
scroll bar to the text box object when the user moves the mouse pointer over the text box. Note
that the scroll bar will be visible only when the application is running and the user hovers the
mouse pointer over it. The Windows 8.1 design guidelines seek to minimize unused “chrome” (or
user interface features) on the screen and displays them only when they are needed.

Your screen should look like this:

122 part II Designing the user interface

Now you’ll add some Visual Basic code to assign a new paragraph of text to a variable and
check it for keywords.

7. Click the MainPage.xaml.vb tab in the IDE to display the Visual Basic code-behind file in the
Code Editor.

8. You’ll see the following three lines of program code in the TestButton_Click event handler:

Dim sampleText As String
sampleText = InputString.Text
Output.Text = sampleText.ToUpper

9. Keep the first two lines, but replace the last program statement with the following code block:

If sampleText.Contains("River") Then
 Output.Text = "The string 'River' was found"
Else
 Output.Text = "The string 'River' was not found"
End If

Your Code Editor should look like this:

The four new lines of code comprise an If…Then…Else decision structure that determines
whether the word “River” is located in the first text box on the page. The first text box is
considered a multiline text box because it has been resized to hold more than one line. (The
change was automatic; in Windows Forms programming, you had to specify multiline with a
property setting.) With the larger text box, there is now plenty of room for the user to enter
a long paragraph of text, and scroll bars will permit content to go well beyond the physical
dimensions of the object.

The key method here is Contains, which determines whether the specified string ("River")
occurs in the current string (sampleText, a variable that holds a copy of the text in the first text
box). If the string "River" is found in SampleText, the message “The string ‘River’ was found”
is copied into the second text box. If the string "River" is not found (and note that this would
include any capitalization variation, such as "river"), the message “The string ‘River’ was not
found” is copied into the second text box.

You’ll learn more about useful If…Then…Else code blocks in Chapter 12, “Creative decision
structures and loops.”

10. Now run the revised Windows Store app.

 CHAPTER 5 Working with Windows Store app controls 123

11. In the first text box on the page, type the following sample paragraph:

I hope to travel one day to a land with a beautiful, shimmering lake, or perhaps a
famous body of water—like Loch Ness. Or, perhaps travel on a wine-dark sea and
sail for adventure and discovery. If not, I would be happy to fish for trout in the
Yellowstone River.

As you type, notice that the vertical scroll bars appear on the text box and allow you to scroll
if necessary. These scroll bars are visible now because you set the VerticalScrollBarVisibility
property to True. When the first text box has the focus or when you hover the mouse pointer
over the text box, the scroll bars will appear.

12. Click the Click To Test button.

Your screen will look like this:

Everything is working correctly. The word “River” was in the last sentence you typed, so the
appropriate message has appeared in the second text box.

13. Now remove the last sentence from the first text box. The last words visible there should be
“adventure and discovery.”

14. Click the Click To Test button.

Because the word “River” is no longer present, the other message is displayed in the second
text box. Your screen looks like this:

124 part II Designing the user interface

You have successfully tested both cases in the If…Then…Else code block.

15. Close the application.

16. Click the Save All button to save your changes.

Well done! But before we move on, let’s experiment with one final feature of the TextBox control.

Check spelling in a TextBox control
One of the most helpful features of Microsoft Office applications is that they can check your spelling
as you type. Although I have written dozens of books about computer software and historical sub-
jects, a day does not go by when I fail to spell check some text that I have written or edited.

A similar capability is available in Windows Store applications, and you can add it to many
container-type Visual Studio controls that are designed to manage text. In this section, you’ll learn
how to enable the spell checker in the TextBox control. If you use the TextBox control in a commercial
application, your users will appreciate the convenience.

Use the IsSpellCheckEnabled property

1. Click the MainPage.xaml tab to display the Designer window in the IDE.

2. Select the first text box on the page (InputString) so that its properties are visible in the
Properties window.

3. Open the Properties windows, expand the second half of the Common category, and add a
check mark to the IsSpellCheckEnabled check box.

When set to True, the IsSpellCheckEnabled property activates a spell checker in the TextBox
control so that unidentified words are flagged with an underline feature. As with Microsoft
Office and other Windows programs, if you right-click a misspelled word, a list of potential
fixes will appear and you can select a correction.

 CHAPTER 5 Working with Windows Store app controls 125

Add a check mark to the AcceptsReturn check box in the Common category.

Enabling this property will allow the user to enter a carriage return in the check box, which
can help format text.

Your Properties window should look like this:

Now try running the program again.

4. Click Start Debugging on the Standard toolbar.

5. In the first text box, type the following text:

Whan that aprill with his shoures soote

The droghte of march hath perced to the roote,

Weary students of medieval English literature might recognize these as the opening lines of
the Prologue of Geoffrey Chaucer’s Canterbury Tales. However, the Visual Studio 2013 spell
checker is not fully acquainted with this text and identifies several words for a closer look, as
noted in the following screen shot:

126 part II Designing the user interface

6. Right-click the third word in the text box (“aprill”), and see what sort of correction is suggested
by the spell checker.

The pop-up box on my system looked like this:

For “aprill,” the spelling checker suggests that we consider “April,” “aril,” or “Aprils.” Alternatively,
we can ignore the correction (to preserve Chaucer’s medieval English) or add the word to the
dictionary so that future spell checks recognize the word.

7. Click “April” to make a change and to see how spelling corrections are made in a TextBox
control.

Visual Studio deletes the old word and inserts a new one, as shown in the following screen
shot:

 CHAPTER 5 Working with Windows Store app controls 127

Spelling corrections work essentially as they do in Microsoft Office and most mainstream
applications for Windows. You’ve added a useful, professional grade feature to your list of
TextBox skills and techniques. You’ll learn how to add a pop-up box to your user interface with
the Flyout control in Chapter 9.

8. Close the Text Input program.

9. Click Save All to save your final changes.

10. Click Close Project on the File menu to close the Text Input application.

It’s time to move on to another Windows Store app control.

Using the FlipView control to display a series of images

Applications for Windows 8.1 are designed to be content-rich and visually interesting, with graphic
elements, photographs, video clips, and other special effects that engage the user and help them to
quickly focus on the task at hand. The FlipView control is one such design tool. It allows you to present
a collection of images to the user that is stunningly beautiful and easy to navigate through.

In this section, you’ll learn how to use the use FlipView control in a Windows Store app to display
a series of photographs that fill up the entire screen. To prepare images for the control, you’ll add six
test images that I’ve created for you to the Assets folder in a Visual Studio project, and then you’ll cre-
ate a large FlipView control on the page to display the photos.

128 part II Designing the user interface

add images to the assets folder

1. On the Visual Studio File menu, click New Project.

The New Project dialog box opens.

2. In the Visual Basic template group, click Windows Store, and then click the Blank App (XAML)
project.

Visual Studio prepares the IDE for a basic Windows Store app.

3. In the Name text box, type My Image Gallery.

Visual Studio assigns the name My Image Gallery to the project.

4. Click OK to create the new project in Visual Studio.

Visual Studio opens a new project and displays the code associated with the blank application
template.

5. Open Solution Explorer in the IDE if it is not currently visible.

6. In Solution Explorer, right-click the Assets folder, select Add | Existing Item, and browse to the
My Documents\Visual Basic 2013 SBS\Chapter 05 folder.

You’ll see the following Add Existing Item dialog box:

As you learned in Chapter 3, the Assets folder in Solution Explorer allows you to include
resources in a project so that they can be referenced easily in XAML markup and Visual Basic
code. An additional benefit is that the asset files will be added to the project automatically
when it is distributed.

 CHAPTER 5 Working with Windows Store app controls 129

7. Hold down the Ctrl key, and then click the six files entitled Carrots, Monument, Mountain,
Ocean, Sand, and Tree.

tip You can select contiguous or noncontiguous files by holding down the Ctrl key
and clicking the desired files.

8. These are images of natural objects and an architectural detail, which I have taken over the
past few years—the type of full screen images that look really good in a FlipView control.

9. Click Add to add the selected items to the Assets folder.

Visual Studio adds the selected images. Now you’ll create a FlipView control on the page to display
the images.

add a FlipView control to the page

1. Double-click the MainPage.xaml file in Solution Explorer to open the main application page in
the Designer window.

2. Click the Zoom tool in the Designer, and then click the Fit All option so that you can see the
entire page in the Designer.

3. Open the Toolbox, and find the FlipView control.

Although you could use this control now to create the flip view object you’ll use, I’m going to
direct you to create the object using XAML markup. This step allows you to set more precise
dimensions for the FlipView frame, and you can also use XAML markup to nest the images
nicely within the FlipView control.

Learning to nest a child control (Image) within a parent control (FlipView) is an important skill
that you’ll practice often in this book.

4. Close the Toolbox, and open the XAML tab of the Code Editor, which should be open now
beneath the Designer window.

5. After the line of markup that includes the keywords Grid Background, enter the following
XAML markup to define the FlipView control and six Image controls within it:

<FlipView Height=”750” Width=”1000”>
 <Image Source=”Assets/Tree.jpg” />
 <Image Source=”Assets/Carrots.jpg” />
 <Image Source=”Assets/Mountain.jpg” />
 <Image Source=”Assets/Sand.jpg” />
 <Image Source=”Assets/Ocean.jpg” />
 <Image Source=”Assets/Monument.jpg” />
</FlipView>

130 part II Designing the user interface

Notice how you are placing each new image definition on its own new line, and at the top of
the markup, you set the height and width of the FlipView control. While you are entering this
markup, Visual Studio’s IntelliSense feature helps you by supplying some of the keywords,
quotation marks, and indents. (Note that the indenting here is just for clarity; you could also
enter all of the markup on one line in the Code Editor.)

I chose the dimensions 750×1000, measured in pixels, so that the FlipView control would fill up
most of the screen on my computer display. However, if you are using a higher resolution dis-
play setting, the control might not fill up your screen entirely. You can adjust this by specifying
a larger FlipView height and width if you like.

The Designer and IDE will look like this when you are finished:

Your Image Gallery program is now ready to run.

6. Click Start Debugging on the Standard toolbar.

The program runs, and the first image appears on the page, as shown in the following screen
shot. This photo is of a giant Douglas fir tree in a Washington State forest.

 CHAPTER 5 Working with Windows Store app controls 131

Notice the small arrow pane or Next button on the right side of the image, which appears
when you first move the mouse or touch the screen. This is a scrolling feature that allows you
to move to the next image in the collection. You can also move forward or backward in the
image collection by swiping or using the direction keys.

7. Move the mouse pointer to the right side of the page, and click the Next button.

A second image appears of carrots for sale at a farmer’s market in Cambridge, England.

8. Click through the remaining images until the final photo appears, a time-worn stone bust of a
princely figure on the side of a building in London, England.

Your screen will look like the following screen shot. Because this is the last image in the
FlipView control, only the Back button appears on the left side of the image.

132 part II Designing the user interface

9. Feel free to scroll back through the images, and then move forward again.

As you can see, the FlipView control allows you rapid access to a series of photos, and you can
scroll through them with minimal visual distractions (no scroll bars, buttons, or toolbars to
look at). This graphics-centered content is at the heart of the Windows 8.1 user interface, and
you’ll find FlipView to be very helpful when you are designing a photo sorting program, music
catalog tool, or any type of Windows Store app where a large number of images need to be
displayed quickly.

10. Close the application when you have finished examining the photos.

11. Save your changes, specify the My Documents\Visual Basic 2013 SBS\Chapter 05 folder for the
project, and then click the Close Project command on the File menu.

Visual Studio save your files and then closes the project.

You’re finished with the FlipView control for now. However, keep in mind that you worked with the
FlipView control in this chapter without adding any Visual Basic program code at all. You can enhance
your program by adding an event handler for the SelectionChanged event so that each time you click
the Next or Back buttons, you perform some additional action, such as playing a sound effect or
displaying information in a TextBox on the page.

You can experiment with these additional features another time. In the next section, you’ll learn
how to play entertainment media in a Windows Store app, such as audio clips or a short video file.

 CHAPTER 5 Working with Windows Store app controls 133

Using the MediaElement control to play entertainment media

In addition to the colorful images that you can display with the FlipView control, a Windows Store
app can be enhanced by the inclusion of entertainment media, such as music or sound effects, video
footage, commercials, or other A/V media. You experimented a little bit with this feature in Chapter 3
when playing a musical sound effect for the Lucky Seven program.

The procedure for integrating entertainment media involves adding the media file or files to the
Assets folder in your Visual Studio project and then adding a MediaElement control to the page to
run the media file when it is needed. The MediaElement control is located in the Windows Store app
Toolbox, and when you add it to a page, it has no visible interface. (However, you’ll learn how to add
its interface later in this chapter.) In addition to the basic playback features that you might expect in a
media control, MediaElement offers several features that will allow you to customize how the audio or
video media is controlled and displayed.

In this section, you’ll learn the basics of the MediaElement control and its essential features. You
should note that audio and video files are stored electronically in a variety of formats and that some
of the proprietary ones (such as Apple’s iTunes) are not supported by the MediaElement control.
However, popular media formats like MP3, WAV, AVI, and MPEG-4 are all supported and will provide
you with plenty of content choices for your applications. There are also software tools available that
will allow you to create media files, edit them, and translate them from one format to another.

First, you’ll play an electronic music file in your Windows Store application. In the next section,
you’ll learn how to manage video playback on a page.

play music with the MediaElement control

1. On the Visual Studio File menu, click New Project.

The New Project dialog box opens.

2. In the Visual Basic template group, click Windows Store, and the Blank App (XAML) project.

3. In the Name text box, type My AV Jukebox.

4. Click OK to create the new project in Visual Studio.

Visual Studio opens the new project with a blank application template.

5. Double-click the file MainPage.xaml in Solution Explorer.

Visual Studio opens MainPage.xaml in the Designer window.

134 part II Designing the user interface

6. Open the Toolbox, open the All XAML Controls category, and double-click the MediaElement
control.

Visual Studio places a new media player object in the upper-left corner of the application
page. You can set various property settings for MediaElement. However, you will be able to
see the MediaElement control only while you are designing your project. When the program
runs, the MediaElement control remains hidden, unless the control is displaying a video clip.

The Source property of the MediaElement control specifies the name of the media file that will
be loaded into the control for playback. The best way to supply a media file is to add the file
via the Assets folder in your application.

You’ll add an electronic music file to this folder now.

7. Right-click the Assets folder in Solution Explorer to display the shortcut menu of commands.

8. Point to the Add command, and then click Existing Item.

9. In the Add Existing Item dialog box, browse to the My Documents\Visual Basic 2013 SBS\
Chapter 05 folder and click Electro Sample, an MP3 file containing electronic music. This file
was created by my son, Henry Halvorson.

tip You might also be able to locate additional audio files on your system in the
Libraries category, in the My Music folder.

10. Click Add to add the music file to your project in the Assets folder.

Visual Studio inserts the file, and it appears now in Solution Explorer under Assets.

Now you’re ready to assign this music asset to the Source property of the media element
object.

11. Click the media element object in the Designer window, and then open the Properties
window.

12. Change the Name property to MediaTool.

13. Expand the Media category, scroll down to the Source property, and click the Source list box.

Your new media file (Electro Sample.mp3) appears in the list.

14. Click the media file to link it to the media element object.

Your Properties window will look like this:

 CHAPTER 5 Working with Windows Store app controls 135

Now you’re ready to save and run the project.

15. Click the Save All command on the File menu to save your project, and specify the My
Documents\Visual Basic 2013 SBS\Chapter 05 folder.

16. Click Start Debugging on the toolbar.

The My AV Juke Box application runs, and the selected music starts playing. Because the
MediaElement control has no user interface to interact with, you’ll see only a blank screen. The
“Electro Sample” music track runs until it is complete (a little less than a minute), and then the
program waits for you to terminate it. (This is electronic music created with the Ableton Live 8
software suite.)

Now you’ll close the program and add a few buttons to the page to control the playback as a
typical music-sampling program might.

17. Close the My AV Jukebox program.

In the following exercise, you’ll add Play, Pause, Stop, and Mute buttons to the Windows Store app.

Control playback with buttons

1. Change the Designer’s Zoom setting to 100%.

2. Use the Button control in the Toolbox to add four Button controls to the left side of the page
in the Designer.

3. Set the Name properties for the button objects to PlayButton, PauseButton, StopButton,
and MuteButton, respectively.

4. Set the Content properties for the button objects to Play, Pause, Stop, and Mute,
respectively.

136 part II Designing the user interface

The following screen shot shows how your new button objects should look on the page when
you’re finished. (Note also the MediaElement control and the XAML markup for the object in
the Designer.)

Now you’ll write one-line Visual Basic event handlers for each of the four button objects.

5. Click the PlayButton object, open the Properties window, and then click the Event Handler
(lightning bolt) button to see the list of event handlers for the Button control.

6. Double-click the text box next to the Click event to create a new event handler.

7. Enter the following line of Visual Basic program code:

MediaTool.Play()

This line uses the Play method of the MediaElement control to play the loaded media file at
the current play position. If the media file has been paused, the Play method will cause it to
resume. If the media file has been stopped, the Play method will cause it to start again at the
beginning.

Now you’ll repeat similar steps with each of the remaining buttons, creating event handlers
with appropriate methods or properties for each action.

8. Return to the Designer, and click the Pause button.

 CHAPTER 5 Working with Windows Store app controls 137

9. In the Properties window, double-click the text box next to the Click event and type the fol-
lowing line of code into the PauseButton_Click event handler:

MediaTool.Pause()

This line uses the Pause method to pause the loaded media file at the current play position.
This feature can be used to give users some control as they listen to music or watch video.

10. Return to the Designer, and click the Stop button.

11. In the Properties window, double-click the text box next to the Click event and type the fol-
lowing line of code into the StopButton_Click event handler:

MediaTool.Stop()

This line uses the Stop method to end audio or video playback. Different from the Pause
method, which temporarily stops playback but retains the current position in the track, the
Stop method ends playback. If you execute the Play method after the Stop method, playback
will begin again, but at the start of the media file.

12. Return to the Designer, and click the Mute button.

13. In the Properties window, double-click the text box next to the Click event and type the fol-
lowing code:

MediaTool.IsMuted = Not MediaTool.IsMuted

This line uses the Boolean IsMuted property to mute or unmute audio playback. The statement
uses the Not operator to switch, or toggle, the current value of IsMuted. If playback is currently
muted, the statement will remove the muting effect. If playback is currently unmuted, the
statement will mute playback.

14. Click the Save All command on the File menu to save your changes.

Now you’ll run the program again to see how the four playback controls work.

15. Click Start Debugging on the toolbar.

The My AV Jukebox application runs, and the selected audio file begins to play. Your screen
should look like this:

138 part II Designing the user interface

16. After a few moments of electronic music, click the Pause button.

The song pauses at the current playback position.

17. Click the Play button.

Audio playback resumes right where you left off.

18. Click the Mute button.

The music is muted (volume is temporarily set to 0), but playback continues.

19. After a few moments, click the Mute button again.

The original volume setting is restored, and you’ll be able to hear music again. However, you
might notice that the song has advanced, and if you wait too long, the song will end. That is,
the Mute button is different from the Pause button.

20. Click the Stop button.

Audio playback terminates.

21. Click the Play button.

The electronic music file begins again, but at the beginning of the song.

22. Continue experimenting with the playback controls you just created. When you’re finished,
quit the program.

As you can see, the MediaElement control not only allows you to play audio files, but it provides
you with interesting methods and properties to control what happens during playback. You can
create buttons and other features that let the user control what is happening, or you can control
playback behind the scenes in event handlers—playing audio tracks only when you want them to be
played.

 CHAPTER 5 Working with Windows Store app controls 139

In the next section, you’ll modify the My AV Jukebox app so that it plays a video file rather than a
music file.

play videos using the MediaElement control

1. Display Solution Explorer, and then right-click the Assets folder to display the shortcut menu.

2. Point to the Add command, and then click Existing Item.

3. In the Add Existing Item dialog box, browse to the My Documents\Visual Basic 2013 SBS\
Chapter 05 folder and click Merry-go-round, a video file in WAV format created for this book
by Henry Halvorson.

You might also be able to locate valid video files on your system in the Libraries category, in
the Videos folder.

4. Click Add to add the video file to the project’s Assets folder.

Visual Studio inserts the file. All you need to do now is replace the reference to the music file
from the last exercise with the video file that you just added.

5. Click the media player element again in the Designer, and then open the Properties window
and click the Properties button.

6. Expand the Media category, scroll down to the Source property, and click the Source list box.

7. Click the video you just added to link it to the media element object.

Your video file is ready to run. However, for best results, you’ll want to resize your media
element object so that it is larger, because the current playback window is a bit small. The
window size you set is up to you, but keep in mind that a variety of devices might need to run
your program (all with different screen dimensions), so pick a size that makes sense for your
application.

8. In the Designer window, move the media element object to the right of the four button
objects.

9. Increase the size of the media element object so that it takes up about one-third of the screen.

You can fine-tune the size after you run the program and get a sense for how big the video
window is. Your Designer will look like this (note the selected media element object on the
page):

140 part II Designing the user interface

Now you’re ready to test the application.

10. Click the Save All command on the File menu to save the changes to your project.

11. Click Start Debugging on the toolbar.

The My AV Jukebox app runs, and the selected video file begins to play in the window you
moved and resized. The media playback controls you created will work just as they did for the
audio file, with the caveat that now you’ll have both video and audio. This merry-go-round is
at a local park by my house.

Your screen should look something like this:

 CHAPTER 5 Working with Windows Store app controls 141

12. Experiment with the Pause, Play, Stop, and Mute buttons in the project.

The MediaElement control is designed to work with both audio and video files, so the pro-
gram’s event handlers manage your playback requests with no code changes. This particular
media file was edited with Windows Movie Maker.

13. When you’re finished, quit the Windows Store app.

If you like, you can go back into the project and experiment with additional audio or video
files on your computer. Just be careful not to insert files that are too large, because they can
be cumbersome when it comes time to distribute your app!

14. When you’re finished working with the program, close the Visual Studio project.

Use the WebView control to display live web content

Windows Store apps are designed to be sold and installed over the Internet and to take advantage of
information that resides on the web in a variety of ways. One of the simplest ways to access web data
in a Windows Store app is simply to open a browser window on your application page and to allow
the user to access a website directly. Visual Studio allows you to do this programmatically with the
WebView control in the Windows Store app Toolbox.

The WebView control is not a full-featured web browser like Internet Explorer. However, it was
added to the Windows Store app toolbox so that programmers would have an easy way to display live
web content if they needed to in a Windows Store application. In the following section, you’ll explore
this feature and some of its practical uses.

142 part II Designing the user interface

Create a simple browser with the WebView control

1. On the Visual Studio File menu, click New Project.

The New Project dialog box opens.

2. In the Visual Basic template group, click Windows Store, and then click the Blank App (XAML)
project.

3. In the Name text box, type My Web Browser.

4. Click OK to create the new Visual Studio project.

Visual Studio opens the new project template.

5. Double-click the file MainPage.xaml in Solution Explorer.

Visual Studio opens the app’s user interface in the Designer.

This program will feature a TextBox control to hold the web address, a Button control to
navigate to the web address, and a WebView control to display the specified webpage. Create
these items now.

6. At the upper-left corner of the page, create a long, single-line text box object, using the
TextBox control in the Toolbox.

7. Use the Properties window to set the text box’s Name property to URL, and set the text box’s
Text property to http://michaelhalvorsonbooks.com.

8. At the top of the page, to the right of the new text box object, create a small button object,
using the Button control in the Toolbox.

9. Use the Properties window to set the button object’s Name property to NavigateButton, and
set the button’s Content property to Open.

10. Click the WebView control in the Toolbox. (You’ll find it in the All XAML Controls section.)

11. Using the control’s drawing pointer, create a very large rectangular box on the page below the
text box and button objects.

In this simple test app, the goal will be to display as much of the web browser as possible so
that the user will not need to use scroll bars to examine information that is beyond the edge
of the WebView control window. So make the WebView control really big, taking up all the
remaining real estate on the page.

12. After you create the object, you might want to close the Toolbox window and adjust the
amount of zoom magnification in the Designer window to make as much of the page visible in
the IDE as possible. (The Zoom tool’s Fit All setting will help you do this.)

13. Use the Properties window to set the web view object’s Name property to Browser, and set
the HorizontalAlignment and VerticalAlignment properties to Center.

 CHAPTER 5 Working with Windows Store app controls 143

The alignment-related properties are located in the Layout category, and they center-align
content in the browser window.

Your final user interface should now look similar to the following screen shot. (Again, note that
the XAML markup for the WebView control has been added to the Code Editor.)

Now you’ll create a short event handler for the button object to load the web view control
with a web address or URL when the program runs. To quickly create an event handler for an
object’s default event (typically Click), you can double-click the object on the page to open
the event handler in the Code Editor.

14. Double-click the button object in the Designer.

The NavigateButton_Click event handler opens in the Code Editor, and the insertion point
blinks between the Sub and End Sub statements. Click is the default event for button objects.

15. Type the following line of program code:

Browser.Navigate(New Uri(URL.Text))

This mighty line of Visual Basic code has a lot packed into it! The Navigate method of the
Browser object directs the WebView control to load the specified webpage. The webpage is
listed in the URL text box that you created at the top of the user interface. The other impor-
tant syntax here are the keywords New Uri, which put the web address into a format that is
standard for web browsers, the so-called uniform resource indicator (URI) format.

144 part II Designing the user interface

Because this is a test program, I assume that you will type in a web address in the proper for-
mat. However, if you don’t use proper syntax (if you misspell the address), the page won’t load
and you will receive only minimal feedback from the program that something went wrong.
Obviously, a more sophisticated program would make the error condition clearer and instruct
the user about how to fix it, but we won’t spend time creating the error handler now. (For
more about that topic, see Chapter 13, “Trapping errors by using structured error handling.”)

With these limitations out in the open, you’re now ready to run the My Web Browser
application.

16. Click the Save All command on the File menu to save the changes to your project. Specify the
Chapter 05 folder as you have throughout this chapter for the location.

17. Click Start Debugging on the toolbar.

The Web Browser app runs, and the screen shows a text box for a web address at the top of
the page, along with an Open button.

Within the text box is the web address for my own author page, http://michaelhalvorsonbooks.com.
You can modify this sample web address if you want, but it is a reliable one that you can use
to test this and other programs as you like. (You might also find something of interest there,
including new books!)

18. Click Open to open the webpage.

Visual Studio loads the web address into the WebView control. Your screen should look some-
thing like this:

http://michaelhalvorsonbooks.com

 CHAPTER 5 Working with Windows Store app controls 145

Yes, that’s me on the screen! And, you’ll find that the WebView control is also scrollable, so
you can use touch input, mouse wheel, or the direction keys to move up and down as you like.
Web links and other content are also “live” on this page, so you can navigate to additional
pages as you like. Beyond the actual links in the website, there are few navigation controls
in this demonstration program. However, you can create your own navigation buttons and
controls if you would like, by programming the events, properties, and methods provided by
the WebView control.

19. Type another web address in the text box, and then click Open.

Visual Studio loads the new page, and you can explore that website as well.

But…what if you encounter an error condition while loading webpages?

Actually, if you encounter any type of error while loading a webpage when using the WebView
control, the Visual Studio IDE will display an error message in a text box asking you whether or
not you want to continue, or whether you want additional information about what happened.
Often these problems will simply be Internet script errors or other warning messages, because
various websites have their own ways of sending information to the different web browsers on
the market.

146 part II Designing the user interface

You can suppress such “noise” in the Visual Studio IDE by closing the application and then
clicking Tools | Options | Debugging | Just-In-Time. Remove the check mark from the Script
check box, and then run the program again. Just be careful to use the Tools | Options |
Debugging command again to put the check mark back when you’re done. (There are pos-
sible security issues associated with having your users browse to unknown or untrusted
websites.)

Error handling is something that you will get to a little later in the book. For now, consider
how easy it is to launch an Internet browser from within a Visual Studio application. You have
made an excellent start with a collection of very useful Windows Store controls.

20. When you’re finished, quit the My Web Browser program.

You’re finished working with Windows Store app controls for this chapter.

21. On the File menu, click the Close Project command, and then exit Visual Studio.

Summary

In this chapter, you experimented with some of the most useful controls in the Visual Studio Toolbox.
Specifically, you worked with Windows Store app (XAML) controls that are designed for Windows 8.1-based
applications. You learned how to use the TextBox control to manage a variety of text input tasks, the
FlipView control to display a series of interesting photos, the MediaElement control to play audio and
video files, and the WebView control to display content from a webpage.

These controls manage information and allow the user to access interesting media within Windows
Store applications. I will continue to discuss common Windows Store app controls and their uses in
this book. If you want to see a complete list, you can examine the “controls” entry in the Index of
this book to find all the controls that I discuss listed alphabetically. You might also want to consult
my book Start Here! Learn Microsoft Visual Basic 2012, (Microsoft Press), which provides a thorough
introduction to the basic Windows Store app controls, including Button, Ellipse, TextBlock, CheckBox,
RadioButton, and much more.

In Chapter 6, “Working with Windows Forms controls,” you’ll continue learning about controls, but
this time in relation to the Windows Forms controls that a Visual Studio programmer uses when they
create a Windows desktop application. As you learned in Chapter 4, “Windows desktop apps: A walk-
through using Windows Forms,” Windows desktop apps utilize a different Toolbox and have different
requirements for the way that controls are used within applications and the user interface. Chapter
6 introduces what I consider the essential Windows desktop app controls, such as DateTimePicker,
CheckBox, RadioButton, ListBox, MenuStrip, ToolStrip, and OpenFileDialog.

 147

C H A P T E R 6

Working with Windows Forms
controls

After completing this chapter, you will be able to

■■ Use the DateTimePicker control to display calendars and choose dates.

■■ Use CheckBox, RadioButton, GroupBox, and ListBox controls to process user input.

■■ Add menus to your Windows desktop app by using the MenuStrip control.

■■ Add toolbars and buttons by using the ToolStrip control.

■■ Add standard dialog boxes to your programs, including OpenFileDialog and ColorDialog.

As you learned in earlier chapters, Microsoft Visual Studio 2013 controls are the graphical tools
you use to build the user interface of a Visual Basic app. Controls are located in the IDE’s Toolbox,

and you use controls to create objects on a page or a form. You customize them with property set-
tings and event handlers. The controls that load into the Visual Studio Toolbox will depend on the
type of application that you are creating.

If you open a new Windows desktop application project, you’ll see Windows Forms controls in
the Toolbox, and you received some basic exposure to the Label, Button, and PictureBox controls
in Chapter 4, “Windows desktop apps: A walkthrough using Windows Forms.” In this chapter, you’ll
continue working with Windows desktop apps, and you’ll learn how to manage information using
the DateTimePicker, CheckBox, RadioButton, ListBox, and GroupBox controls. You’ll also learn how to
create menus, toolbars, and dialog boxes in a Windows desktop app by using the MenuStrip, ToolStrip,
and OpenFileDialog controls.

These common controls are what I consider the essential user interface tools and design features
for a Windows desktop (Windows Forms) application, and they will be useful to you as you prepare
programs for that environment. However, keep in mind that Windows Forms controls are not easily
copied to Windows Store apps; typically, you need to use completely separate controls for Window
Store apps, which necessitates the multiplatform approach I am discussing in this book. In this chap-
ter, I will present some of the Windows Forms controls that you should be familiar with if you are
going to create Windows desktop apps using Visual Basic 2013. This information will also be useful for
Visual Studio developers who are moving back and forth between the two platforms.

148 part II Designing the user interface

Using the DateTimePicker control

As you learned in earlier chapters, some Visual Studio controls display information, and others gather
information from the user or process data behind the scenes. In this opening exercise, you’ll work
with a simple Windows Forms control called DateTimePicker, which can be placed on a form and will
prompt the user for a date or time using a graphical calendar. Although your use of the control will be
rudimentary at this point, experimenting with DateTimePicker will familiarize you with how Windows
Forms controls work and how much work many controls do on their own, with little programmatic
involvement.

The Birthday program uses a DateTimePicker control and a Button control to prompt the user for
the date of his or her birthday. It then displays that information by using a pop-up window called a
message box, which is a common feature of Windows desktop applications. Give it a try now.

Gather information from a calendar with DateTimePicker

1. Start Visual Studio 2013.

2. On the Visual Studio File menu, click New Project.

The New Project dialog box opens, with project templates listed by category on the left side
of the dialog box. Because you are now creating a Windows desktop (Windows Forms) app,
you want to be sure to select the Windows template, rather than the Windows Store template
you used in Chapter 5, “Working with Windows Store app controls.”

3. Click the Windows category under Visual Basic in the Templates area of the dialog box.

The New Project dialog box looks like this:

 CHAPTER 6 Working with Windows Forms controls 149

4. Click the Windows Forms Application icon in the central Templates area of the dialog box, if it
is not already selected.

Visual Studio prepares the development environment for Visual Basic Windows desktop app.

5. In the Name text box, type My Birthday.

Visual Studio assigns the name My Birthday to your project. (You’ll specify a folder location for
the project later.)

6. Click OK to create the new project in Visual Studio.

Visual Studio cleans the slate for a new programming project and displays a blank Windows
form in the Designer for your user interface. Remember that, by convention, a window in a
Windows Store app is called a page, and a window in a Windows desktop app is called a form,
and I’ll recognize these distinctions in this book.

7. Open the Toolbox in the IDE, and examine the various controls provided for Windows desktop
(Windows Forms) apps.

You’ll find the most typical controls in the Common Controls category of the Toolbox. All
Windows Forms is also a very useful category.

150 part II Designing the user interface

8. Double-click the DateTimePicker control in the Common Controls category of the Toolbox.

Visual Studio creates a date time picker object on the form, with the current date displayed in
the object.

9. Drag the control to the middle of the form, and resize it so that you can see the entire date.

Your form will look like this in the IDE:

By default, the date/time picker object displays the current date, but you can adjust the cur-
rent setting by changing the object’s Value property. Displaying the date is a handy design
guide—it lets you size the date/time picker object appropriately when you’re creating it.

10. Double-click the Button control in the Toolbox to add a button object to the form, and then
drag it below the date time picker.

You’ll use this button to display your own birth date and to test that the control is working
properly.

11. In the Properties window, change the Text property of the button object to Show My
Birthday, and if necessary, resize the button object to display all of the text.

 CHAPTER 6 Working with Windows Forms controls 151

12. Change the Name property of the button object to DateButton.

13. Click the form object itself (the background of the form anywhere within the Form1 window
frame), and then display the form’s Text property in the Properties window.

14. Change the Text property of the form object to Date Time Picker Example.

As you learned in Chapter 4, you can change the Text property of the form to modify the
words that appear at the top of this window’s frame when the program runs. Making this
change makes your program’s purpose clearer and more interesting visually than the default
“Form1.”

Now you’ll add a few lines of Visual Basic code to an event handler associated with the button
object.

15. Double-click the button object on the form to display its default event handler, and then type
the following statements between the Private Sub and End Sub in the DateButton_Click event
handler:

MsgBox("Your birth date was " & DateTimePicker1.Text)
MsgBox("Day of the year: " & DateTimePicker1.Value.DayOfYear.ToString())

These program statements display two message boxes (small dialog boxes) with informa-
tion from the date time picker object. The first line uses the Text property of date time picker
to display the birth date information that you select when using the object at run time. The
MsgBox function displays the string value "Your birth date was" in addition to the textual
value held in the date time picker’s Text property. These two pieces of information are joined
together by the string concatenation operator (&).

The statement DateTimePicker1.Value.DayOfYear.ToString() uses the date time picker object to
calculate the day of the year in which you were born, counting from January 1. This is accom-
plished by the DayOfYear property and the ToString method, which converts the numeric
result of the date calculation to a textual value that’s more easily displayed by the MsgBox
function.

Methods, like ToString in the preceding example, are elements in Visual Basic code that
perform an action or a service for a particular object, such as converting a number to a
string or adding items to a list box. Methods differ from properties, which manage a value,
and event handlers, which execute or fire when a user manipulates an object. You’ll see that
numerous methods are shared among objects so that when you learn how to use a particular
method, you’ll be able to use it again in different circumstances.

After you enter the code for the DateButton_Click event handler, the Code Editor looks similar
to this:

152 part II Designing the user interface

16. Click the Save All button to save your changes to disk, and specify My Documents\Visual Basic
2013 SBS\Chapter 06 as the folder location.

Now you’re ready to run the simple Windows desktop app.

run the Birthday program

1. Click the Start Debugging button on the toolbar.

The Birthday program starts to run. The current date is displayed in the date time picker.

2. Click the arrow in the date time picker to display the object in Calendar view.

Your form looks like the following screen shot, but most likely with a different month and date.

3. Click the Left scroll arrow to look at previous months on the calendar.

Notice that the text box portion of the object also changes as you scroll the date. However,
the Today value at the bottom of the calendar doesn’t change.

Although you can scroll all the way back to your exact birthday, you might not have the
patience to scroll month by month. To move to your birth year faster, select the year value in
the date time picker text box and enter a new year.

 CHAPTER 6 Working with Windows Forms controls 153

tip To move even faster to previous (or future years), click the month title at the top
of the picker to zoom out and display the entire year. Click again to zoom out to a
list of years, and click once more to zoom out to a decade.

4. Select the four-digit year in the date time picker text box.

When you select the date, the date time picker closes.

5. Type your birth year in place of the year that’s currently selected, and then click the arrow
again.

The calendar reappears in the year of your birth.

6. Click the scroll arrow again to locate the month in which you were born, and then click the
exact day on which you were born.

If you didn’t know the day of the week on which you were born, now you can find out!

When you select the final date, the date time picker closes, and your birth date is displayed in
the text box. You can click the button object to see how this information is made available to
other objects on your form.

7. Click the Show My Birthday button.

Visual Basic executes your program code and displays a message box containing the day and
date of your birth. Notice how the two dates shown in the two boxes match:

154 part II Designing the user interface

8. Click OK in the message box.

A second message box appears, indicating the day of the year on which you were born—
everything is working as planned.

You’ll find this control to be quite capable—not only does it remember the new date or time
information that you enter but it also keeps track of the current date and time, and it can
display this date and time information in a variety of useful formats.

tip To configure the date/time picker object to display times instead of dates, set
the object’s Format property to Time.

9. Click OK to close the message box, and then click the Close button on the form.

10. On the File menu, click Close Project to close the Birthday project.

You’re finished using the DateTimePicker control for now.

Controls for gathering input

Visual Basic provides several mechanisms for gathering input in a program. Text boxes accept typed
input, menus present commands that can be clicked or chosen with the keyboard, and dialog boxes
offer a variety of elements that can be chosen individually or selected in a group. In the following
exercises, you’ll learn how to use the CheckBox, RadioButton, GroupBox, and ListBox controls to help
you gather input in a variety of situations.

 CHAPTER 6 Working with Windows Forms controls 155

Using the CheckBox control
Your first task will be to experiment with the CheckBox control in the Toolbox. You’ll use CheckBox to
explore how basic user input is processed in a Windows desktop app.

Create a CheckBox control

1. On the File menu, click New Project.

The New Project dialog box opens.

2. Create a new Windows Forms application named My CheckBox.

The new project is created, and a blank form appears in the Designer.

3. Enlarge the form substantially so that it takes up about half of the screen and is in a rectangu-
lar shape that is wider than it is high.

4. Click the CheckBox control in the Toolbox, and then create a check box object near the bot-
tom of the form.

A new check box appears on the form much like other objects in a Windows desktop app. You
can name, move, and resize this check box, as well as adjust features such as font name and
font style.

5. Use the Properties window to change the check box’s Name property to
DisplayImageCheckBox.

6. Set the check box’s Text property to Display Bird Image.

7. Set the check box’s Checked property to True.

The Checked property specifies whether or not a check mark appears in the check box. You
are setting the Checked property to True now because you want the check box to be selected
when the user first opens the program.

Now you’ll create a large picture box object above the check box.

8. Click the PictureBox control in the Toolbox, and then create a substantial, rectangular picture
box object above the check box.

By default, the picture box is named PictureBox1.

9. Set the Name property of the picture box object to BirdPhoto.

Now you’ll add a swan photo to the picture box by using the picture box’s smart tag feature.
As you learned in Chapter 4, a smart tag is a context-sensitive button attached to the upper-
right corner of the picture box frame. You can use the smart tag to quickly adjust common
settings.

156 part II Designing the user interface

10. Click the picture box object’s smart tag to display the shortcut menu of commands.

11. Click Choose Image to display the Select Resource dialog box.

12. Click Project Resource File, and then click the Import button to create a new Resources folder
and place a file in the folder.

A Resources folder is perfect for art and photo files, and it will allow the images to travel with
the project as you move and distribute it.

13. Double-click Swan.jpg in the My Documents\Visual Basic 2013 SBS\Chapter 06 folder.

Visual Studio inserts the photo of a swan swimming, and it appears in the Select Resource
dialog box. Your dialog box will look like this:

14. Click OK.

In Solution Explorer, a Resources folder now appears with the file Swan.jpg in it.

15. In the smart tag’s Picture Box Tasks menu, click StretchImage in the Size Mode list box.

A photo of a swan swimming in a lake fills the picture box object in the Designer.

16. Adjust the spacing of the image so that it takes up about the amount of space on the form as
shown in the following illustration:

 CHAPTER 6 Working with Windows Forms controls 157

Now you’ll adjust the words that appear on the title bar of the Windows desktop app when it
runs.

17. Click the form’s background (not an object on the form), and then use the Properties window
to set the form’s Text property to Check Box Sample.

Now you’re ready to create a simple event handler to process the check box selection that the
user can make on the form. The If…Then…Else decision structure shown here can be expanded
to handle any number of tasks, so you can use the event handler as a model as you use check
boxes in your own Windows desktop apps. The code tests the Checked property, which is set
to True if the user selects the check box.

18. Double-click the check box object on the form to open the DisplayImageCheckBox_CheckedChanged
event handler in the Code Editor.

19. Enter the following program code:

If DisplayImageCheckBox.CheckState = CheckState.Checked Then
 BirdPhoto.Visible = True
Else
 BirdPhoto.Visible = False
End If

158 part II Designing the user interface

The DisplayImageCheckBox_CheckedChanged event handler runs only if the user clicks in the
check box while the program is running. The event handler uses an If…Then…Else decision
structure to complete its work, which I will discuss more fully in Chapter 12, “Creative decision
structures and loops.” In this case, the rather simple routine is quite easy to understand.

The If statement begins by checking the current status, or state, of the check box on the form,
which you have named DisplayImageCheckBox. If a check mark is present (that is, the check
box is selected), the comparison with the CheckState.Checked enumeration will result in a
value of True, and the bird photo will be displayed.

The fourth line also makes use of the Visible property, but in this case it hides the Swan photo
if a check box has been cleared from the check box. Finally, all multiline If…Then…Else decision
structures conclude with an End If statement.

Typically, you’ll want to add an event handler like this for each check box object that you place
on a form. Because this project contains only one check box, you just need the one event
handler.

20. Click the Save All button on the Standard toolbar to save your changes, specifying the My
Documents\Visual Basic 2013 SBS\Chapter 06 folder as the location.

run the CheckBox program

1. Click the Start Debugging button on the Standard toolbar.

Visual Basic runs the program in the IDE. A Swan appears in a picture box on the form, and the
check box is selected. Your form will look like this:

 CHAPTER 6 Working with Windows Forms controls 159

2. Click the Display Bird Image check box to clear the check mark.

Visual Basic removes the Swan image, and your form looks like this:

3. Select and clear the check box several times to see how the image appears and disappears in
connection with the check box. Your event handler has linked these two user interface ele-
ments. The component is immediately recognizable as a standard user interface feature of a
Windows-based application.

4. Click the Close button on the form to terminate the program.

5. On the File menu, click Close Project to close the CheckBox project.

You’re ready to move on to another input mechanism in a Windows Forms application.

Using group boxes and radio buttons
The RadioButton control is another tool that you can use to receive input in a Windows desktop app,
and you’ll find it located on the Common Controls tab of the Windows Forms Toolbox. Radio buttons
get their name from the old push-button car radios of the 1950s and 1960s, when people pushed or
“selected” one button on the car radio and the rest of the buttons clunked back to the unselected
position. Only one button could be selected at a time, because (it was thought) the driver should
listen to only one thing at a time.

In Visual Studio, you can also offer mutually exclusive options for a user on a form, allowing them
to pick one (and only one) option from a group. The procedure is to use the GroupBox control to
create a frame on the form and then to use the RadioButton control to place the desired number of
radio buttons in the frame. (Because the GroupBox control is not used that often, it is located on the
Containers tab of the Toolbox.)

160 part II Designing the user interface

Note also that your form can have more than one group of radio buttons, each operating indepen-
dently of one another. For each group that you want to construct, simply create a group box object
first and then add radio buttons one by one to the group box.

There is one caveat to note: If a form requires only one set of radio buttons, the buttons can be
placed directly on the form without placing them in a group box. The group box (and other contain-
ers) are actually required only when multiple sets of mutually exclusive radio buttons are used on one
form. However, I typically place radio buttons in a group box (even if there is only one set per form)
because it allows for easy expansion in the future. (And anyway, it is a good idea to learn to use the
GroupBox control.)

In the following exercise, you’ll create a simple program that uses GroupBox, RadioButton, and
PictureBox controls to present three options to a user. Like the CheckBox control, the RadioButton
control is programmed by using event handlers and Visual Basic program code. Give it a try now.

Gather input with the GroupBox and RadioButton controls

1. On the File menu, click New Project.

The New Project dialog box opens.

2. Create a new Visual Basic Windows Forms Application project named My Radio Button.

The new project is created, and a blank form appears in the Designer.

3. Enlarge the form a little so that you have a little more room to create a collection of controls
and a picture box object.

4. In the Toolbox, open the Containers tab and click the GroupBox control.

5. Create a medium-sized group box on the top half of the form.

6. Return to the Toolbox, scroll up to the Common Controls tab, and click the RadioButton
control.

7. Create three radio button objects in the group box.

It is handy to double-click the RadioButton control to create radio buttons. Notice that each
radio button gets its own number, which you can use to set properties. Your form should look
similar to this:

 CHAPTER 6 Working with Windows Forms controls 161

8. Using the PictureBox control, create one rectangular picture box object beneath the group
box on the form.

9. Click the picture box object’s smart tag to display the shortcut menu.

10. Click Choose Image to display the Select Resource dialog box.

11. Click Project Resource File, and then click the Import button to create a new Resources folder
in the project.

Now you’ll add three photos to the project so that you can display them on the form.

12. Browse to the My Documents\Visual Basic 2013 SBS\Chapter 06 folder, hold down the Ctrl key,
and then click Fern.jpg, Squash.jpg, and Thistle.jpg.

You can select more than one file at once if you hold down the Ctrl key. In this case, you are
selecting three files at once.

tip To select a contiguous range of file names in this dialog box, you can hold down
the Shift key and click the first and last file names in the range.

13. Click the Open button to add the files to the Select Resource dialog box.

14. Click the Fern.jpg file in the list box to make it the default image for the picture box object.

15. Click OK.

In Solution Explorer, a Resources folder now appears with the files Fern.jpg, Squash.jpg, and
Thistle.jpg in it.

162 part II Designing the user interface

16. Set the following properties for the group box, radio button, and picture box objects:

Object Property Setting

Form1 Text Radio Button Sample

GroupBox1 Text “Select an Image Type”

RadioButton1 Name FernButton

Text “Fern”

Checked True

RadioButton2 Name SquashButton

Text “Squash”

RadioButton3 Name ThistleButton

Text “Thistle”

PictureBox1 Image Fern

Name PlantPictureBox

SizeMode StretchImage

The initial radio button state is controlled by the Checked property. Notice that the Fern radio
button now appears selected in the IDE. Your IDE and form now look like this:

Now you’ll add some program code to make the radio buttons switch among the photos
you’ve added when the program runs.

 CHAPTER 6 Working with Windows Forms controls 163

17. Double-click the first radio button object (FernButton) on the form to open the Code Editor.

The CheckedChanged event handler for the FernButton object appears in the Code Editor. This
procedure is run each time the user clicks the first radio button. Because you want to change
the picture box image when this happens, you’ll add a line of program code to accomplish
that.

18. Type the following program code:

If (FernButton.Checked) Then PlantPictureBox.Image = My.Resources.Fern

This program statement checks the state of the FernButton radio button and then displays the
fern image if the radio button has been selected. The image is displayed by copying the Fern.
jpg file from the project’s Resources folder into the picture box object’s Image property. A
similar statement will be attached to each button so that the appropriate photos will appear in
the picture box as the different buttons are selected.

This copying task is made simple because you have already loaded the images into the
project’s Resource folder. The “My” namespace is used again here, a rapid access feature first
introduced in Chapter 4 when you accessed the My.Computer.Audio object to play a sound.
The My namespace is designed to simplify accessing the .NET Framework to perform common
tasks, such as using your application’s resources and adjusting settings on your computer. The
My namespace is organized as a hierarchy, which you can use and explore using IntelliSense
and Visual Studio’s object-oriented terminology.

19. Switch back to the Designer, double-click the second radio button object on the form, and
type the following program code:

If (SquashButton.Checked) Then PlantPictureBox.Image = My.Resources.Squash

20. Switch back to the Designer, double-click the third radio button object on the form, and type
the following program code:

If (ThistleButton.Checked) Then PlantPictureBox.Image = My.Resources.Thistle

21. Click the Save All button on the toolbar to save your changes, specifying the My Documents\
Visual Basic 2013 SBS\Chapter 06 folder as the location.

run the radio Button program

1. Click the Start Debugging button on the Standard toolbar.

Visual Basic runs the program in the IDE. The fern photograph appears in a picture box on the
form, and the first radio button is selected.

2. Click the second radio button (Squash).

Visual Basic displays the image, as shown here:

164 part II Designing the user interface

3. Click the third radio button (Thistle).

A photo of a garden Thistle appears.

4. Click the first radio button (Fern).

The image of a fern plant appears again.

5. Continue testing the program to verify that each of the CheckedChanged event handlers is
loading the proper images into the picture box.

6. When you’re finished, click the Close button on the form to end the program.

7. On the File menu, click Close Project to close the Radio Button project.

Well done! You’re finished working with GroupBox and RadioButton controls for now. But can you
imagine how you might use them in a Windows desktop app of your own? Presenting visual choices
to the user is one exciting way to request and receive input from the user—what you display depends
only on your creativity!

processing input with list boxes
In addition to check boxes and radio buttons, a useful mechanism for gathering input in a Windows
desktop app is the ListBox control, a scrollable container used to present a list of items and allow the
user to select one or more items. List boxes are created in Visual Studio 2013 apps by selecting the
ListBox control in the Windows Forms Toolbox and then adding the control to a form. A list box can
expand or contract while a program is running, and you can use a list box to present a variable num-
ber of items. In addition, you can add scroll bars to a list box, if the number of items is greater than
you can display at once.

Unlike a set of radio buttons, the items in a list box can be rearranged while a program is running,
while radio buttons typically stay in the same order. You can also add a collection of items to a list
box at design time by setting the Items property of the list box, which you will find under the Data
category in the Properties window.

 CHAPTER 6 Working with Windows Forms controls 165

The key property associated with the ListBox control is SelectedIndex, which returns to the program
the item number selected in the list box. (List box lists are numbered starting with zero.) Also useful is
the Add method, which allows you to add items to a list box in an event handler or any other block of
code. In the following exercise, you’ll experiment with both of these features.

Create a list box and process a user’s selections

1. On the File menu, click New Project, and create a new Windows Forms Application project
named My ListBox.

The new project is created, and a blank form appears in the Designer.

2. Enlarge the default form so that you have more room to create a list box and a picture box.

You’ll work with the four images you used earlier in this chapter.

3. In the Toolbox, click the ListBox control, and then create a medium-sized list box object on the
top half of the form.

4. Use the PictureBox control to create a rectangular picture box object beneath the list box
object on the form.

5. Click the picture box object’s smart tag to display the shortcut menu.

6. Click Choose Image to display the Select Resource dialog box.

7. Click Project Resource File, and then click the Import button to create a new Resources folder
in the project.

Now you’ll add four photos to the project so that you can display them on the form.

8. Browse to the My Documents\Visual Basic 2013 SBS\Chapter 06 folder, click Fern.jpg, hold
down the Shift key, click Thistle.jpg, and then click Open.

Four images are added to the Select Resource dialog box, including Fern.jpg, Squash.jpg,
Swan.jpg, and Thistle.jpg.

9. Click OK.

In Solution Explorer, a Resources folder is visible with four files to choose from.

10. Set the following properties for the list box and picture box objects on the form:

Object Property Setting

Form1 Text “List Box Sample”

ListBox1 Name PhotosListBox

PictureBox1 Name PhotosPictureBox

Image (none)

SizeMode StretchImage

166 part II Designing the user interface

Your form now will look like this. (Notice that no photo is currently visible, because you
selected (none) for the picture box object’s Image property.)

Now you’ll add the necessary Visual Basic code to fill the list box object with valid selections,
and you’ll also create an event handler to process each selection that the user makes.

11. Double-click the list box object (PhotosListBox) to open the Code Editor.

The SelectedIndexChanged event handler for the PhotosListBox object appears in the Code
Editor. This procedure runs each time the user clicks an item in the list box object. We need to
update the image in the picture box object named PhotosPictureBox when a selection is made,
and you’ll handle the task by creating a decision structure known as a Select Case code block.

12. Type the following program code:

Select Case PhotosListBox.SelectedIndex
 Case 0
 PhotosPictureBox.Image = My.Resources.Fern
 Case 1
 PhotosPictureBox.Image = My.Resources.Squash
 Case 2
 PhotosPictureBox.Image = My.Resources.Swan
 Case 3
 PhotosPictureBox.Image = My.Resources.Thistle
End Select

The routine that you typed is called a Select Case decision structure, which explains to
the compiler how to process the user’s selection in the list box. The important identi-
fier that begins this decision structure is PhotosListBox.SelectedIndex, which is read as “the
SelectedIndex property of the list box object named PhotosListBox.”

 CHAPTER 6 Working with Windows Forms controls 167

Recall that the SelectedIndex property returns a number to the program corresponding to the
placement of the item that the user selected in the list box. In the current program, there are
four items in the list box. These will be numbered 0, 1, 2, and 3 (from top to bottom).

If list item 0 is selected, the Case 0 section of the structure is executed and the rest of the lines
are skipped over. The program statement uses the My namespace to load a picture from the
Resources folder.

If item 1 is selected, the Case 1 section will be executed instead. This program statement also
causes a photo to appear in the picture box, but it is a different photo. Likewise, if item 2 or
item 3 is selected, the third or fourth Case clauses will process those selections.

You’ll learn about more Select Case syntax in Chapter 12, “Creative decision structures
and loops”. There are a number of interesting options available, and they apply equally to
Windows Store and Windows desktop applications.

Now you need to add some program code to create the initial entries in the list box object. To
do this, we’ll add some Visual Basic code to the Form1_Load event handler in the Code Editor,
which is run when the program first starts and the Form1 class instance is loaded.

13. Switch back to the Designer, and double-click the form (Form1) to display the Form1_Load
event handler in the Code Editor.

The Form1_Load event handler appears. This program code is executed each time the ListBox
program is loaded into memory. (That is, each time that the application creates an instance
of the form.) Windows Forms programmers put program statements in this special procedure
when they want them executed every time a form loads. (Your Windows desktop app can
display more than one form, or none at all, but the default behavior is that Visual Basic loads
one initial form each time the user runs the program, which in turn executes the form’s load
event handler.) Often, as in the ListBox program, these statements define an aspect of the user
interface that couldn’t be created easily by using the controls in the Toolbox or the Properties
window.

14. Type the following program code:

'Add items to a list box like this:
PhotosListBox.Items.Add("Fern")
PhotosListBox.Items.Add("Squash")
PhotosListBox.Items.Add("Swan")
PhotosListBox.Items.Add("Thistle")

The first line is simply a comment offering a reminder about what the code accomplishes. The
next three lines add items to the list box (PhotosListBox) in the program. The words in quotes
will appear in the list box when it appears on the form. The important portion in these state-
ments is Add, a handy method that adds items to list boxes or other items. Remember that in

168 part II Designing the user interface

the ListBox1_SelectedIndexChanged event handler, these items will be identified as 0, 1, 2, and
3 because they appear at positions 0 through 3 in the list box.

15. Click the Save All button on the toolbar to save your changes, specifying the My Documents\
Visual Basic 2013 SBS\Chapter 06 folder as the location.

run the ListBox program

1. Click the Start Debugging button on the Standard toolbar.

Visual Studio launches the program. The four items appear in the list box, but because no item
is currently selected, nothing appears yet in the picture box object.

2. Click the first item in the list box (Fern).

Visual Basic displays a photograph of a green fern, as shown here:

3. Click the second item in the list box (Squash).

The green plant with yellow fruit appears on the screen.

4. Click the third item in the list box (Swan).

5. Click the fourth item in the list box (Thistle).

The photo of a purple thistle plant appears, as shown in the following illustration:

 CHAPTER 6 Working with Windows Forms controls 169

Good. Everything seems to be working properly in the list box and in the event handlers.
However, keep testing the program for a while, clicking items in a different order, using
the directional keys on the keyboard, using touch gestures, and so on—until you’ve tested
every possible input pattern that a user might also try. As you test the seaworthiness of your
own programs, be sure that you investigate all possible input scenarios. Yes, it is good to be
finished with your work. But it is better to find a problem now than to have your users find it
later.

6. When you’re finished experimenting, click the Close button on the form to end the program.

7. Click Close Project on the File menu to unload the project from memory.

You’re finished working with list boxes for now. If you like, you can broaden your learning by inves-
tigating the ComboBox and CheckedListBox controls on your own, too. These operate similar to the
tools that you have been using in the last few exercises.

When you’re ready to move on, use the following sections to learn how to add menu commands
and toolbars to a Windows desktop application.

Adding menus by using the MenuStrip control

In Windows Store applications, menus and toolbars have been pushed to the sidelines. Because the
goal is to support a variety of platforms—some with very small visual interfaces—the recommenda-
tion is to display menus and toolbars only occasionally and, in a general sense, to minimize “chrome”
in applications (that is, persistent user interface features like toolbars and menu bars).

170 part II Designing the user interface

However, in Windows desktop apps there is still a need to support these venerable user inter-
face features. They are easy for the developer to create, and they are simple for the user to operate.
I’ll review menu and toolbar creation here so that you can learn how to build and maintain these
features.

Menu features
The MenuStrip control is a tool that adds menus to your Windows desktop programs, which you can
customize with property settings using the Properties window. With MenuStrip, you can add new
menus, modify and reorder existing menus, and delete old menus. You can also create a standard
menu configuration automatically, and you can enhance your menus with useful features such as
access keys, check marks, and keyboard shortcuts.

The menus look solid—just like a traditional Windows desktop application—but MenuStrip creates
only the visible part of your menus and commands. You still need to write event handlers that process
the menu selections and make the commands perform useful work. In the following exercise, you’ll
explore the process by using the MenuStrip control to create a Clock menu containing commands that
display the current date and time.

Create a menu

1. On the File menu, click New Project.

The New Project dialog box opens.

2. Create a new Windows Forms Application project named My Menu.

3. Click the MenuStrip control on the Menus & Toolbars tab of the Toolbox, and then draw a
menu control on your form.

Don’t worry about the location—Visual Studio will move the control and resize it automati-
cally. Your form looks like the one shown here:

 CHAPTER 6 Working with Windows Forms controls 171

The menu strip object doesn’t appear on your form, but below it. Non-visible objects, such as
menus and timers, are displayed in the IDE in a separate pane named the component tray, and
you can select them, set their properties, or delete them from this pane.

In addition to the menu strip object in the component tray, Visual Studio displays a visual rep-
resentation of the menu that you created at the top of the form. The Type Here tag encour-
ages you to click the tag and enter the title of your menu. After you enter the first menu title,
you can enter submenu titles and other menu names by pressing the Arrow keys and typing
additional names. Best of all, you can come back to this in-line Menu Designer later and edit
what you’ve done or add additional menu items—the menu strip object is fully customizable,
and with it, you can create an exciting menu-driven user interface like the ones you’ve seen in
the best Windows desktop applications.

4. Click the Type Here tag, type Clock, and then press Enter.

The word Clock is entered as the name of your first menu, and two additional Type Here tags
appear, with which you can create submenu items below the new Clock menu or additional
menu titles. The submenu item is currently selected.

5. Type Date to create a Date command for the Clock menu, and then press Enter.

Visual Studio adds the Date command to the menu and selects the next submenu item.

172 part II Designing the user interface

6. Type Time to create a Time command for the menu, and then press Enter.

You now have a Clock menu with two menu commands, Date and Time. You could continue
to create additional menus or commands, but what you’ve done is sufficient for this example
program. Your form looks like the one shown here:

7. Click the form’s background to close the Menu Designer.

The Menu Designer closes, and your form is visible in the IDE with a Clock menu. You’re ready
to start customizing the menu now.

adding access keys to menu commands
With most Windows desktop applications, you can access and execute menu commands by using the
keyboard. For example, in Visual Studio, you can open the File menu by pressing the Alt key and then
pressing the F key. When the File menu is open, you can start a new project by pressing the P key and
then Enter. The key that you press in addition to the Alt key is called an access key. You can identify
the access key of a menu item because it’s either underlined or, in some Windows 7-based applica-
tions, it appears in a small, handy box on the menu.

Visual Studio makes it easy to provide access key support. To add an access key to a menu item,
activate the Menu Designer, and then type an ampersand (&) before the appropriate letter in the
menu name. When you open the menu at run time (when the program is running), your program
automatically supports the access key.

 CHAPTER 6 Working with Windows Forms controls 173

Menu conventions
A convention in many Windows desktop apps is that each menu title and menu command in
a Windows desktop app has an initial capital letter. On occasion, you will see some variation
in this style—for example, Visual Studio 2012 and Visual Studio 2013 use all capital letters for
menu titles. File and Edit are often the first two menu names on the menu bar, and Help is usu-
ally the last. Other common menu names are View, Format, and Window.

No matter what menus and commands you use in your applications, take care to be clear
and consistent with them. Menus and commands should be easy to use and should have as
much in common as possible with those in other Windows-based applications. As you create
menu items, use the following guidelines:

■■ Use short, specific captions consisting of one or two words at most.

■■ Assign each menu item an access key. Use the first letter of the item if possible, or the
access key that is commonly assigned (such as x for Exit).

■■ Menu items at the same level should have a unique access key. (If they don’t, the user can
move between them by pressing the access key and will then need to press Enter to run
the command.)

■■ If a command is used as an on/off toggle, place a check mark to the left of the item when
it’s active. You can add a check mark by setting the Checked property of the menu com-
mand to True in the Properties window.

■■ Place an ellipsis (…) after a menu command that requires the user to enter more informa-
tion before the command can be executed. The ellipsis indicates that you’ll open a dialog
box if the user selects this item.

Note By default, most newer versions of Windows don’t display the underline or small box
for access keys in a program until you press the Alt key for the first time. In Windows 8.1,
Windows 8, and Windows 7, you can adjust this option by clicking the Appearance And
Personalization option in Control Panel, clicking Ease Of Access Center, clicking Make The
Keyboard Easier To Use, and then selecting Underline Keyboard Shortcuts And Access Keys.

Try adding access keys to the Clock menu now.

174 part II Designing the user interface

add access keys

1. Click the Clock menu name on the form, pause a moment, and then click it again.

The menu name is highlighted, and a blinking I-beam (text-editing cursor) appears at the end
of the selection. With the I-beam, you can edit your menu name or add the ampersand char-
acter (&) for an access key. (If you double-clicked the menu name, the Code Editor might have
opened. If that happened, close the Code Editor and repeat step 1.)

2. Press the left arrow key five times to move the I-beam to just before the Clock menu name.

The I-beam blinks before the letter C in Clock.

3. Type & to define the letter C as the access key for the Clock menu.

An ampersand appears in the text box in front of the word Clock.

4. Click the Date command in the menu list, and then click Date a second time to display the
I-beam.

5. Type & before the letter D.

The letter D is now defined as the access key for the Date command.

6. Click the Time command in the menu list, and then click the command a second time to dis-
play the I-beam.

7. Type & before the letter T.

The letter T is now defined as the access key for the Time command.

8. Press Enter.

Pressing Enter locks in your text-editing changes. Your form looks like this:

Now you’ll practice using the Menu Designer to switch the order of the Date and Time commands
on the Clock menu. Changing the order of menu items is an important skill because at times you’ll
think of a better way to define your menus.

 CHAPTER 6 Working with Windows Forms controls 175

Change the order of menu items

1. Click the Clock menu on the form to display its menu items, if they are not already visible.

To change the order of a menu item, simply drag the item to a new location on the menu. Try
it now.

2. Drag the Time menu on top of the Date menu, and then release the mouse button.

Dragging one menu item on top of another menu item means that you want to place the first
menu item ahead of the second menu item on the menu. As quickly as that, Visual Studio
moves the Time menu item ahead of the Date item.

You’ve finished creating the user interface for the Clock menu. Now you’ll use the menu event
handlers to process the user’s menu selections in the program.

tip To delete a menu item from a menu, click the unwanted item in the menu list, and then
press the Delete key. (If you try this now, remember that Visual Studio also has an Undo
command, located on both the Edit menu and the Standard toolbar, so you can reverse the
effects of the deletion.)

processing menu choices
After menus and commands are configured by using the menu strip object, they also become new
objects in your program. To make the menu objects do meaningful work, you need to write event
handlers for them. Menu event handlers typically contain program statements that display or process
information on the form and modify one or more menu properties. If more information is needed
from the user to process the selected command, you can write your event handler so that it displays a
dialog box and one or more of the input controls you used earlier in the chapter.

In the following exercise, you’ll add a label object to your form to display the output of the Time
and Date commands on the Clock menu.

add a label object to the form

1. Click the Label control in the Toolbox.

2. Create a label in the middle of the form.

The label object appears on the form and displays the name Label1 in the program code.

176 part II Designing the user interface

3. Set the following properties for the label:

Object Property Setting

Label1 Name ClockOutput

AutoSize False

BorderStyle FixedSingle

Font Microsoft Sans Serif, Bold,
24-point

Text (empty)

TextAlign MiddleCenter

4. Resize the label object so that it is much larger (it will be holding clock and date values), and
position it in the center of the form. Your form should look similar to the following:

5. Use the Properties window to change the Text property of the Form1 object to Menu
Samples.

Now you’ll add program statements to the Time and Date event handlers to process the menu
commands.

edit the menu event handlers

1. Click the Clock menu on the form to display its commands.

2. Double-click the Time command on the menu to open an event handler for the command in
the Code Editor.

The TimeToolStripMenuItem_Click event handler appears in the Code Editor. The name
TimeToolStripMenuItem_Click includes the name “Time” that you gave this menu command.
The concatenated words in ToolStripMenuItem indicate that in its underlying technology, the
MenuStrip control is related to the ToolStrip control. (We’ll see further examples of that later
in this chapter.) By convention, the _Click syntax means that this is the event handler that runs
when a user clicks the menu item.

 CHAPTER 6 Working with Windows Forms controls 177

3. Type the following program statement:

ClockOutput.Text = TimeString

This program statement displays the current time (from the system clock) in the Text prop-
erty of the label object (ClockOutput), replacing the previous contents of the label (if any).
TimeString is a property that contains the current time formatted for display or printing. You
can use TimeString in your Visual Basic Windows desktop programs to display the time accu-
rately, down to the second.

tip You can set the system time by using the Clock, Language, and Region category
in the Control Panel in Windows 8.1, Windows 8, or Windows 7.

4. Press Enter.

5. Click the View Designer button in Solution Explorer, and then double-click the Date command
on the Clock menu.

The DateToolStripMenuItem_Click event handler appears in the Code Editor. This event handler
is executed when the user clicks the Date command on the Clock menu.

6. Type the following program statement:

ClockOutput.Text = DateString

This program statement displays the current date (from the system clock) in the Text property
of the label object, replacing the previous text. The DateString property is also available for
general use in your Windows desktop apps written in Visual Basic. Assign DateString to the
Text property of an object whenever you want to display the current date on a form.

tip The Visual Basic DateString property returns the current system date. You can
set the system date by using the Clock, Language, and Region category in the
Control Panel of Windows 8.1, Windows 8, or Windows 7.

178 part II Designing the user interface

7. Press Enter to complete the line.

Your screen looks similar to this:

You’ve finished building the Menu program. Now you’ll save your changes to the project, and
run it.

8. Click the Save All button on the Standard toolbar, and then specify the My Documents\Visual
Basic 2013 SBS\Chapter 06 folder as the location.

run the Menu program

1. Click the Start Debugging button on the Standard toolbar.

The Menu program runs in the IDE.

2. Click the Clock menu on the menu bar.

The contents of the Clock menu appear.

3. Click the Time command.

The current system time appears in the label box, as shown here:

 CHAPTER 6 Working with Windows Forms controls 179

Notice that the clock is showing what is sometimes referred to as “military time” in North
America—that is, a 24-hour clock.

Now you’ll try displaying the current date by using the access keys on the menu.

4. Press and release the Alt key, and then press the C key.

The Clock menu opens, and the first item on it is highlighted.

5. Press the D key to display the current date.

The current date appears in the label box, as shown in the following illustration:

If the label you created is not big enough to fully display the date, the value might be trun-
cated. If this happens, you’ll need to resize the label object so that it can fully display the
information. Stop the program, resize the label, and try it again.

6. When you’re finished experimenting, click the Close button on the program’s title bar to stop
the program.

Congratulations! You’ve created a working program that uses menus and access keys. In the next
exercise, you’ll learn how to use toolbars.

180 part II Designing the user interface

System clock properties and methods
You can use various properties and methods to retrieve chronological values from the system
clock. You can use these values to create custom calendars, clocks, and alarms in your pro-
grams. Table 6-1 lists a few of the most useful system clock properties and methods.

TABLE 6-1 System clock properties and methods

Property or method Description

TimeString This property sets or returns the current time from the system clock.

DateString This property sets or returns the current date from the system clock.

Now This property returns an encoded value representing the current date and time.
This property is most useful as an argument for other system clock functions.

Hour (date) This method extracts the hour portion of the specified date/time value (0 through
23).

Minute (date) This method extracts the minute portion of the specified date/time value (0
through 59).

Second (date) This method extracts the second portion of the specified date/time value (0
through 59).

Month (date) This method extracts a whole number representing the month (1 through 12).

Year (date) This method extracts the year portion of the specified date/time value.

Weekday (date) This method extracts a whole number representing the day of the week (1 is
Sunday, 2 is Monday, and so on).

Adding toolbars with the ToolStrip control

Parallel to the MenuStrip control, you can use the Visual Studio ToolStrip control to quickly add tool-
bars to a Windows desktop app’s user interface. The ToolStrip control is placed on a Visual Basic form
but resides in the component tray in the IDE, just like the MenuStrip control. You can also add a vari-
ety of features to your toolbars, including labels, combo boxes, text boxes, and split buttons. Toolbars
look especially useful when you add them, but remember, as with menu commands, that you must
write an event handler for each button that you want to use in your program. Still, it is amazing how
much toolbar configuring the Visual Studio 2013 IDE does for you.

In the following exercise, you’ll add a toolbar to the Menu project you’ve been building.

 CHAPTER 6 Working with Windows Forms controls 181

Create a toolbar

1. Display the form that you are creating in the Designer.

2. Click the ToolStrip control on the Menus & Toolbars tab of the Toolbox, and then draw a tool-
bar control on your form.

Don’t worry about the location—Visual Studio will create a toolbar on your form automati-
cally and extend it across the window. The tool strip object itself appears below the form in
the component tray. On the form, the default toolbar contains one button. Now you’ll use a
special shortcut feature to populate the toolbar automatically.

3. Click the tiny smart tag in the upper-right corner of the new toolbar.

The smart tag points to the right and looks similar to the smart tag we used with the
PictureBox control earlier in the chapter. When you click the tag, a ToolStrip Tasks window
opens that includes a few of the most common toolbar tasks and properties, as shown here.
You can configure the toolbar quickly with these commands.

4. Click Insert Standard Items.

Visual Studio adds a collection of standard toolbar buttons to the toolbar, including New,
Open, Save, Print, Cut, Copy, Paste, and Help. Your form looks similar to the following screen
shot:

182 part II Designing the user interface

It is not necessary for you to start with a full toolbar of buttons as I have done here—I’m
merely demonstrating one of the useful “automatic” features of Windows Forms programming
in Visual Studio 2013. You could also create the buttons on your toolbar one by one, using
the ToolStrip editing commands, as I’ll demonstrate shortly. But for many applications, clicking
Insert Standard Items is a timesaving feature. However, remember that although these toolbar
buttons look professional, they are not functional yet. They need individual event handlers to
make them work.

5. Click the Add ToolStripButton arrow on the right side of the new toolbar, and then click the
Button item.

Add ToolStripButton allows you to add more items to your toolbar, such as buttons, labels,
split buttons, text boxes, combo boxes, and other useful user interface elements. You’ve now
created a custom toolbar button; by default, it displays a mountain-and-sun scene.

tip If you need additional room on your toolbar for new buttons, simply widen the
form window, and you’ll be able to see the tool strip items. This might be important
in the following step, because you’ll be expanding your new button considerably to
fit in some descriptive text.

6. Right-click the new button, point to DisplayStyle, and click ImageAndText.

Your new button displays both text and a graphical image on the toolbar. (If you don’t see the
new button, widen your form now.)

Visual Studio names your new button ToolStripButton1 in the program, and this name appears
by default on the toolbar.

7. Select the ToolStripButton1 object, if it is not already selected.

8. In the Properties window, change the ToolStripButton1 object’s Text property to Color, which
will be the name of your button on the form.

The Color button appears on the toolbar. You’ll use this button later in the program to change
the color of text on the form. Now insert a custom bitmap for your button.

9. Right-click the Color button, and then click the Set Image command.

The Select Resource dialog box appears.

10. Click Local Resource (if it is not already selected), and then click the Import button.

11. Browse to the My Documents\Visual Basic 2013 SBS\Chapter 06 folder, if you are not already
there, and then select the ColorButton.bmp bitmap file that I designed for this exercise.

12. Click Open, and then click OK to finalize your selection.

Visual Studio loads the pink, blue, and yellow paint icon into the Color button, as shown in the
following screen shot:

 CHAPTER 6 Working with Windows Forms controls 183

Your new button is complete, and you have learned how to add your own buttons to the toolbar.
Now you’ll learn how to delete and rearrange toolbar buttons.

Move and delete toolbar buttons

1. Drag the new Color button to the left side of the toolbar.

Visual Studio lets you rearrange your toolbar buttons by using simple drag movements.

2. Right-click the second button in the toolbar (New), and then click the Delete command.

The New button is removed from the toolbar. With the Delete command, you can delete
unwanted buttons, which makes it easy to customize the standard toolbar buttons provided
by the ToolStrip control.

3. Delete the Save and Print buttons, but be sure to keep the Color and Open buttons.

Now you’ll learn how to program a toolbar button so that it displays a dialog box with useful con-
trols and commands.

Using dialog box controls

Visual Studio 2013 contains eight standard dialog box controls for Windows desktop apps on the
Dialogs and Printing categories of the Toolbox. These dialog boxes are ready-made, so you don’t
need to create your own custom dialog boxes for the most common tasks in Windows desktop apps,
such as opening, saving, and printing files. In many cases, you’ll still need to write the event handler
code that connects these dialog boxes to your program, but the user interfaces are built for you and
conform to the design standards for traditional Windows desktop apps.

The eight standard dialog box controls available to you are listed in Table 6-2. Note that the
PrintPreviewControl and PrintDocument controls aren’t listed here, but you’ll find them useful if you
use the PrintPreviewDialog control.

184 part II Designing the user interface

TABLE 6-2 Standard dialog box controls

Control Purpose

OpenFileDialog Gets the drive, folder name, and file name for an existing
file

SaveFileDialog Gets the drive, folder name, and file name for a new file

FontDialog Lets the user choose a new font type and style

ColorDialog Lets the user select a color from a palette

FolderBrowserDialog Lets the user navigate through a computer’s folder struc-
ture and select a folder

PrintDialog Lets the user set printing options

PrintPreviewDialog Displays a print preview dialog box

PageSetupDialog Lets the user control page setup options, such as margins,
paper size, and layout

In the following exercises, you’ll practice using the OpenFileDialog and ColorDialog controls. The
OpenFileDialog control lets your program locate bitmap files, and the ColorDialog control enables
your program to change the color of the clock output. You’ll connect these dialog boxes to the tool-
bar that you just created, although you could just as easily connect them to menu commands.

add OpenFileDialog and ColorDialog controls

1. Click the OpenFileDialog control on the Dialogs tab of the Toolbox, and then click the form.

An open file dialog box object appears in the component tray.

2. Click the ColorDialog control on the Dialogs tab of the Toolbox, and then click the form again.

The component tray now looks like this:

Just like the menu strip and tool strip objects, the open file dialog box and color dialog box objects
appear in the component tray, and they can be customized with property settings.

Now you’ll create a picture box object on the form. Although you’ve used the PictureBox control
several times in this chapter, this time you’ll create a live picture box object that allows you to browse
to items and display them using your new dialog box object.

add a picture box object

1. Enlarge the form a little so that there is room for the new picture box object.

2. Click the PictureBox control in the Toolbox, and then draw a large, square picture box object
on the form, below the label.

 CHAPTER 6 Working with Windows Forms controls 185

3. Change the picture box object’s Name property to OpenImage.

4. Use the smart tag in the picture box object to set the SizeMode property of the picture box to
StretchImage.

Now you’ll create event handlers for the Color and Open buttons on the toolbar.

Event handlers that manage common dialog boxes

After you create a dialog box object, you can use the dialog box in a program by doing the following:

■■ If necessary, set one or more dialog box properties with the Properties window or by using
program code before opening the dialog box.

■■ To open the dialog box, type the dialog box name with the ShowDialog method in an event
handler associated with a toolbar button or menu command.

■■ Use program code to respond to the user’s dialog box selections after the dialog box has been
manipulated and closed.

Although all the possibilities for a Windows desktop application cannot be demonstrated here, in
the following exercise you’ll get your feet wet by writing the code for an OpenToolStripButton_Click
event handler, a routine that runs when the Open command is clicked. You’ll set the Filter property
in the OpenFileDialog1 object to define the file type in the Open common dialog box. (You’ll specify
JPEG files so that you can use the photographs you’ve been working with in this chapter.)

Next, you’ll use the ShowDialog method to display an Open dialog box in your program. After the
user has selected a file and closed this dialog box, you’ll display the file that he or she selected in a
picture box by setting the Image property of the picture box object to the file name the user selected.

edit the Open button event handler

1. Double-click the Open button on your form’s toolbar.

The OpenToolStripButton_Click event handler appears in the Code Editor.

2. Type the following program statements in the event handler. Be sure to type each line exactly
as it’s printed here, and press the Enter key after each line.

OpenFileDialog1.Filter = "JPEG (*.jpg)|*.jpg"
If OpenFileDialog1.ShowDialog() = Windows.Forms.DialogResult.OK Then
 OpenImage.Image = System.Drawing.Image.FromFile _
 (OpenFileDialog1.FileName)
End If

The first three statements in the event handler refer to three different properties of the open
file dialog box object. The first statement uses the Filter property to define a list of valid

186 part II Designing the user interface

files. (In this case, the list has only one item: *.jpg.) This is important for the Open dialog box
because a picture box object can display a number of file types, including the following:

• Joint Photographic Experts Group (JPEG) format (.jpg and .jpeg files)

• Bitmaps (.bmp files)

• Windows metafiles (.wmf files)

• Icons (.ico files)

• Portable Network Graphics (PNG) format (.png files)

• Graphics Interchange Format (.gif files)

To add additional items to the Filter list, you can type a pipe symbol (|) between items. For
example, the following program statement allows both JPEG and Windows metafiles to be
chosen in the Open dialog box:

OpenFileDialog1.Filter = "JPEG (*.jpg)|*.jpg|Metafiles (*.wmf)|*.wmf"

The second statement in the event handler displays the Open dialog box in the program.
The ShowDialog method returns a result named DialogResult, which indicates the button
on the dialog box that the user clicked. To determine whether the user clicked the Open
button, an If…Then decision structure is used to check whether the returned result equals
DialogResult.OK. If it does, a valid .jpg file path should be stored in the FileName property of
the open file dialog box object.

The third statement uses the file name selected in the dialog box by the user. When
the user selects a drive, folder, and file name and then clicks Open, the complete
path is passed to the program through the OpenFileDialog1.FileName property. The
System.Drawing.Image.FromFile method, which loads electronic artwork, is then used to copy
the specified photo file into the picture box object. (I wrapped this statement with the line
continuation character (_) because it was rather long.)

Now you’ll write an event handler for the Color button that you added to the toolbar.

Write the Color button event handler

1. Display the form again, and then double-click the Color button on the toolbar that you added
to the form.

An event handler named ToolStripButton1_Click appears in the Code Editor. The object
name includes Button1 because it was the first nonstandard button that you added to
the toolbar. (You can change the name of this object to something more intuitive, such as
ColorToolStripButton, by clicking the button on the form and changing the Name property in
the Properties window.)

 CHAPTER 6 Working with Windows Forms controls 187

2. Type the following program statements in the event handler:

ColorDialog1.ShowDialog()
ClockOutput.ForeColor = ColorDialog1.Color

The first program statement uses the ShowDialog method to open the color dialog box.
ShowDialog is the method you use to open any form as a dialog box, including a form created
by one of the standard dialog box controls that Visual Studio provides. The second state-
ment in the event handler will assign the color that the user selects in the dialog box to the
ForeColor property of the label object (ClockOutput). You should remember ClockOutput from
earlier in this chapter—it’s the label box you used to display the current time and date on the
form. You’ll use the color returned from the color dialog box to set the color of the text in the
label.

Note that the color dialog box can be used to set the color of any user interface element that
supports color in a Windows Forms app. Other possibilities include the background color of
the form, the colors of shapes on the form, and the foreground and background colors of
objects.

3. Click the Save All button on the Standard toolbar to save your changes.

Controlling color choices by setting color dialog box properties
If you want to further customize the color dialog box, you can control what color choices the
dialog box presents to the user when the dialog box opens. You can adjust these color settings
by selecting the ColorDialog1 object and using the Properties window, or by setting properties
by using program code before you display the dialog box with the ShowDialog method. Table
6-3 describes the most useful properties of the ColorDialog control. Each property should be
set with a value of True to enable the option or False to disable the option.

TABLE 6-3 ColorDialog control properties

Property Meaning

AllowFullOpen Set to True to enable the Define Custom Colors button in the dialog box.

AnyColor Set to True if the user can select any color shown in the dialog box.

FullOpen Set to True if you want to display the Custom Colors area when the dialog box
first opens.

SolidColorOnly Set to True if you want the user to select only solid colors (dithered colors—
those that are made up of pixels of different colors—are disabled).

Now you’ll run the Menu program and experiment with the menus and dialog boxes you’ve created.

188 part II Designing the user interface

run the Menu program

1. Click the Start Debugging button on the Standard toolbar.

The program runs, and the Clock menu and the toolbar appear at the top of the screen.

2. On the form’s toolbar, click Open.

The Open dialog box opens. It looks great, doesn’t it? (That is, it looks just like a regular
Windows desktop app.) Notice the JPEG files (*.jpg) entry in the dialog box. You defined this
entry with the following statement in the OpenToolStripButton_Click event handler:

OpenFileDialog1.Filter = "JPEG (*.jpg)|*.jpg"

The first part of the text in quotes—JPEG (*.jpg)—specifies which items are listed in the Files
Of Type box. The second part—*.jpg—specifies the file name extension of the files that are to
be listed in the dialog box.

3. Open a folder on your system that contains JPEG images. I’m using the Swan photo I’ve used
in this chapter (located in My Documents\Visual Basic 2013 SBS\Chapter 06), but you can
display any .jpg file accessible via your computer.

4. Select the JPEG file in the Open dialog box, and then click the Open button.

A picture of the photo appears in the picture box. My form looks like this:

Now you’ll practice using the Color dialog box.

5. On the Clock menu, click the Time command.

The current time appears in the label box.

 CHAPTER 6 Working with Windows Forms controls 189

6. Click the Color button on the toolbar.

The Color dialog box opens, as shown here:

The Color dialog box contains elements that you can use to change the color of the clock text
in your program. The current color setting, black, is selected.

7. Click one of the blue color boxes, and then click OK.

The Color dialog box closes, and the color of the text in the clock label changes to blue.
(That’s not significantly visible in the printed version of this book, alas, but you’ll see it on the
screen and in e-book versions.)

8. On the Clock menu, click the Date command.

The current date is displayed in blue type. Now that the text color has been set in the label, it
remains blue until the color is changed again or until the program closes.

190 part II Designing the user interface

9. Close the Menu Samples program.

The application terminates, and the Visual Studio IDE appears.

10. Close Visual Studio.

You’re finished working with Windows desktop apps for now.

Very well done! You’ve reviewed dozens of useful techniques for processing user input in a
Windows desktop application. Although all of the Toolbox controls that manage this input are unique
to Windows Forms applications and the Windows desktop, there will be ample opportunity to put
these skills to work for the foreseeable future. Windows desktop apps are popular and useful in a
variety of corporate and business settings, and these programs will need maintenance and, in many
cases, further development.

In Part III, “Visual Basic programming techniques,” you’ll see both the Windows Forms and
Windows Store platforms used. I can use this multiplatform approach because the Visual Basic lan-
guage is independent of the operating environment upon which application programs are run. In this
way, Windows Store apps and Windows desktop apps coexist very nicely, and you should know how
to create each application type.

Summary

In this chapter, you reviewed several important Toolbox controls for Windows Forms applications that
run on the Windows desktop. These controls have been available in Visual Studio for several releases,
and they continue to provide excellent utility for Visual Basic programmers who are creating or
maintaining traditional Windows desktop applications that run under Windows 8.1, Windows 8, or
Windows 7.

Through numerous demonstration programs, you reviewed how to manage user input using the
DateTimePicker, CheckBox, RadioButton, ListBox, and GroupBox controls. You also learned how to
create menus, toolbars, and dialog boxes in a Windows desktop app using the MenuStrip, ToolStrip,
and OpenFileDialog controls. Along the way, you learned about the My namespace, gained additional
experience with the Label and PictureBox controls, and added artwork to a project’s Resources folder
so that it could be used easily throughout the application. Moving forward, you can use these essen-
tial tools and techniques to build Windows desktop apps with efficient and attractive user interfaces.
Chapters 11-16 will teach fundamental Visual Basic programming techniques using Windows Forms
apps alongside Windows Store apps.

In the next chapter, we return again to the user interface of Windows Store applications and exam-
ine in greater detail the opportunities presented by XAML, an advanced markup language that allows
you to take greater control over the way that your user interface is constructed and compiled. You’ll
learn important conceptual terminology and more about how XAML markup is structured so that you
can edit your user interfaces directly and create a number of exciting graphics effects.

 191

C H A P T E R 7

XaML markup step by step

After completing this chapter, you will be able to

■■ Describe the core features of a XAML document.

■■ Examine the XAML project files App.xaml and MainPage.xaml.

■■ Edit XAML elements and properties using the XAML tab of the Code Editor.

■■ Use XAML markup to add ToggleButton, Image, and Canvas objects to a Windows Store app.

This chapter provides a thorough introduction to XAML (pronounced zammel) and what you’ll
need to know about XAML markup to create Windows Store apps in Visual Studio 2013. You’ll

learn about the structure of XAML elements and tags, how to work with XAML markup in the Code
Editor, and how to use XAML elements to create interesting features in a Windows Store app.

As you learned in Chapter 3, “Creating your first Windows Store application,” XAML is a type of
structured text that controls how Windows will display your application’s user interface and graphics
when the program runs. This structured text, or markup, is organized into a hierarchy of named tags
and attributes (elements between the characters < and >). If you know something about the layout of
HTML, the structure and content of XAML files will be somewhat familiar to you.

Within Visual Studio, XAML markup is created automatically for you when you use XAML Toolbox
controls to create the user interface for a Windows Store app. This structured text is stored in various
document files in your project, including App.xaml and MainPage.xaml—and you can examine and
modify these files by using the XAML markup editing tools. Although most XAML documents func-
tion perfectly well without any additional editing from the software developer, it is helpful to know
how XAML documents are organized, because there are times when modifying a XAML document
directly is faster and more efficient than by using the Visual Studio Designer. There are also Windows
Store app features that can be added only by editing XAML elements manually.

This chapter will help you learn the basics of XAML markup. In Chapter 8, “Using XAML styles,”
you’ll learn timesaving XAML features that will help you set styles and reuse them for a consistent
appearance across multiple controls.

192 part II Designing the user interface

Introduction to XAML

XAML is an abbreviation for Extensible Application Markup Language, an open Microsoft specifica-
tion related to Extensible Markup Language (XML) and HyperText Markup Language (HTML). XAML
documents are essentially text files that use tags to define how objects will be created in a Windows
application’s user interface. Microsoft introduced XAML as a design tool for the user interface of
Windows Presentation Foundation (WPF) apps in Visual Studio 2008. Since that time, XAML has
gained momentum as a design alternative to Windows Forms, the popular development platform we
explored in Chapter 4, “Windows desktop apps: A walkthrough using Windows Forms,” and Chapter
6, “Working with Windows Forms controls.”

Although the Windows Forms designer in Visual Studio is well-established and easy to use, a key
benefit of XAML is that you can define user interface elements with markup tags, either manually with
the XAML tab of the Code Editor or using a design tool like the Visual Studio designer or Blend for
Visual Studio. XAML tags are nested in a XAML document so that the objects on the page have a hier-
archical, or tree, relationship. The location and characteristics of each object are precisely defined, and
it is easy to adjust the size and shape of objects by entering specific values in the markup. In a typical
design session, you might create several of the objects in the user interface with a design tool and
then add additional objects and features by using XAML markup in the Code Editor. How much you
use a design tool and how much you directly enter XAML markup is up to you.

Another benefit of XAML-based platforms is that Visual Studio separates the XAML markup used
to define the user interface from the run-time logic that controls how the program works. As you’ve
already learned, the run-time logic is stored in Visual Basic code-behind files that have the exten-
sion .vb in a project. These files are distinct from XAML markup files that have the extension .xaml in
a project. The file separation means that one developer can work on the user interface for a project
(using a design tool and XAML), and another developer can create the code-behind files (using Visual
Basic or another Visual Studio language). When the completed project is assembled, the two sets of
files (known to programmers as partial class definitions) are joined to form a finished Windows appli-
cation. You’ll learn more about partial classes in the section “Examining XAML project files.”

In Visual Studio 2013, XAML is the required user interface model for Visual Basic programmers
who are creating Windows Store apps or Windows Phone apps. WPF also uses XAML for user inter-
face design, and it has been updated in Visual Studio 2013. (You can use WPF to create Windows
Desktop apps and Web browser apps, but not Windows Store apps.) But as I have already mentioned,
XAML is not a part of the Windows Forms programming model, so the information in this chapter
does not apply to the construction of Windows Forms apps.

XaML in the Visual Studio IDe
When you create the user interface for a Windows Store app in the Visual Studio designer, you are
building a XAML document that describes the objects, styles, and layout for your program’s user
interface. If you are running the Visual Studio IDE in Split view (with both Design and XAML views vis-
ible), you can see XAML markup at the bottom of the screen, as shown in the following illustration:

 CHAPTER 7 XAML markup step by step 193

As this screen indicates, XAML documents are basically tagged text files that define the arrange-
ment of panels, buttons, and objects on the page for a Windows app. These documents appear in
Solution Explorer as .xaml files. To help you identify the various elements, the Code Editor displays the
objects, properties, and strings in different colors.

XaML in Blend for Visual Studio
The Visual Studio designer is not the only tool that you can use to create XAML tags and documents.
You can also use Blend for Visual Studio 2013, a Windows-based application that is distributed with
Visual Studio 2013 Professional, Premium, and Ultimate editions, as well as Visual Studio Express 2013
for Windows. Blend is a stand-alone program that has several advanced design features; it contains
tools and controls that are compatible with the Visual Studio IDE but are in some cases easier and
more powerful to use. For example, you can use Blend’s Artboard to create controls and dynamic,
artistic effects; and you can build storyboards in Blend that animate the visual and audio elements of
your design.

The following illustration shows Blend for Visual Studio when the Music Trivia project from
Chapter 2 is loaded and displayed in Split view, with both the Design and XAML panes visible. Using
this view, you can edit the user interface by using both Blend’s tools and XAML markup in the
Code Editor. For more information about using Blend to create Windows Store apps, see Chapter 4,
“Designing Windows 8 Applications with Blend for Visual Studio,” in my companion book Start Here!
Learn Microsoft Visual Basic 2012 (Microsoft Press, 2012).

194 part II Designing the user interface

XaML elements
Here is what a typical XAML definition looks like in the Visual Studio Code Editor for a text box object
named AnswerBox from the Music Trivia project:

<TextBox x:Name="AnswerBox" HorizontalAlignment="Left" Height="61" Margin="487,427,0,0"
TextWrapping="Wrap" VerticalAlignment="Top" Width="333" Visibility="Collapsed"/>

This XAML markup defines a text box that will be left-aligned, have a height of 61 pixels, have a
location on the page 487 pixels from the left margin and 427 pixels from the top margin, is formatted
for text wrapping and top vertical alignment, will have a width of 333 pixels, and is temporarily invis-
ible. (The text box appears only when the user clicks the Answer button.)

When the program is run and the user clicks Answer, an event handler makes the text box visible
and places the string The Bass Guitar in the text box. Within the context of the Music Trivia program,
the text box object looks like this:

 CHAPTER 7 XAML markup step by step 195

Although the XAML markup that creates the text box object actually appears on one line in the
Code Editor, I’ve broken it into two lines in the book because the markup is fairly long. Visual Studio
can handle very long lines, but to allow for easier reading in books, writers will often break long
statements over several lines, as shown here:

<TextBox x:Name="AnswerBox"
 HorizontalAlignment="Left"
 Height="61"
 Margin="487,427,0,0"
 TextWrapping="Wrap"
 VerticalAlignment="Top"
 Width="333"
 Visibility="Collapsed"/>

The preceding two text box definitions are exactly the same, except for the extra carriage returns
and the indentation at the start of each line in the second example. Notice that in both cases, the
markup begins with the < tag and ends with the /> tag. This is an important syntax rule for XAML
documents—all XAML object definitions that do not contain child elements begin with an opening
angle bracket (<), indicate the class of the object (in this case, TextBox), and end with a forward slash
and a closing bracket (/>).

196 part II Designing the user interface

A child element is an item (typically a control) that is nested within a parent control. For example,
the XAML file defining a program’s user interface contains a top-level Grid control, and beneath the
Grid control are additional child elements (such as TextBlock and Image) that are nested under the
Grid control and share a special relationship with it. You’ll learn more about child elements in the
procedure titled “Edit XAML markup in MainPage.xaml,” later in this chapter.

You might also have noticed that each line in the XAML definition we are discussing sets a property
for the text box object. The first such setting assigns a value to the Name property, and the process
continues until the final property, Visibility, is assigned a value of “Collapsed.” Note that each property
assignment contains an equal sign (=) and a value in quotation marks. You’ve already been making
property assignments like this with the Properties windows in the Visual Studio IDE, and you should
know that you can also make them manually within the XAML tab of the Code Editor. In fact, many
Visual Basic programmers find the process to be a lot faster in the Code Editor.

Note In some books about XML and XAML, you will see the property names for objects
referred to as attributes instead of properties. This is also a correct way to describe them.
Do not be confused by the different terminologies; the disparate terms simply have their
roots in separate programming languages and traditions. I use the term properties in this
book because of my roots as a Visual Basic programmer, where the term has long been cur-
rent. But someone with a WPF or XAML background will likely use the term attributes. The
two terms are actually connected—XAML attributes are essentially used to control object
properties within a Windows Store application.

Namespaces in XaML markup
The Name property is a special case in XAML object definitions. In the XAML for the preceding text
box, the Name definition is prefaced by the characters x:, as in the following markup:

<TextBox x:Name="AnswerBox"

In this case, x:Name indicates that a namespace is being assigned to the text box object and that the
text box will be referred to as AnswerBox in the program. This syntax is based on XML, because all
namespaces in XAML conform to the rules for XML namespaces. An XML namespace allows you to
have one set of tagged elements that serve multiple purposes, each purpose represented by a dif-
ferent namespace, including the default namespace (where no namespace is specified). You’ll learn
more about the difference between XAML namespaces and .NET Framework namespaces in the next
section.

examining XaML project files
To get started with XAML, it is helpful to open a new Visual Basic Windows Store app and examine
the default XAML documents that Visual Studio creates for you automatically. If you select the Visual
Basic Blank App (XAML) template, you’ll receive two XAML files, App.xaml and MainPage.xaml. Each

 CHAPTER 7 XAML markup step by step 197

file contains default XAML definitions for your application and user interface, and as you add to the
project, the XAML files will expand. You’ll also see two Visual Basic files in the project, App.xaml.vb
and MainPage.xaml.vb. These files are the Visual Basic code-behind files, and although the XAML files
and the Visual Basic files are related and linked together, they are written in separate languages. As
you’ve already seen, .xaml files contain XAML markup, and .vb files contain Visual Basic code.

The following exercises step through these files and show you more about them. You’ll also learn
how to edit XAML files directly to change the content of your application.

Create a new Windows Store app and examine App.xaml

1. Start Visual Studio, and click New Project to open a new Visual Studio application.

2. Choose Visual Basic/Windows Store under Templates, and then verify that the Blank App
(XAML) template is selected.

3. Type My XAML Features in the Name text box.

4. Click OK to open and configure the new project.

Visual Studio opens, and a new project is created with the appropriate files. After a moment,
you’ll see the App.xaml.vb code-behind file for the Blank App template in the Code Editor, as
shown in the following screen shot:

198 part II Designing the user interface

The App.xaml.vb file contains boilerplate code that defines the Application class and indicates
what actions should take place when the program launches, as well as what to do when it is
suspended. This is not XAML markup, but Visual Basic code, and in most cases you do not
need to modify this default code listing. However, it is useful to examine the instructions in all
new template files, and when you open other, more substantial Visual Basic templates, you’ll
see that there is more code to examine and more areas for you to complete.

Now you’ll open the App.xaml file in the Code Editor.

5. In Solution Explorer, right-click the file App.xaml, and then click the View Designer command.

6. A new tab opens in the Code Editor, and the file App.xaml is loaded into it. (Notice that the
code-behind file, App.xaml.vb, is still open and represented by a tab.) Your screen should look
like this:

Now you’ll see a few more items that you’ll want to become familiar with.

First, in every XAML document, there is a core definition, or root element, that acts like a mas-
ter container for the file. In App.xaml, the root element is Application (the core definition for
this programming project), so the App.xaml file begins with the tag <Application> and, near
the bottom, ends with the tag </Application>.

Within this core definition are the various classes and namespaces that collectively mold and
shape the project. These lines are typically included at the top of a XAML file. In App.xaml,
they include the following:

 CHAPTER 7 XAML markup step by step 199

x:Class=”XAML_Features.App”
xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
xmlns:local=”using:XAML_Features”>

The first line defines a new partial class associated with the application name you’ve
selected—in this case, XAML_Features.App. A partial class is a class whose definition can be
split into multiple pieces, either across multiple files or within a single source file. The pieces of
a partial class are merged when your Visual Basic project is compiled so that the resulting class
is equivalent to a class specified in one location.

Note If you specified a different application name when you created the project,
that name will appear here instead. I am assuming that you’ve added the My prefix
to your files to keep them separate from mine.

In this case, the statement connects the code-behind file, App.xaml.vb, to the XAML file, App.
xaml, when the project is compiled. Each of these files holds a partial class definition, but
when the project is compiled, the files form a complete class.

The second, third, and fourth lines declare XAML namespaces in the project that define
default elements in the user interface. It is necessary to reference the definitions in specific
documents because there are many XAML elements that have the same name, and Visual
Studio needs to know which definition to use when there is a conflict. The second and third
lines are standard XAML features: core namespaces that will appear in each XAML document
that you create in Visual Studio or Blend. The x prefix, which is used here in the third line after
the colon, is an alias, or shorthand way to refer to the classes in the namespace.

As you get deeper into Visual Studio programming terminology, you will see the term
namespace being used in two ways. In Visual Basic code, a namespace is a hierarchical library
of classes in the .NET Framework organized under a unique name, such as Windows.UI. You
can reference individual namespaces of this type by placing an Imports statement at the top
of a Visual Basic code-behind file.

However, a XAML namespace is used in XAML markup to differentiate between multiple
vocabularies that can appear together in one XML document, or to indicate portions of an
XML document that serve a specific purpose. The files App.xaml and MainPage.xaml both
have default XAML namespace definitions of this type.

That’s all that you’ll see in this file—that is, if you’re running Visual Studio 2013. However,
if you had some experience with Visual Studio 2012, you would have noticed another
section named <Application.Resources> in the App.xaml file for Visual Studio 2012 proj-
ects. Microsoft included a reference to the resource dictionary StandardStyles.xaml in
<Application.Resources>, but that reference and resource dictionary are now located deeper
within the Visual Studio 2013 product. So the default App.xaml file is a little shorter now in the
default Visual Studio 2013 project.

200 part II Designing the user interface

Now you’ll examine the markup in MainPage.xaml, the file where the features of your user inter-
face are defined. You’ll also make some changes to the file.

edit XaML markup in Mainpage.xaml

1. Right-click the MainPage.xaml file in Solution Explorer, and then select View Designer.

Visual Studio loads MainPage.xaml into the Designer. If your IDE is set for Split view (the XAML
designer’s default orientation), you’ll see a blank page near the top of the screen and the
XAML markup associated with the Blank App template near the bottom of the screen.

tip If the Designer is not in Split view now, switch to Split view by clicking the
Horizontal Split button near the lower-right corner of the Designer.

Your screen will look like this:

The XAML document at the bottom begins with the root element Page, rather than
Application, the core container discussed in the last example. In XAML, a Page element orga-
nizes a selection of user interface content that you want Visual Studio to display or navigate
to; that is, it is a container for part or all of your application’s user interface. Note that you can
have more than one user interface page in a program, as long as each page is given a unique
name.

 CHAPTER 7 XAML markup step by step 201

New pages like this also require the core namespace definitions that you learned about in the
App.xaml file previously. In addition to these namespaces, the file also includes a namespace
associated with Blend, as well as one related to the Microsoft Office Open XML format, as
indicated by “openxmlformats.org.”

2. Scroll down the XAML tab of the Code Editor to display the lines beginning with Grid in the
MainPage.xaml file. You’ll see the following markup:

<Grid Background=”{StaticResource ApplicationPageBackgroundThemeBrush}”>

</Grid>

The Grid element is the default user interface element that appears within the root element
of MainPage.xaml. It is also the fundamental layout control that will hold the other controls
that appear on a page. Note that each XAML file contains only one top-level Grid control,
but it can contain other, nested controls known as child elements. The way that controls on a
page are nested within a structured hierarchy defines their relationship to one another and,
ultimately, how they are displayed in the user interface.

It might be useful for you to think of this Grid element as a direct reference to a .NET
Framework class named Grid in the Windows.UI.Xaml.Controls namespace. That is, elements in
XAML markup are directly related to objects that you can use in Visual Basic program code. In
an application created for Windows 8.1 in Visual Studio 2013, XAML elements and Visual Basic
objects are two sides of the same coin.

Currently, the grid on this blank page contains no other objects, and its gridlines are
not even visible on the screen. (A grid is more of a layout and design feature than a vis-
ible element of your user interface.) However, the grid’s background color and texture are
now being set via the Background property for the grid and the system resource setting
ApplicationPageBackgroundThemeBrush.

Depending on which version of Visual Basic you are using, you may see either the name
"ThemeResource" or "StaticResource" before the setting ApplicationPageBackgroundThemeBrush.
ThemeResource was inserted into the default MainPage.xaml file in the final release of the Visual
Studio 2013 software.

One way to adjust the Background property of the grid is to use the Properties window in the
IDE. If you select the page itself in the Designer (not a specific object on the page), you can
open the Properties window, click the Brush category, adjust the Background property, and
see the XAML markup updated automatically to match your selection.

However, you’ve already had plenty of experience adjusting properties with the Properties
window. Instead, you’ll now try adjusting the Background property by editing XAML markup
in the XAML tab of the Code Editor.

3. Click after the equal sign in the phrase <Grid Background=" and then delete the characters in
the line following the equal sign.

202 part II Designing the user interface

4. Now change the background color to orange by typing “Orange”> after the equal sign.

Your grid definition should look like this in the Code Editor:

<Grid Background=”Orange”>

</Grid>

Notice that as soon as you type the closing bracket (>), the page’s background color changes
to orange. In addition, the IntelliSense feature offers you different color options in a drop-
down list box while you type in the color name. You’ve now seen a major reason why it is use-
ful to edit XAML documents from within Visual Studio—the IDE actually helps you compose
your XAML by supplying useful properties, elements, and resources.

5. Select File | Save All to save your changes. Specify My Documents\Visual Basic 2013 SBS\
Chapter 07 as the folder.

You’re off to a very good start with XAML documents and definitions. Now you’ll add a few more
controls to the grid and experiment with more useful XAML-editing techniques in the Code Editor.

Adding XAML elements using the Code Editor

Each of the XAML controls in the Visual Studio Toolbox can be added to a page by using the XAML
tab of the Code Editor. You have the freedom to type in the markup for the controls directly, or you
can add the controls by using Blend or the Visual Studio Designer and then modify the elements by
using XAML markup.

As you work with various elements in XAML markup, you need to be mindful of the hierarchy of
objects on the page that you are constructing. So far in this book, you’ve added a few dozen con-
trols to pages as you’ve experimented with Visual Studio tools and features. But as you write more
complex programs, the way that different objects are organized becomes central. You can group
items together by placing child elements within parent elements. You can also use special container
controls, such as Canvas and StackPanel, that are designed to organize child elements and display
them as a group. Within XAML markup, such relationships are defined through the careful nesting of
tags, and the relationships are also highlighted through indentation patterns, which make the markup
easier to read.

In the following exercises, you’ll get some additional practice adding XAML Toolbox controls to a
grid and editing the resulting objects on the XAML tab of the Code Editor. You’ll also create an event
handler for a ToggleButton control, and you’ll use the Canvas control to organize a group of child ele-
ments on the page to display a complex drawing.

 CHAPTER 7 XAML markup step by step 203

add ToggleButton and Image controls to the grid

1. With the My XAML Features project still loaded in Visual Studio, open the Toolbox and
double-click the ToggleButton control.

Visual Studio creates a toggle button object at the top of the application page. (The page is
blank but formatted with orange color.)

The ToggleButton control, introduced here for the first time, is a useful user interface feature
for collecting input when the desired response is Boolean in nature—that is, either yes or no
(or more precisely, either true or false). An example of this type of control in human life is a
light switch that has only on or off (true or false) settings. In a computer program, you can use
such an input tool to indicate different true or false states, such as whether or not an image
should be displayed on the page. In this way, the ToggleButton control has a lot in common
with the CheckBox control.

Your screen should now look like this:

Although the toggle button object on the page is interesting, I want you to focus on the
XAML markup for the object that has now appeared on the XAML tab of the Code Editor.
Notice that the following definition has appeared:

<ToggleButton Content=”ToggleButton” HorizontalAlignment=”Left” VerticalAlignment=”Top”/>

204 part II Designing the user interface

The ToggleButton object derives its core definition from the ToggleButton class and
is delimited by start and end tags. It currently has three property settings: Content,
HorizontalAlignment, and VerticalAlignment.

You’ll adjust the Content property now and add two new property settings.

2. In the Code Editor, change the Content property from “ToggleButton” to “Display Picture.”

This property sets the text that is displayed in the button on the screen. After you finish typing
the new value, it is also updated in the Designer.

3. Move the insertion point before the Content property name, and then type
x:Name=“DisplayToggleBtn”.

Notice that at the moment you type the equal sign, the quotation marks that follow will be
inserted by Visual Studio, so you don’t need to type them. This might take a little getting used
to—the Visual Studio IDE is trying to be helpful, but the IntelliSense feature can also lead to
coding errors if you are not careful.

The toggle button will now have a new name (DisplayToggleBtn), which can be used to identify
the button when you create an event handler.

4. Between the Name and Content properties, type IsChecked=“True”.

The IsChecked property is a Boolean value that will determine whether the toggle button is
checked (true) or not checked (false). (You need to type this property with the exact combina-
tion of uppercase and lowercase letters shown here.) You’ll start the program with a value of
True so that it displays an image in your program, which you’ll specify in a moment.

5. If you don’t have a lot of screen space right now, you might want to resize the Code Editor to
see a little more of the XAML markup that you are working with. (I have decided to do this
now, because I am running Windows at a resolution of 1024×768 pixels.)

To resize the Code Editor window, move the mouse pointer to the right edge of the Code
Editor until the mouse pointer becomes a resizing pointer, and then enlarge the Code Editor
window.

With a slightly bigger Code Editor, my XAML markup now looks like this:

Now you’ll create an Image control on the page to display the photo of a relaxing mountain
setting as your program starts. However, before you create the control, add a file containing
the photograph to your project in the Assets folder.

 CHAPTER 7 XAML markup step by step 205

6. Resize the Code Editor window so that it is in its original (smaller) shape.

7. In Solution Explorer, display the Assets folder, which contains the default images for your
project.

8. Right-click the Assets folder, point to the Add submenu, and then click Existing Item.

9. In the Add Existing Item dialog box, browse to the My Documents\Visual Basic 2013 SBS\
Chapter 07 folder, select the AutumnField.bmp file, and then click Add.

Visual Studio adds the AutumnField.bmp file to the Assets folder in your project. Now it is
ready to be used anywhere in your program, and it will automatically be included with your
project’s files when the application is compiled and packaged for distribution.

Now you’ll add an Image control to your page using XAML markup to display the photo.

10. Return to the XAML tab of the Code Editor, and place the insertion point on the blank line
beneath the definition of the toggle button object.

11. Type the following line of markup:

<Image x:Name=”AutumnImage” Height=”600” HorizontalAlignment=”Left”
 Source=“Assets/AutumnField.bmp” VerticalAlignment=”Center” Width=”800” />

You can type the markup all on one line, or you can break the definition into multiple lines, as
long as you do not attempt to break a line in the middle of a property assignment.

When you finish entering the image object definition, a new image object appears on the
page; however, you won’t see the photo yet in the Designer.

The new image object is named AutumnImage so that it can be used in an event handler. The
Source property of the image contains a reference to the Assets folder, which contains a copy
of the AutumnField.bmp file.

12. Select File | Save All to save your changes.

Congratulations—you’ve learned how to modify the properties of an object in the Code Editor and
also how to type in a new control definition from scratch. Now you’ll add some code to a Visual Basic
event handler to toggle the autumn photo on or off when the program runs.

Create an event handler for the toggle button object

1. Load the Properties windows with the settings for the toggle button object by clicking the line
containing the toggle button markup in the Code Editor.

When the insertion point is in a line of markup in the Code Editor, the Properties window will
contain the properties of that object. You want to display the properties now, because you are
going to use the Properties window to create a new event handler.

206 part II Designing the user interface

2. In the Properties window, click the Event Handler button (the lightning bolt) near the Name
text box.

The Event Handler button displays the events that the toggle button can respond to. The list
of events in the Properties window looks like this:

Recall that you can create an event handler for a particular event by double-clicking the text
box next to the event in the Properties window. In this case, you’ll write an event handler for
the Click event because you want to examine the state of the toggle button object each time
the user clicks the button. If the button is checked after a click, you want to display the photo-
graph on the page, or make it visible. If the button is not checked after a click (indicating that
the toggle has been unselected or set to false), you want to collapse the image on the page, or
make it invisible.

3. Double-click next to the Click event in the Properties window.

Visual Studio inserts an event handler named DisplayToggleBtn_Click in the Click text box and
opens the MainPage.xaml.vb code-behind file in the Code Editor.

4. Type the following Visual Basic statements in the Code Editor, between the Private Sub and
End Sub statements:

If DisplayToggleBtn.IsChecked Then
 AutumnImage.Visibility = Windows.UI.Xaml.Visibility.Visible
Else
 AutumnImage.Visibility = Windows.UI.Xaml.Visibility.Collapsed
End If

 CHAPTER 7 XAML markup step by step 207

Your Code Editor will look like this:

These five lines of Visual Basic code might look familiar—they use an If...Then...Else deci-
sion structure, similar to what you used in Chapters 3 and 6 to respond to user input.
The event handler runs each time the user clicks the Display Picture button on the page.
If the toggle button is checked (that is, if it appears selected or highlighted in the man-
ner of apps in the Windows 8.1 user interface), the image will be made visible by a call to
Windows.UI.Xaml.Visibility. This particular feature is made available as part of the XAML
namespace and the basic functionality of Image controls in the .NET Framework.

However, if the toggle button moves from a checked state to a cleared (unchecked) state, the
Else clause of the decision structure is executed and the image is collapsed or made invisible.
The photo is not totally gone, but it is temporarily hidden until the next time the user clicks
the toggle button.

Now you’ll save and run the program to see how your new toggle button feature works.

5. Select File | Save All to save your changes.

208 part II Designing the user interface

6. Click the Start Debugging button on the Standard toolbar.

The program compiles and runs in the IDE. The image of brown grass and a bare tree appears
on the page along with the toggle button, which is displayed in a selected, or checked, state.
The image is from the state of Montana in autumn. Your screen should look like this:

7. Click the Display Picture button.

Visual Studio toggles the button (removing the selection effect) and then fires the
DisplayToggleBtn_Click event procedure. The photo is then made invisible.

8. Click the Display Picture button again.

The button is selected again, and the landscape photo reappears.

The XAML markup should display the user interface correctly, and the Visual Basic event pro-
cedure should function as you designed it. You can use this strategy to make a wide range of
objects on your page visible or invisible, depending on various program conditions, including
user input.

9. Experiment with the toggle button a few more times, and then close the program.

10. Select File | Close Project to close the project.

Nice work with XAML and Visual Basic! Now you’ll create a second Windows Store app project, and
you’ll practice using the Canvas control to create some more sophisticated images on a page.

 CHAPTER 7 XAML markup step by step 209

add a Canvas control and fill it with shapes

1. Select File | New Project to open a new Visual Studio project.

2. Choose Visual Basic/Windows Store under Templates, and verify that Blank App (XAML) tem-
plate is selected.

3. Type My XAML Box Art in the Name text box.

4. Click OK to open the new project.

Visual Studio opens and loads the default template files.

5. In Solution Explorer, right-click the file MainPage.xaml, and then click View Designer.

The Designer appears with the blank page and grid of the Blank App template. XAML markup
for the page is also visible in the Code Editor.

Now practice the new skill you learned in changing the Background color for page. This time,
you’ll specify the custom color DarkKhaki.

6. Move the insertion pointer to the Code Editor and scroll down to the line that defines the grid
background color.

7. Click after the equal sign in the phrase <Grid Background=", and then delete the characters in
the line following the equal sign.

8. Change the background color to green by typing “DarkKhaki”> after the equal sign.

Your grid definition should look like this in the Code Editor:

<Grid Background=”DarkKhaki”>

</Grid>

In the Designer, the page turns a dark khaki (or tan) color, as you specified.

Now you’ll add a XAML container called a Canvas to the page and fill it with shape controls
that collectively create an animal’s face. Within the Canvas container, you’ll create several
rectangle and ellipse shapes to build the drawing. The following XAML markup shows how
you can accomplish this task.

9. Move the insertion point to the line between the <Grid Background=”DarkKhaki”> and
</Grid> tags, and then type the following lines in the Code Editor. Feel free to use the Visual
Studio IntelliSense feature as you type, and indent using the pattern shown here for clarity
and readability. (In XAML markup listings, each level of indentation typically indicates that one
or more child elements are being nested within a parent element.)

210 part II Designing the user interface

 <Canvas Margin=”224,194,0,0”>
 <Rectangle Width=”220”
 Height=”220”
 Stroke=”Black”
 Fill=”Pink”
 StrokeThickness=”2” />
 <Rectangle Fill=”Black”
 Width=”139”
 Height=”75”
 Canvas.Left=”-87”
 Canvas.Top=”-15” />
 <Rectangle Fill=”Black”
 Width=”139”
 Height=”75”
 Canvas.Left=”179”
 Canvas.Top=”-30” />
 <Ellipse Fill=”Chocolate”
 Width=”20”
 Height=”20”
 Canvas.Left=”130”
 Canvas.Top=”60” />
 <Ellipse Fill=”Chocolate”
 Width=”20”
 Height=”20”
 Canvas.Left=”70”
 Canvas.Top=”60” />
 <Ellipse Fill=”Black”
 Width=”46”
 Height=”35”
 Canvas.Left=”87”
 Canvas.Top=”98” />
 <Path Stroke=”Black”
 StrokeThickness=”5”
 Data=”M 30,120 S 80,230 180,140” />
 </Canvas>

10. If you notice a syntax error, you might need to retype one or more lines of markup.

Typically, you’ll find that it is pretty easy to forget to add closing tags at the end of each
object definition. It is also a little tricky at first to avoid typing the quotation marks, as the
Visual Studio IntelliSense feature tries to enter them for you.

If you place the insertion point on the last line ("</Canvas>") when you are finished typing,
the entire selection of objects on the canvas will be selected. Your screen should look like the
following:

 CHAPTER 7 XAML markup step by step 211

The XAML you entered creates a smiling face made up of three shaded rectangles, three
shaded ellipses, and one pen drawing. The seven shapes comprise the face, eyes, ears, nose,
and mouth of the drawing, and they were created using Rectangle, Ellipse, and Path elements,
with property settings for fill color, height, width, and location on the canvas. The Path ele-
ment used for the smile includes property settings for stroke (color), pen thickness (in pixels),
and various points on a line specified in pixels.

Notice how all of the elements and property settings are carefully nested within the Canvas,
Grid, and Page elements. Proper nesting is the key to establish proper parent element and
child element relationships in XAML markup.

Now you’ll save and run the program to see how your drawing looks.

11. Select File | Save All to save your changes. Specify My Documents\Visual Basic 2013 SBS\
Chapter 07 as the location.

12. Click the Start Debugging button on the Standard toolbar.

The program compiles and runs in the IDE. The image of the smiling face with big ears
appears on the page, brushed with vibrant colors. (I think that the image looks a little bit like a
happy dog coming to greet you.) Your screen should look like this:

212 part II Designing the user interface

Congratulations on creating several interesting effects with XAML and Visual Studio! The
Canvas control, in particular, offers an excellent way to group elements together and apply
one effect (like transformation) to all of the elements at once. You can try similar approaches
with StackPanel and other group container controls.

13. Exit the My XAML Box Art program, and then select File | Exit to close the project and exit
Visual Studio.

You now have the essential skills necessary to work with XAML markup in your projects and to
fine-tune settings in the user interface. As you continue to develop rich applications for the Windows
Store, you can use any combination of user interface design tools that make sense for your project,
including the XAML tab of the Code Editor, the Visual Studio Designer, and Blend. Best of all, if you
want to copy XAML markup from one project to the next, it is as easy as using a cut-and-paste opera-
tion to transfer the desired XAML markup. Give it a try!

 CHAPTER 7 XAML markup step by step 213

Summary

In this chapter, you explored the content and structure of XAML, a markup language used to define
the user interface in Windows Store and Windows Phone applications. XAML documents control the
appearance and functionality of a user interface by applying and using a hierarchy of named tags and
attributes. Within Visual Studio, XAML documents contain .xaml file extensions and are displayed in
Solution Explorer. You can edit XAML documents by inserting and deleting text in the Code Editor.
Any changes that you make to the document are immediately reflected on the page in the Visual
Studio Designer.

You used XAML in several exercises to manipulate the appearance of Windows Store apps. You
set the background color, explored App.xaml and MainPage.xaml, and created ToggleButton, Image,
and Canvas controls with XAML markup. In the XAML Box Art project, you used the Canvas control
to create a piece of custom artwork on the page, and you also learned how you can nest parent and
child elements on a grid. You also learned about Blend for Visual Studio, a design tool that lets you
customize applications with XAML markup.

In the next chapter, you’ll continue working with XAML to customize the user interface of a
Windows Store app. That chapter is designed especially to enhance your productivity: you’ll learn to
use styles to organize groups of properties into named resources and then reuse them for a consis-
tent look-and-feel across multiple controls.

 215

C H A P T E R 8

Using XaML styles

After completing this chapter, you will be able to

■■ Understand how XAML styles are used to build attractive-looking user interfaces.

■■ Define reusable styles in the App.xaml project file.

■■ Reference new styles by using the Style property for controls on the page.

■■ Build new styles from existing styles using inheritance and the BasedOn property.

This chapter continues your exploration of XAML markup by investigating how XAML styles are
used to format controls with a consistent and attractive appearance across the user interface. So

far in this book, you’ve created controls individually and customized them with a variety of property
settings. However, you can also define new, reusable styles in a project that will help you format
objects automatically. This sophisticated design feature allows you to save time and build a consistent
and professional-looking user interface in Windows Store apps.

You’ll begin by creating a new Windows Store application, and then you’ll define a new style
resource in the App.xaml file, so that it can be referenced throughout the project. You’ll define the
new style with XAML markup, identifying the control that you want to configure with the TargetType
property. You’ll then assign specific properties to the style by defining one or more Setter elements
for the control. Finally, you’ll open the MainPage.xaml file and create XAML Toolbox controls on the
page that will take advantage of the new styles you’ve defined. You’ll also extend your expertise by
using the BasedOn property, which allows you to build new styles from existing styles. In object-
oriented programming terminology, this mechanism is known as inheritance—you assign the features
and properties of one resource to another resource.

Introduction to XAML styles

Most programmers dislike reinventing the wheel, or completing the same basic task over and over
again. If there is a simple way to automate a bit of formatting or programming, software developers
will usually go out of their way to do it, especially if automating the task helps them save time and
avoid potential coding mistakes down the road.

216 part II Designing the user interface

XAML styles are one useful coding mechanism that allows Visual Studio developers to automate
the construction of the user interface. XAML styles enable the Windows programmer to set various
properties for controls and then reuse those settings to build a consistent visual appearance across
the application. Each XAML style that you create is designed for a particular XAML Toolbox control.
For example, you might create a new style named FramedPhoto that is meant to assign a collection of
standard display properties to one or more Image controls in the user interface of a Windows Store
app. Of course, you could assign these properties individually to each Image control that you wanted
to look a particular way, but a simpler method would be to create a new style resource that could
be assigned to all of the Image controls. Such an approach would have the advantage of saving you
development time, but it would also produce more consistent formatting results across the objects in
the user interface. When you use styles, you are less likely to forget a crucial property setting when
you are formatting a collection of similar objects.

An additional advantage of custom styles is that you can make broad formatting changes in an
existing project very quickly. When you modify an existing style resource in App.xaml or a resource
dictionary associated with the project, all of the objects that reference that particular style will auto-
matically reflect the change.

Where did StandardStyles.xaml go?
In Visual Studio 2012, a style resource dictionary named StandardStyles.xaml was automatically cre-
ated for each new Windows Store project and stored in the Common folder in Solution Explorer. This
file contained a vast collection of predefined styles that you could use in your programs, and it was
possible to modify the file to customize the basic styles that Microsoft supplied. StandardStyles.xaml
was integral to Windows Store app development in Visual Studio 2012 because it defined user inter-
face elements that closely followed Microsoft’s design principles for Windows 8.

The following screen shot shows the default reference to StandardStyles.xaml in a Visual Studio
2012 project designed for the Windows Store. This reference appears in the App.xaml file in the proj-
ect. I mention it now because you might still see this reference in projects that have been migrated to
Visual Studio 2013 from Visual Studio 2012.

 CHAPTER 8 Using XAML styles 217

However, in Visual Studio 2013, StandardStyles.xaml file is no longer created automatically in a
Windows Store project, and in the App.xaml file the entire <Application.Resources> section has been
deleted. You also won’t see the Common folder in Solution Explorer that once held StandardStyles.
xaml. Instead, the Windows Store platform automatically supports Windows 8.1 control styling, and
it is no longer necessary to edit StandardStyles.xaml directly. You can reference predefined styles by
using the StaticResource extension in XAML markup when you work with controls.

Creating new XaML styles
When you are ready to create your own XAML styles in a project, you have some options about where
you place the markup that defines the styles. First, you can create a style for an individual page by
adding the style definition to the <Page.Resources> section of the page’s XAML file. If your Windows
Store app has only one page in it, this file will be named MainPage.xaml by default. (You’ve been
using MainPage.xaml throughout this book to define the user interface for your app.) However, if you
define new styles in this way, they can be referenced only by objects located on the page where you
defined the style. This type of declaration is called a page-level resource definition.

218 part II Designing the user interface

Second, you can create your new styles in the <Application.Resources> section of your project’s
App.xaml file. This is a more flexible approach; if you define styles in this way, they will be available for
use throughout the project—that is, in all of the pages that are part of your Windows Store app. So
far in this book, you’ve created demonstration programs that use just one page to process input and
display information. However, more sophisticated “real world” programs often utilize several pages
to manage input and output. For this reason, it is best to get comfortable defining new styles in the
App.xaml file.

Third, you can also create new styles in a stand-alone XAML resource dictionary file that is shared
across multiple Windows Store apps. This is a useful programming strategy if you find that you are
always creating controls on the page that have the same base characteristics and if you find it bother-
some to define custom styles in the App.xaml file of each new project that you start. In fact, you can
create more than one resource dictionary file in Visual Studio, and you can assign multiple resource
dictionary files to your applications.

To add a resource dictionary file to your project, open the project in Visual Studio, click the New
Item command on the Project menu, and double-click the Resource Dictionary template in the Add
New Item dialog box. Define your new styles in this template, and add it to other projects that you
want to incorporate the custom styles.

Note XAML resource dictionary files can contain more than just XAML styles. To find
out more about resource dictionaries and their uses, search for “ResourceDictionary class
(Windows)” at http://msdn.microsoft.com.

Considering the scope of a style
As your Visual Studio projects begin to fill up with custom styles, a new question might suddenly
occur to you: How do the various style definitions coexist in a project if the styles are defined in more
than one file location?

The answer to this question depends on where the new styles were defined and the way in which
they are used. That is, issues related to the accessibility context or scope of the new styles. Page-level
styles are available only to the objects that exist on the same page where the styles are defined.
However, if styles with the same name are defined in both the project-wide App.xaml file and on an
individual page like MainPage.xaml, the local style on MainPage.xaml overrides (or takes priority over)
the resource in App.xaml. Likewise, a style defined in App.xaml overrides a style of the same name in
a resource dictionary file that has been added to the project.

Thinking about the scope of styles, variables, namespaces, and other definitions in a Windows
Store app is important to do because there are often times when the same names are used. You’ll
learn more about these issues in Part III of this book, “Visual Basic programming techniques.”

http://msdn.microsoft.com

 CHAPTER 8 Using XAML styles 219

Sample markup for a new XaML style
How is a new style definition created?

Styles should be defined in the XAML file that gives the style resource the broadest scope without
forcing you to maintain files that you would not otherwise be using. As noted earlier in this chapter,
most of the time you should be defining styles in App.xaml or a resource dictionary. Inside the files,
you define each new style between <Style> and </Style> tags, and you must define the styles after
any resources that contain information pertinent to the styles. (For example, it is important to define
new styles after any MergedDictionary entries that you see, because new styles often make use of
standard styles that are included in these entries.)

For a page-level definition in a file such as MainPage.xaml, place the style under the
<Page.Resources> tag. For a project-level definition in the App.xaml file, place the style
under the <Application.Resources> tag. In a resource dictionary file, place the style under the
<ResourceDictionary> tag.

In the style definition itself, you use the x:Key property to give the style a unique name, and you
use the TargetType property to identify the control that you are customizing or styling. You then
assign individual property settings using one or more Setter properties. Each Setter assignment must
include a property name and a value that is defined using XAML markup. These property assignments
must be compatible with the control you are styling. If you assign a property or value to a style that
does not match the control definition you are referencing, an error will occur.

The following XAML markup sample shows the elements of a new style definition in an App.xaml
file, which will make the style resource available through the application. The new style is named
FramedPhoto, and it appears in a new <Application.Resources> section in the file. The new style
resource has been formatted in bold type.

The style will set the Height, Width, and Stretch properties for any Image control in the project that
references the style. Note that I am including some of the boilerplate markup in App.xaml so that you
can see where the new style is located. In particular, it is necessary to place the new style definition
between the <Application.Resources> and </Application.Resources> tags. The style itself is defined
between the <Style> and </Style> tags.

<Application
 x:Class="XAML_Style_Practice.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:XAML_Style_Practice">
 <Application.Resources>
 <Style x:Key="FramedPhoto" TargetType="Image">
 <Setter Property="Height" Value="240"/>
 <Setter Property="Width" Value="320"/>
 <Setter Property="Stretch" Value="Fill"/>
 </Style>
 </Application.Resources>
</Application>

220 part II Designing the user interface

referencing a style
To use or reference a new style in the XAML markup for an object in the user interface, you use the
Style property.

The following markup shows how you might reference the new FramedPhoto style defined in the
preceding section. There are four lines highlighted in bold type (lines 2-5) that I want to direct your
attention to—these define an image object on the page that will be styled by the FramedPhoto style
resource. Notice in particular how the FramePhoto name is used along with the StaticResource markup
extension, quotation marks, and a pair of curly brackets.

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <Image Style="{StaticResource FramedPhoto}"
 HorizontalAlignment="Left"
 Margin="522,176,0,0"
 VerticalAlignment="Top"/>
 <Image HorizontalAlignment="Left"
 Margin="346,75,0,0"
 VerticalAlignment="Top"/>
</Grid>

What results does this XAML markup produce? Even though the new style is being used to set
some of the properties for the first image object on the page (Height, Width, and Stretch), sev-
eral remaining properties are set by markup associated with the image object’s own definition
(HorizontalAlignment, Margin, and VerticalAlignment). As a result, the image object is defined with a
height of 240 pixels, a width of 320 pixels, a Stretch property set to Fill, a horizontal alignment set to
Left, and so on. Because none of the property settings overlap, there are no scope or override issues,
but you can see how such overlaps might occur. As I noted earlier, Visual Studio will resolve them by
giving priority to the style with the most local scope.

There is also a second image object defined in this sample markup. Note that this image has no
particular style associated with it, so it will not be formatted by the FramedPhoto style. I defined two
image objects in this sample simply to clarify that you don’t need to style every object the same way
if you don’t want to.

Using explicit and implicit styles
When you define a new style as a resource in your project, there are actually two ways to work with
the style in XAML markup. First, you can define and use the new style explicitly, as shown earlier in this
chapter, by identifying a specific x:Key property for the style and then referencing the style by name
when you format controls on the page.

Alternatively, you can define and use styles implicitly (that is, without giving the style a specific
name), by omitting the x:Key property when you define the style and then letting Visual Studio assign
the style automatically to every control that matches the style’s TargetType. Implicit styling is the
best way to get all of the objects of a particular type to be styled the same way in a project. It works
because Visual Studio takes the TargetType (control name) from the style definition and assigns it to
the x:Key property for the style.

 CHAPTER 8 Using XAML styles 221

If implicit styling sounds a little confusing, here’s a simple example that explains how implicit
styling works and why it might be useful. Consider the following page-level definition for a
new XAML style that formats a text box control. At the top of the sample is a style definition
between the <Page.Resources> and </Page.Resources> tags that defines the new style. It sets the
Background property of a TextBox control to the color green and changes the control’s FontSize prop-
erty to 24 point. Notice that there is no x:Key property, but TargetType is set to TextBox, making the
style implicit for all of the text box objects in the project that do not have a specific style name. (If
a text box object does have a specific style associated with it, it would be exempt from the implicit
styling.)

<Page.Resources>
 <Style TargetType="TextBox">
 <Setter Property="Background" Value="Green"/>
 <Setter Property="FontSize" Value="24"/>
 </Style>
</Page.Resources>

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <TextBox
 HorizontalAlignment="Left"
 Height="136"
 Margin="346,75,0,0"
 Text="Green Text Box"
 Width="263" />
</Grid>

The bottom portion of the XAML code defines a text box object within the main grid on the page.
A collection of properties are set by the markup; in addition to these, Visual Studio uses the implicit
style definition to format the background color of the text box to green and to set the font size to
24-point. This is the recommended strategy you should follow when using implicit styles—define a
handful of essential properties with the implicit style, and then further customize individual objects in
the project with additional styles that are needed. You should become familiar with both explicit and
implicit styling strategies to managing the look and feel of objects in your user interface.

Practicing XAML styles

Complete the following steps to create a new Windows Store app named My XAML Style Practice. In
this exercise, you will create three button objects on the page, and you will format two of them with
an explicit style named GradientButton.

GradientButton is a custom style resource that you will define in App.xaml so that it can be used
throughout the program. It formats the buttons that reference it with a blended, gradient effect that
transitions gradually from black to white. Because the formatting effect involves some rather complex
brush formatting, it is a good candidate for a new style resource that can be used over and over again
in a project. The gradient effect will look great on the screen or in an e-book. (It will be more subtle in
the printed version of this book.)

222 part II Designing the user interface

Create a new style in app.xaml

1. Start Visual Studio, and click New Project to open a new Visual Studio application.

2. Choose Visual Basic/Windows Store under Templates, and then verify that the Blank App
(XAML) template is selected.

3. Type My XAML Style Practice in the Name text box.

4. Click OK to open and configure the project.

Visual Studio creates a new Windows Store app with the appropriate supporting files. After a
moment, you’ll see the App.xaml.vb code-behind file for the Blank App template in the Code
Editor.

Now you’ll open the App.xaml file so that you can add a new style definition to it.

In Solution Explorer, right-click the file App.xaml, and then click the View Designer command.

5. A new tab opens in the Code Editor, and the App.xaml file is loaded into it. Your screen should
look like this:

The root element in the App.xaml file is Application, so the XAML document is defined
between the <Application and </Application> tags. You’ll create an <Application.Resources>
section here with room for several <Style> definitions.

 CHAPTER 8 Using XAML styles 223

6. Move the insertion point below the line containing xmlns:local="using:XAML_Style_Practice">,
press Enter, and then type the following markup to define a new style named GradientButton:

<Application.Resources>
 <Style x:Key=”GradientButton” TargetType=”Button”>
 <Setter Property=”FontSize” Value=”28”/>
 <Setter Property=”Background” >
 <Setter.Value>
 <LinearGradientBrush EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”Black”/>
 <GradientStop Color=”White” Offset=”1”/>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 </Style>
</Application.Resources>

Your Code Editor should now look like this:

The <Application.Resources> tag indicates that a collection of application-scoped resources
is being defined in the App.xaml file, which will be valid (or have scope) throughout the entire
project. Although you will be adding only styles to this collection, you could also add tem-
plates or brushes to it as well. Note that this resource collection is XAML-based and not some-
thing that is stored in the Assets folder, which you have used to store artwork and media files.

224 part II Designing the user interface

The <Style> tag indicates that a new style resource is being added to the XAML resource col-
lection. The style is given a name through the x:Key tag, and the control type is set to “Button”
using the TargetType property. Two additional properties are now added to the style using the
Setter property. The first assigns a value of 28 to the FontSize property, increasing the default
font size for a button object to 28-point. This is a straightforward use of the Setter property
that we have seen several times in the standard syntax for a new style definition.

However, the Background property assignment for the button is a little more complex.
Because Background can be assigned a collection of property settings, I’ve used the
<Setter.Value> tag to allow for several values, including LinearGradientBrush, EndPoint,
StartPoint, GradientStop, and Color. These values collectively create a transitional gradient
effect that moves from solid black to white on the button’s surface. (If you were setting these
properties using the Properties window, you would fill out a property page that contains
numerous settings and values.)

Now it’s time to test this new explicit style. Complete the following steps to add some buttons
to the user interface and reference the style.

7. In Solution Explorer, double-click the file MainPage.xaml.

Visual Studio opens MainPage.xaml in the Designer, the primary page in your Windows Store
app.

8. Open the Toolbox, and double-click the Button control three times to create three button
unique objects on the page.

Because you didn’t specify a location, the buttons will be stacked one on top of the other in
the upper-left corner of the page.

9. Enlarge the buttons and position them on the page in a row so that there is a little space
between them. However, don’t adjust the default FontSize property.

Your page should now look something like this:

 CHAPTER 8 Using XAML styles 225

Notice that the buttons do not yet reflect the new style that you created. This is because the
GradientButton style is explicit and must be referenced specifically in the XAML markup for
the button objects. You’ll reference the style name now for two of the three buttons to see
how the process works.

10. Move the insertion pointer to the XAML tab of the Code Editor, and place the pointer
between the Button object name and the Content property setting for the first button.

11. Type the following markup to assign the GradientButton style to the button:

Style=”{StaticResource GradientButton}”

This XAML uses the StaticResource keyword to let Visual Studio know that you are using a
named resource in the project. Be sure to include the curly brackets and quotes, which are
used to identify a resource in the project. When you move the insertion pointer to a new line,
the button on the page displays the gradient formatting effect and the size of the type in the
button is also enlarged.

226 part II Designing the user interface

12. Add the same markup defining the XAML style to the second button object in the Code
Editor, placing the Style reference in the same location on the line.

The second button immediately reflects the style change that you made, a reference to the
explicit style defined in App.xaml. Your screen will look like this:

Basically, because you defined the style as an explicit style, you can use the style resource on
whichever button you prefer in the project. Only the buttons that refer to GradientButton by
name will be formatted according to the new style.

13. Save your project and specify the My Documents\Visual Basic 2012 SBS\Chapter 08 folder as
the location.

14. Now run the project to see how the buttons look when they are part of a demonstration pro-
gram running under Windows 8.1.

The program begins, and the buttons appear on screen as they did in the Visual Studio
Designer. You’ll see something like the following illustration:

 CHAPTER 8 Using XAML styles 227

The buttons aren’t truly functional now, of course—you haven’t defined event handlers that
do anything when the user clicks the buttons. But you’ve learned important lessons about
how XAML styles can be used to create consistent and interesting formatting effects, which
will save you considerable time as you tackle larger development projects.

15. Close the My XAML Style Practice app.

The IDE reappears with the page you’ve been configuring in the Designer.

Now you’re ready to learn another important technique related to XAML styles and user interface
construction.

228 part II Designing the user interface

Building new styles from existing styles

After you create a style, you can use it as a model for additional styles in a project through a process
known as style inheritance. This means that the features and properties of one style can be used as
the basis for another style. The only requirement is that the new styles are based on an existing style
of the same control type. For example, after you have defined a button style named GradientButton
in your project, you can create a new style based on GradientButton that might do additional format-
ting to buttons—but the style can be applied only to button controls in the project.

At the XAML markup level, you use the BasedOn property to inherit a style within a new style defi-
nition. The new style is assigned a name through the x:Key property, as you have already learned. If a
property is not set in the new style, it is inherited from the base style.

The following exercise demonstrates the process using the My XAML Style Practice app. You’ll
create a new button style named YellowGradient that inherits its gradient formatting characteristics
from the GradientButton style. The new style adds yellow color formatting in two places—presumably
something that you might want for some, but not all, of the buttons in a user interface.

Use the BasedOn property to inherit a style

1. Click the App.xaml document tab at the top of the Designer.

The YellowGradient style will be defined in the App.xaml file so that it is available throughout
the Windows Store app.

2. Move the insertion point below the GradientButton style you just defined (between the
</Style> and </Application.Resources> tags), and enter the following XAML markup to define
the new style:

<Style x:Key=”YellowGradient” TargetType=”Button”
 BasedOn=”{StaticResource GradientButton}”>
 <Setter Property=”BorderBrush” Value=”Yellow”/>
 <Setter Property=”Foreground” Value=”Yellow”/>
</Style>

Your Code Editor should look like this:

 CHAPTER 8 Using XAML styles 229

Once again, the new style resource is defined in the <Application.Resources> section between
<Style> and </Style> tags. You’ll recognize most of the markup used for this new resource,
with the exception of the BasedOn property, used here for the first time. BasedOn allows
you to inherit the characteristics of the GradientButton style and use them as the basis of the
new style. Because the GradientButton is a project resource, it is also referred to using the
StaticResource keyword.

The style is assigned a name using the x:Key tag. Two Setter properties apply yellow format-
ting to the button border and the type displayed in the button. However, in other respects,
the button simply inherits the property settings and characteristics of the GradientButton
style.

3. Click the MainPage.xaml tab at the top of the Designer.

Now you’ll reference the YellowGradient style in the markup for the third button on the page.

4. Move the insertion pointer to the Code Editor, and place the pointer between the Button and
Content property settings for the third button.

230 part II Designing the user interface

5. Type the following markup to assign the YellowGradient style to the button:

Style=”{StaticResource YellowGradient}”

The familiar StaticResource keyword is used again to reference the style you want to use. The
third button’s design will be based on the style model for the first and second buttons, with
yellow formatting added via the new YellowGradient style.

As soon as you move the insertion point off the third button’s XAML markup, the formatting
change takes place. Your screen will look like this:

6. Save your changes to the project, and then run the program to see what the new button looks
like.

The Windows Store app starts and the three buttons appear on the screen. You’ll see some-
thing like the following illustration. Note that the color yellow in the third button will be dis-
tinctive only on the screen in front of you and in the e-book version of this title. The printed
book won’t show the yellow formatting.

 CHAPTER 8 Using XAML styles 231

Even in this simple example, you can see the significant power of XAML styles and how one
style design can be used as the basis for addition styles.

7. Exit the My XAML Style Practice application, and display the IDE again.

IDE shortcuts for applying styles

A useful shortcut for applying XAML styles like the ones that you have created in this chapter is to
right-click an object on the page that you want to format with a new style and apply the style name
from a list in a pop-up window. When you apply XAML styles in this way, using only commands in the
IDE, Visual Studio updates the XAML markup for you automatically. You won’t need to manually enter
the style using the XAML Style property in the Code Editor.

Give this shortcut a try now.

apply a XaML style using the IDe

1. In the Designer, right-click the first button on the page.

2. In the pop-up menu that appears, click Edit Template | Apply Resource | YellowGradient.

232 part II Designing the user interface

3. Your screen will look this as you are making your style resource selection:

The two styles that you added to the App.xaml file (GradientButton and YellowGradient) are
now ready for you to use at the click of a button.

After you select the YellowGradient style, Visual Studio applies it to the object selected in the
Designer and updates the Style property for the object in the XAML markup and Code Editor.

That’s all there is to it! You’ve learned another useful way to take advantage of style resources
in a Visual Studio project!

4. Save your changes, and exit Visual Studio.

You’re finished working with XAML styles in this chapter. Be sure to use them as you design
Windows Store apps, and return to this chapter for a refresher course when you start building larger
projects—styles become incredibly useful in larger, team-development efforts.

 CHAPTER 8 Using XAML styles 233

Summary

In this chapter, you learned how to create and use XAML styles in your Windows Store apps. XAML
styles allow you to set a wide range of formatting properties for controls and then reuse those set-
tings to build a more consistent user interface. I recommend that you create your first styles in a proj-
ect’s App.xaml file so that you can use them throughout the program. As you learn more about styles
and develop favorites that you want to use often, I recommend that you place them in a resource
dictionary that you can share across multiple applications.

In the exercises in this chapter, you learned the syntax necessary to create XAML styles, how to use
explicit and implicit styles, and how to build new styles from existing styles through the process of
style inheritance. You also learned shortcuts in the Visual Studio IDE for applying styles to objects on
the page.

In the next chapter, you’ll continue designing the user interface of Windows Store apps. In particu-
lar, you’ll learn how to use some essential Windows 8.1 design features for applications, including the
new CommandBar and Flyout controls, how to customize “live” tiles on the Windows Start page, plan-
ning for touch and gestures in Windows Store apps, and using the Manifest Designer to set program
permissions and capabilities.

 235

C H A P T E R 9

exploring Windows 8.1 design
features: Command bar, flyout,
tiles, and touch

After completing this chapter, you will be able to

■■ Create a CommandBar with buttons to manage common tasks.

■■ Use the Flyout control to collect input and display information.

■■ Design a custom tile for your Windows Store app on the Start page.

■■ Plan for touch input and gestures in a Windows Store app.

■■ Use the Manifest Designer to set program permissions and capabilities.

In this chapter, you’ll continue examining the user interface of Windows Store apps, and you’ll learn
more about the features of programs distributed via the Windows Store. In particular, you’ll learn

more about the user experience (UX) design guidelines for the Windows 8.1 operating system. You’ll
learn how to create an interactive command bar in your project that uses buttons to launch com-
mands and how to use the XAML Flyout control to display and receive information with a tap or a
click. These tools are new features in Visual Studio 2013 designed for Windows Store apps.

Windows Store applications need to have a consistent design from start to finish. Accordingly, this
chapter describes how to create a custom Start page tile for your Windows Store app and how to
plan for touch input and gestures in a program that runs on touch-enabled devices. In addition, you’ll
learn how to edit the Package.appxmanifest file by using the Manifest Designer to control important
permissions and capabilities for users of your software. This last step will ensure that your customers
can accomplish the work that they need to without endangering the system or the sensitive informa-
tion stored on it.

The following techniques apply specifically to Windows Store apps that run under Windows 8.1. In
some circumstances, the full implementation of these features will require a little advanced work that
is beyond the scope of this chapter— for example, creating live tiles that respond to a variety of input
scenarios. However, the topics introduced here will lay the groundwork for Windows Store projects
and prepare you for your own explorations and team development efforts.

236 part II Designing the user interface

Creating a command bar to manage common tasks

The Windows 8.1 design guidelines encourage software developers to present users with a minimum
of “chrome,” or persistent user interface features, in a Windows Store app. This means that you should
minimize the use of static title bars, menu bars, toolbars, and buttons that are always on the screen
in the manner of traditional Windows desktop apps. Instead, rich user content is to be at the center
of the Windows 8.1 computing experience. Information is to be presented graphically when possible,
preferably in tiles or panels containing beautiful text, striking photographs, and original art.

An excellent resource for Windows 8.1 design information is the Microsoft user experience (UX)
guidelines, prepared to help developers think about the way that software is used and the emotions
and perceptions of consumers as they work with Windows Store apps. These guidelines are intro-
duced in the article “Designing UX for apps,” on MSDN, and I recommend the resource to you. (See
http://msdn.microsoft.com/en-us/library/windows/apps/hh779072.aspx.)

So, if the developer needs to replace traditional menu bars and toolbars with another mechanism
for issuing commands and managing tasks, what tool or tools should they use?

Part of the answer to this question involves really thinking about the user content in your applica-
tion and the ways that the user needs to work with it. Within the XAML Toolbox for a Windows Store
application, there are numerous user interface tools to choose from, and you have already surveyed
several in this book, including Image, TextBlock, WebView, MediaElement, TextBox, and FlipView.

However, there are times when it is useful to display a palette of commands for the user to choose
from. In the Visual Studio 2012 product, one way to accomplish this was via the XAML AppBar control,
which displays a pop-up window of common commands at the top or the bottom of the app. While
AppBar is still available to Windows Store applications, much of the same functionality is now offered
in Visual Studio 2013 with the CommandBar, AppBarButton, and AppBarToggleButton controls located
in the XAML Toolbox. The following illustration shows the Microsoft Calendar app with a command
bar at the bottom of the page and five buttons in the command bar.

http://msdn.microsoft.com/en-us/library/windows/apps/hh779072.aspx

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 237

Command bar features
CommandBar is useful because it provides an automatic layout of common command buttons that
appears at the top or bottom of the application windows whenever the user right-clicks the mouse,
swipes from the edge of the screen to the center, or presses Windows+Z. The bar is further organized
into a primary panel on the right side and a secondary panel on the left side.

The Windows 8.1 design guidelines require application windows to be resizable, which means
that the content within applications needs to be adjusted dynamically if the user chooses to resize or
reorient the application workspace. The CommandBar control handles this resizing automatically, and
if necessary, CommandBar will be displayed in a special compact state, which can also be set pro-
grammatically if you change the control’s IsCompact property setting to True.

A CommandBar control is typically created in a Windows Store app by adding XAML markup to
the MainPage.xaml file inside the <Page> tag for the file. Individual buttons in the CommandBar are
creating using the AppBarButton control, which is also new in Visual Studio 2013 and available in the
XAML Toolbox for Windows Store applications. The AppBarButton control has Icon and Label proper-
ties that collectively determine which button shapes are displayed in the bar and the text label that is
used to describe the button. You then “wire up” each of the command buttons to event handlers that
perform the work of the button via Visual Basic code. Typically, a separate event handler is used to
handle each button click or tap.

238 part II Designing the user interface

This is what the XAML looks like for a CommandBar control that contains three AppBarButton con-
trols. The XAML is specified near the top of the Page control (before the Grid control is defined), and
the BottomAppBar identifier indicates that the bar will be attached to the bottom of the page. (Use
TopAppBar to create a command bar at the top of the page.)

<Page.BottomAppBar>
 <CommandBar>
 <AppBarButton Icon="Play" Label="Play" Click="PlayButton_Click"/>
 <AppBarButton Icon="Pause" Label="Pause" Click="PauseButton_Click"/>
 <AppBarButton Icon="Stop" Label="Stop" Click="StopButton_Click"/>
 </CommandBar>
</Page.BottomAppBar>

The buttons are named Play, Pause, and Stop. Notice how each button calls a separate event
handler when they are clicked via the Click property. (The Visual Basic code for the event handlers is
not provided here—that will be part of the exercise that follows.) By default, buttons appear in the
lower-right corner of the command bar.

Button names identified by the Icon property are loaded from a Visual Studio styles file
containing valid button symbols for Windows Store apps. You can examine the impres-
sive list of symbols available by examining the following documentation file on MSDN:
http://msdn.microsoft.com/nl-nl/library/windows/apps/windows.ui.xaml.controls.symbol.aspx.

If the button you want is actually a toggle button with distinct on and off states, you can make such
an image appear on the command bar by specifying AppBarToggleButton instead of AppBarButton in
the XAML for the control. (You’ll see an example of this technique in the exercise later in this chapter.)
The text in the Label property for each button specifies the name that will appear beneath the icon on
the command bar when the bar is made visible. It is only coincidence that in this example the Icon and
Label properties contain exactly the same information.

Designing your command bar
You’ll want to take some time designing your command bars so that they display the needed icons
and commands in a predictable way. For example, use a command bar on the bottom of the page to
display commands relevant to the user’s current context, such as items that are selected and might
require editing or deleting. A command bar at the top of the page is typically used to display navi-
gational elements and is sometimes known as the navigation bar. Here you’ll see elements such as a
forward or back button, or a selector that allows you to change the page.

Keeping with the goal to reduce chrome, command bars are not visible by default. They appear
only when a user right-clicks or swipes a finger from the top or bottom edge of the screen. However,
you can also make a command bar appear programmatically by using Visual Basic code.

When you design your command bar, begin by placing typical default commands on the right
side of the command bar. If there are only a few relevant command buttons for the task at hand,
you might end up showing just one or two on the right side. (That’s OK and something typical in the
Windows 8.1 environment.) However, if there are a larger number of commands to show, separate

http://msdn.microsoft.com/nl-nl/library/windows/apps/windows.ui.xaml.controls.symbol.aspx

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 239

the button in sets on the right and left sides of the bar to balance out the application workspace and
make the commands ergonomically accessible.

Some command buttons are very typical and appear in many Windows Store apps. To create
consistency and emphasize ease of use, follow Microsoft’s lead in how the buttons are organized on
typical applications like Internet Explorer, Calendar, Mail, and Store. That way, your users will leverage
their own knowledge and become familiar with the placement of common buttons. For example, a
New button should usually be the rightmost button on a command bar at the bottom of the page.

Should you use a charm instead?
When possible, in addition to command bars, you should try to use the standard charms on the
Windows charm bar to handle common tasks, such as searching within your application, shar-
ing data from your application with others, and adjusting common settings in your application.
Charms are universal buttons that appear on the right side of the screen in Windows 8 and
Windows 8.1 when you swipe in from the right or hold the mouse pointer in the upper-right
corner of the screen. The charms can be used to provide the following features to your users,
which should not be duplicated by buttons on the command bar in your app:

■■ Search Allows your app to be a data provider for searches by any user on the system. If
your program has lots of data to use and share, the Search charm can be a great gateway
to your program’s data for others.

■■ Share Allows users to share content from your app with other users or Windows Store
programs.

■■ Devices Allows users to send audio, video, or pictures from your app to other devices
attached to your computer or network.

■■ Settings Allows users to manage common application settings in your Windows Store
app by using the same tool that they are familiar with in Windows.

Charms are built into Windows 8 and Windows 8.1—they are a core usability feature of
the operating system that can be accessed by software developers. To interact with a charm
and use it to provide application-specific information, you establish a contract with the charm,
which involves declaring the charm that you want to use in the Package.appxmanifest file (dis-
cussed later in this chapter) and then accessing the charm using Visual Basic code in your app.

The most common Windows charm to use is Search, which can allow users to extract valu-
able information from your app. For more information about using the Search charm, see
“Quickstart: Adding search to an app (Windows Store apps using C#/VB/C++ and XAML)” at
http://msdn.microsoft.com/en-us/library/windows/apps/hh868180.aspx.

http://msdn.microsoft.com/en-us/library/windows/apps/hh868180.aspx

240 part II Designing the user interface

Command bar practice step by step
Let’s try some sample code that creates a new CommandBar control in a Windows Store app and uses
it to execute simple commands. The sample program will play music with the MediaElement control
that you learned to use in Chapter 5, “Working with Windows Store app controls.” The command bar
in the program provides five media-related button commands: Loop Track, Mute, Play, Pause, and
Stop. You need to be running Windows 8.1 to create this project.

Use a CommandBar control to manage media playback

1. Start Visual Studio 2013, and create a new Windows Store app using Visual Basic and the Blank
App (XAML) template.

2. In the Name text box, type My Command Bar Demo.

3. Click OK to create the new project in Visual Studio.

Visual Studio opens the new project with a blank application template.

4. Double-click the file MainPage.xaml in Solution Explorer.

5. Open the Toolbox’s All XAML Controls category, and double-click the MediaElement control.

Visual Studio places a new media player object in the upper-left corner of the applica-
tion page. Recall that you can see the outline of this control while your project is in design
mode, but that it will be invisible when the program runs. For this reason, you will use the
CommandBar control to provide some useful playback features.

Now you’ll add a media file to the project.

6. Right-click the Assets folder in Solution Explorer to display the shortcut menu of commands.

7. Point to the Add command, and then click Existing Item.

8. In the Add Existing Item dialog box, browse to the My Documents\Visual Basic 2013 SBS\
Chapter 09 folder and click Electro Sample, the same MP3 file containing electronic music that
you used in Chapter 5.

9. Click Add to add the music file to your project in the Assets folder.

Now you’re ready to assign this music asset to the Source property of the media element
object.

10. Click the media element object in the Designer window, and then use the Properties window
to change the Name property to MediaTool.

11. Expand the Media category, scroll down to the Source property, and click the Source list box.

The media file you added to the project appears in the list.

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 241

12. Click Electro Sample.mp3 to add the music file.

Now you’re ready to add a CommandBar control to the project. You’ll add the bar using XAML
markup, which is much more efficient than using the Toolbox and Properties window in this
instance.

13. Open the MainPage.xaml file in the XAML pane of the Code Editor.

At the top of the file, you’ll see the <Page> header followed by seven lines of XAML that
define namespaces and other important objects in the project.

14. Beneath these lines (but above the Grid header), type the following markup:

<Page.BottomAppBar>
 <CommandBar>
 <AppBarButton Icon=”Play” Label=”Play” Click=”PlayButton_Click”/>
 <AppBarButton Icon=”Pause” Label=”Pause” Click=”PauseButton_Click”/>
 <AppBarSeparator/>
 <AppBarButton Icon=”Stop” Label=”Stop” Click=”StopButton_Click”/>

 <CommandBar.SecondaryCommands>
 <AppBarToggleButton Icon=”RepeatAll” Label=”Loop Track”
 Click=”LoopButton_Click”/>
 <AppBarToggleButton Icon=”Mute” Label=”Mute”
 Click=”MuteButton_Click”/>
 </CommandBar.SecondaryCommands>
 </CommandBar>
</Page.BottomAppBar>

Like the sample markup shown earlier, this XAML creates a command bar attached to the
bottom of the page. The command bar contains five buttons: Play, Pause, Stop, RepeatAll, and
Mute. The last two buttons are created with the AppBarToggleButton control and are also so-
called “secondary commands,” meaning that they are listed on the left side of the command
bar.

The Stop button is created on the far right of the command bar and separated from the others
with a thin line that has been added purely for stylistic purposes. Notice that each of the five
buttons has its own unique event handler, which you will define in the following steps by using
Visual Basic Sub procedures.

15. Open the MainPage.xaml.vb code behind file in the Code Editor.

16. Type the following Visual Basic code beneath the Inherits Page statement in the file:

Sub StopButton_Click()
 MediaTool.Stop()
End Sub

Sub PlayButton_Click()
 MediaTool.Play()
End Sub

242 part II Designing the user interface

Sub PauseButton_Click()
 MediaTool.Pause()
End Sub

Sub LoopButton_Click()
 MediaTool.IsLooping = Not MediaTool.IsLooping
End Sub

Sub MuteButton_Click()
 MediaTool.IsMuted = Not MediaTool.IsMuted
End Sub

These five single-line event handlers use properties and methods in the MediaElement control
to manage playback of the music asset loaded into the project. If you completed Chapter 5 in
this book, you saw several of these methods already. The IsLooping property is used here for
the first time, which determines whether the song will return to the beginning and play again
after it finishes. The statement uses the Not Boolean operator to switch, or toggle, the current
value of IsLooping.

17. Click the Save All command on the File menu to save your changes.

18. Specify the My Documents\Visual Basic 2013 SBS\Chapter 09 folder for the location.

Now you’ll run the program again to test the command bar you’ve created.

19. Click Start Debugging on the toolbar.

The application runs, and the selected audio file begins to play. A feature of the MediaElement
control is that it runs automatically by default. However, the screen is blank.

20. After a few moments of electronic music, open the command bar by clicking the right mouse
button, pressing Windows+Z, or (if you have a touch screen) swiping up from the bottom
edge of the screen.

You’ll see the following command bar:

21. Click the Pause button.

The song pauses at the current playback position.

22. Click the Play button.

Audio playback resumes where you left off.

23. Click the Mute button.

The music is muted (volume is temporarily set to 0), but playback continues. Because Mute is a
toggle button, the icon is filled with a white background color.

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 243

24. After a few moments, click the Mute button again.

The original volume setting is restored, and you’ll be able to hear music again. You will notice
that the song has advanced (and will complete if you wait too long).

25. Click the Stop button.

Audio playback terminates.

26. Click the Play button again.

The electronic music file begins again but at the beginning of the song.

27. Click the Loop Track button.

The toggle button is filled with a white background color and prepares the MediaElement con-
trol for looping. When the track ends, it will run again (and again) until you close the program
or toggle the button.

Note As you might have noticed, there was no specific “looping” button available
in the collection of symbols supplied by Microsoft for Windows Store apps, so I used
the RepeatAll button for this project (it has a similar look and feel). You can usually
get away with this type of substitution, as long as the button you use is not well-
known for another function.

28. Continue experimenting with the command bar controls that you just created. You can also
open and close the command bar, playing with it for a while, and then closing it when it is no
longer needed. The entire purpose of this bar is to be nonexistent when it is not needed.

29. When you’re finished, quit the program and close the project. (But keep Visual Studio open.)

You’ve learned how to use the CommandBar, AppBarButton, and AppBarToggleButton controls
to define a command bar and associate command buttons with event handlers that perform useful
work.

Using the Flyout control to collect input and
display information

Visual Basic 2013 also introduces a new control named Flyout for Windows Store apps that allows
you to temporarily display a dialog box on the surface of your application. The proposed use for the
Flyout control is to allow for quick pop-up messages or input in a situation when a complete page
of information is not required, such as a message asking you to confirm a deletion or disconnection
request. A flyout should be used in response to a user tap or click on the screen; like a command
bar, it is quickly dismissed when the user clicks a button within the flyout, clicks outside the flyout, or
presses the Esc key.

244 part II Designing the user interface

Flyouts are typically used in combination with button objects on the page in a Windows Store app.
For example, consider the following screen shot of the Microsoft Calendar program, a Windows Store
app that allows users to manage pending events on a shareable calendar.

On the screen, the user has just clicked the Delete button in the upper-right corner of the page to
delete a pending event. However, rather than simply removing the planning meeting—an action that
will result in calendar data loss—the program uses a flyout to confirm the deletion. In particular, the
flyout asks the user to confirm the removal by clicking Delete or canceling the action by pressing Esc
or clicking outside the flyout.

Microsoft recommends that developers use flyouts for several actions in a Windows Store app,
including the following:

■■ Gathering data Use a flyout when you want to collect additional information from a user
that is beyond the scope of typical input. For example, you might use text boxes and radio
buttons on a page to gather typical customer information but then use a flyout for supple-
mental data or to remind the user that a required field has been left empty.

■■ Warning messages Use a flyout to warn the user that data is about to be lost as a result
of a command or action that they have just taken in the application. This is easy to do if you
attach a flyout to a button on the page, because buttons have the built-in ability to display
flyouts.

■■ Selecting one option from many Microsoft recommends that you use flyouts in combina-
tion with command bars to display menus when a button has more than one option to choose
from.

■■ Additional context information Flyouts can be very helpful if you want to display addi-
tional information about something in your user interface. Microsoft recommends that you
reduce the clutter or “chrome” on the screen. A flyout can be a good choice when you want to
display informative text related to an action or feature, but only some of the time.

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 245

In Visual Studio 2013, the XAML Button control has a new Flyout property to make it easy to open
a flyout on the page. Another technique for using Flyout controls (not discussed in this chapter)
involves attaching a flyout to an object on the page by using the FlyoutBase.AttachedFlyout property
and then handling the event that calls the flyout by creating a custom property in Visual Basic to
respond to the interaction. (You’ll learn more about creating properties and base classes in Chapter
16, “Object-oriented programming techniques.”)

The following exercise shows you how to use the Flyout control to display a confirmation message
when the user clicks a Display Photo button in a Windows Store application named Flyout Demo. The
program is a revision of the Command Bar Demo program that you created earlier in the chapter.
However, I have saved the project with a new name and added a few features to prepare it for the
Flyout control practice that you will try.

Use the Flyout control to confirm an action

1. Open the Flyout Demo app, located in the My Documents\Visual Basic 2013 SBS\Chapter 09
folder on your hard disk.

Flyout Demo is a Visual Studio 2013 app, containing controls that are not available in Visual
Studio 2012. If you are currently running the Visual Studio 2012 software, you will not be able
to open this project. (The app also requires that you are using Windows 8.1.)

2. Open the MainPage.xaml file.

This program also has a very minimal user interface. Like Command Bar Demo, it contains a
MediaElement control that plays music, and there is a command bar with buttons to let you
control the playback of one electronic music file.

The changes that I have made to the page include adding a button object containing the text
“Display Photo” and adding an image object that displays a color photograph of my Seattle-
based cover band, American Standard. (That’s right, I don’t only write computer books!)

The photo is loaded into the Assets folder in the project, and it has been linked to the image
object via the object’s Source property. I have set the Stretch property for the image to
Uniform, and I have hidden the image by setting the object’s Visibility property to Collapsed.
That’s why you can’t see the photo on the page right now.

In the following steps, you will use XAML to attach a Flyout control to the Button object
defined in MainPage.xaml.

3. Using the Code Editor, scroll down in the MainPage.xaml file to display the XAML defining the
Grid and the Button objects.

246 part II Designing the user interface

4. Below the Button object’s Width property, you’ll notice the following markup:

<Button.Flyout>
<Flyout>
<StackPanel>
<TextBlock>You have requested a photo to be displayed. Do you want to continue?
</TextBlock>
<Button Click=”DisplayPhoto_Click”>Yes, display the photo</Button>
</StackPanel>
</Flyout>

</Button.Flyout>

Note To allow the markup to appear on the printed page without line breaks, I have
not indented the XAML in the book. However, in the Code Editor, you should feel
free to accept the indents that Visual Studio recommends to show the nesting of
elements.

Your IDE will look like this:

The new XAML attaches the Flyout control to the Button object and defines the content of
the flyout using StackPanel, TextBlock, and Button controls. These are simply the user inter-
face tools that I thought would make a good flyout—you can use any combination of XAML

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 247

controls that you want in a flyout. Just try to be relatively simple here, because a flyout is not
supposed to be as full-featured as a regular page in your user interface.

You should also notice the inner button used in the flyout. This markup specifies the text that
will be displayed in the button (“Yes, display the photo”) and also the event handler that will
run when the user clicks the button (DisplayPhoto_Click).

Now you’ll see the contents of the event handler in the Visual Basic code-behind file.

5. Open MainPage.xaml.vb in the Code Editor.

6. Scroll to the bottom of the file, and locate the following Sub procedure, which will make the
image on the page visible when the user clicks the Display Photo button:

Sub DisplayPhoto_Click()
 Image.Visibility = Windows.UI.Xaml.Visibility.Visible
End Sub

This event handler simply sets the Visibility property. The long setting is simply a reference to
the Windows.UI.Xaml namespace, which has more options available for visibility than simply
True or False.

tip If you want Visual Studio to close the flyout programmatically after the Yes,
Display The Photo button has been clicked, add the statement Button.Flyout.Hide()
to the bottom of the DisplayPhoto_Click event handler. You can either close the fly-
out with program code or let the user click outside the flyout to close the pop-up
window.

Now you’ll run the program.

7. Click the Start button.

The familiar electronic music begins its progression in the Windows Store app, starting auto-
matically when the program launches.

8. Click the Display Photo button.

The button launches the flyout, which displays a confirmation message in a temporary box
near the button, asking whether you want to continue loading the photo.

9. Click Yes, Display The Photo.

The program confirms the request and loads the cover band photo. However, the flyout stays
open until you press Esc or click outside the flyout.

248 part II Designing the user interface

Your screen looks like this:

10. Click the page outside the flyout.

The flyout disappears and the image remains.

11. Right-click the mouse button, or sweep up from the bottom edge of the page.

The command bar appears, showing the controls that you can use to manage the playback of
the music file.

12. Experiment a little more with the command bar buttons to ensure that they are still working
as expected.

You created this same command bar in the previous exercise in this chapter, of course.

13. When you’re finished experimenting, close the program.

That’s all there is to it! You’ve learned how to display information and manage input using a Flyout
control. You’ll find this to be a helpful addition to your collection of Windows Store user interface
tools. Like the command bar, flyouts help you reduce screen clutter, and they also fit the user experi-
ence (UX) guidelines that Microsoft recommends for solid user interface design. In the next section,
you’ll learn about another distinctive feature of Windows 8.1—the tile-based layout of the Start
page—and how to prepare the necessary logos for the Start page and the Windows Store.

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 249

Designing custom tiles for your app

The Start page presents a collection of colorful, customizable application tiles that are used to launch
programs and to provide visual feedback about events taking place in Windows Store applications,
such as the current weather in the city you are in. Although Start page tiles can be simple, static
images (containing nothing but a basic logo and the application name), you can also create dynamic
“live tiles” containing additional images or textual content that is updated periodically by the applica-
tion or a trusted web service.

In this section, you’ll learn how application tiles are created in a Windows Store project, beginning
with static tiles and then moving on to live tiles. What you design will be compatible with Windows
Store apps sold via the Windows Store. However, you follow a similar process when designing tiles for
Windows Phone 8 devices and Microsoft Xbox.

the assets folder
Application tiles, or logos, are part of the distribution package for a Windows Store application.
You will see them listed in Solution Explorer in the Assets folder for a project. Default “empty” tiles
containing nothing but an “X” on a dark background are included automatically as placeholders for
your app when you create a new Windows Store project. You can modify these images or replace
them completely with your own custom image files. The tiles must be in PNG or JPEG format, and the
images must fit exactly the required dimensions and specification. (See the next section of this chap-
ter for details.) I recommend the PNG format, because that file type is better suited for transparency.

The names for your tiles are stored individually in the Package.appxmanifest file in your project, and
you will find them all listed under the Application UI category when you edit the Package.appxmanifest
file by using the Manifest Designer. (You can double-click the Package.appxmanifest file in Solution
Explorer to open this editor.)

In addition to the tile names, you will see other helpful settings under the Application UI category,
including the URI template location where tiles can receive live updates, the foreground and back-
ground colors used for the tiles (be sure to make these consistent), and the application name that
appears on the tiles in the Windows Start page and in other locations. You can either embed the
application name in your tile or have Visual Studio display a text overlay with the name on the tile. I
recommend the second approach in your Windows Store apps. If you go this route, you can create
the text overlay using the Short Name text box in the Application UI category of the Package.appx-
manifest file.

required tiles and uses
Because application tiles are used in different ways by Windows, there are several images required for
each Windows Store application. The requirements that I’ll discuss here apply to Windows 8.1.

For a Windows Store app that runs under Windows 8.1, three tile images are required, and two
additional images are optional (but recommended). The major differentiating feature among all

250 part II Designing the user interface

of these tiles is that they are different sizes. For the best possible display results, the designers of
Windows 8.1 recommend that you don’t simply “scale” one tile to fit the various required sizes; this
often produces fuzzy images that don’t look as good as they might.

The tiles for a Windows Store app can be created using third-party image-editing software, or you
can use the Image Editor that is included with Visual Studio, which you first encountered in Chapter 3,
“Creating your first Windows Store application,” when you created a splash screen. (If you didn’t com-
plete the Windows Store app walkthrough in Chapter 3, you might want to check out those instruc-
tions before you complete this section. You will use the Image Editor in the upcoming exercise.

The three required tiles sizes for a Windows Store app in Windows 8.1 are 150×150 pixels for the
basic Start page logo, 30×30 pixels for a small version of the logo suitable for search results and use
on the secondary Start page or “Apps By Name” panel, and 50×50 pixels for an image that can be
used for marketing purposes in the Windows Store. Optionally, you can also create two supplemental
tiles for Windows Store apps: a 310×150 pixels “wide” image for the Start page (which contains a little
more real estate for live data and other goodies), and a tiny 24×24 pixels image for badge notification
that appears on the Windows Lock screen and in other situations.

In terms of design, you’ll want to avoid loading down your tiles with unwieldy text and overly com-
plicated artwork. Consider using an image or photo that can easily be adapted to other countries and
cultures (that is, easily localizable), and use a background color that is attractive and complementary
with the tiles a user would typically see on the Start page, such as those provided in the default instal-
lation of Windows 8.1.

The following illustration shows the five tile images described above for the Microsoft Weather
application that is shipped with most retail versions of Windows 8.1. (Weather is also available as a
free application download in the Windows Store.)

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 251

Notice how similar the Weather logos are within the sample tiles shown here, although they are
actually different sizes in all but one case. The most obvious difference that you will see here is that
two of the Weather tiles are dynamic “live tiles” containing weather updates that are downloaded
periodically from a web server. The user can disable a live tile like Weather by right-clicking the tile on
the Start page, and then selecting the Turn Live Tile Off command. By the way, the first tile in the pre-
ceding illustration (top left) shows the live tile version of the Weather application; the second image
(top, second from the left) shows the Weather tile with live updates disabled.

Although the software developer must take responsibility for designing the different tiles shown
here for certification in the Windows Store, most users will not realize that each image is a unique file.
(And of course, as noted earlier, you are not required to create a live tile if you don’t want to right
now.) This is not the place for time-saving shortcuts. For example, simply scaling the tile (that is, using
an image editor to expand or shrink the tile programmatically) is not a good way to speed up the
logo design process, because the results can look “jaggy” and not as crisp as the tiles created by your
competitors! In short, your tiles should resemble as closely as possible professional tiles, because this
feature is one that is very prominently displayed on the Start page and in the Windows Store.

With this introduction to tiles, try creating one now by completing the following steps. You can
repeat the process whenever you need to design a custom tile for your Windows Store application.
The project that you have open for this exercise does not matter—I will keep using the Flyout Demo
app, but you can use whatever Windows Store project that you want. The focus of the instruction is
on the steps you need to complete rather than on the specific design you create.

Design a custom tile for a Windows Store app

1. Open a valid Windows Store project designed for Windows 8.1, such as Flyout Demo, the
project that you just worked on earlier in this chapter.

If you use a Visual Studio 2012 project designed for Windows 8, the steps are similar, but the
names of the logo files are different. (They were updated for Windows 8.1.)

2. In Solution Explorer, expand the Assets folder for the project, and then double-click the file
Logo.scale-100.png.

This action opens the Image Editor in Visual Studio and loads the Logo.scale-100.png file into
the editor. This is the basic logo tile that appears on the full-sized Windows Start page for
your application. Your screen looks like this:

252 part II Designing the user interface

Keep in mind that the default image is a .png file, which is transparent and therefore capable
of showing a background color behind it. (That’s a good thing; Windows 8 tiles and Windows
8.1 tiles take advantage of this feature.)

In Visual Studio now, the Solution Explorer and Properties windows are still visible. The Image
Editor is surrounded by various graphics editing tools. The “X” shape in the center of the
canvas is simply the default image for the Start page tile. This is the image that you want to
replace now.

3. Click the Selection tool in the upper-left corner of the Designer, select the entire “X” shape,
and press Delete.

You now have a blank canvas to create your Start page tile. On my system, the default back-
ground for the canvas is a green “alpha” checkerboard pattern that makes it easy for you to
see the background behind transparent tiles. (If you see the checkerboard pattern, that means
that you can see the background through the tile.) If you see something different and would
like to see what I see, adjust the background setting by using the tool labeled Show Or Hide
The Alpha Checkerboard Pattern, located on the top of the canvas.

4. Click the Rectangle tool on the left side of the Image Editor, and then create a series of rect-
angles in the middle of the screen. Design the rectangles so that they are equally spaced apart
and ascending in height so that the last rectangle is taller than the first.

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 253

By default, Rectangle and the other tools will create images in white, which will look especially
good on the Windows Start page. Your Designer should look something like this:

If you are unhappy with the way that the rectangles look, simply select one or more rectan-
gles with the selection tool, press Delete, and start over again. Or you can create a design that
better fits the application that you are creating.

Although you might be tempted to add some text now using the Text tool, I recommend that
you create a text overlay using the Manifest Designer, which you’ll do in the next exercise. Try
to add little, if any, text to your actual tile file.

tip Ready for more features? The Image Editor tool has many useful editing tools
that you can check out. The basic shape tools work much like Microsoft Paint, but
there are also sophisticated design features related to color channels and trans-
parency that you can learn about via the online help resource, “Image Editor,” at
http://msdn.microsoft.com/en-us/library/vstudio/hh315744.

5. When you’re finished designing, click the Save All command on the File menu to save your
changes.

Now you’ll open the Visual Studio Manifest Designer and set the title and background color
for your new tile.

http://msdn.microsoft.com/en-us/library/vstudio/hh315744

254 part II Designing the user interface

adjust tile options in the Manifest Designer

1. Double-click the Package.appxmanifest file in Solution Explorer.

The Manifest Designer opens. This editing tool will help you adjust common settings in the
project’s manifest file. You’ll see five category tabs along the top of the Designer to help you
with different settings.

2. Click the Application UI category if it is not already visible.

A selection of general items that control the appearance of the user interface appears.

3. Scroll to the Visual Assets section.

4. Under Tile Images and Logos, click Square 150x150 Logo.

5. Under Title, type Flyout (or another application name) in the Short Name text box.

This is the content of the text overlay that will appear on your tile in the Windows Start page.
Your title should be short and unique to your application, if possible.

6. Next to Show Name, place a check mark in the Square 150x150 Logo check box.

7. In the Foreground Text list box, verify that Light is selected.

This indicates that light color (typically white) will be the color for the text. The actual color
will match the Light Windows color scheme and will therefore be consistent with the other
tiles on the Start page.

8. In the Background Color text box, type blue, and click somewhere else in the Manifest
Designer.

You can specify a color value by using a Hex value, as you can throughout Visual Studio when
assigning colors, but a large selection of color names are also recognized.

Visual Studio records each tile-related formatting option as you make it and loads a preview
of the new tile in the Scaled Assets area of the Manifest Designer. Your screen will look like
this:

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 255

9. Click the Save All button to save your changes.

10. On the Build menu, click Build Flyout Demo.

Building a project will deploy the new tile on the Apps By Name panel, a secondary Start page
connected to the Windows Start page via a Down Arrow button. Users of Visual Studio 2012
and Windows 8 will notice a change here. In Visual Studio 2012, the Build command deployed
the application directly on the Start page, but that has changed.

11. Click Start to run the Windows Store app.

The Flyout Demo program starts, and the familiar music plays. (If you built a tile for another
application, that program will appear instead.)

12. Close the application.

Now you’ll examine the tile on the Start page.

13. Click the Start button to display the Windows Start page.

256 part II Designing the user interface

14. Click the Down Arrow button on the left side of the screen, near the bottom of the Start page,
to display the secondary Start page or Apps By Name panel.

As you complete these steps, carefully notice the tiles that you see. The main Windows Start
page has the standard application tiles that are 150×150 pixels in size—that is, the format that
you have just created. (You’ll also see some wide 310×150 live tiles here.)

When you display the secondary Start page (the Apps By Name panel), you’ll see the smaller
tiles. These are the 30×30 images defined by the SmallLogo.scale-100.png file in a Windows
Store app’s Assets folder. You should see your application tile here (Flyout or whatever project
that you are using), but because you didn’t create a 30×30 image in the preceding exercise,
your tile will continue to show the default “X” design. However, you’ll move the Flyout tile to
the Start page now and see what your 150×150 logo looks like.

15. Locate the 30×30 application tile in the Apps By Name panel, right click the tile, and then
select Pin To Start on the command bar.

This command will display your tile on the Start page and load the 150×150 pixel image that
you just created.

16. Enlarge the Flyout tile on the Start page. (Select Medium size.)

Your tile will look like this on the Start page:

I’ve shown another tile on the page too, so you can see how the image and colors compare.
What you have looks similar to a professional Windows Store app tile, and it just took a few
moments to create!

By switching between the two Start pages you can now see how Windows actually does use
different tile sizes to represent Windows Store apps in diverse locations. This is the reason that
three tile sizes are required and also why you might want to create the optional sizes while
you’re at it—there are a variety of ways that your application tiles will be represented by the
operating system.

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 257

17. Return to Visual Studio.

You’re done creating tiles now, but you’ll use the Manifest Designer again in a few minutes.

By exploring the Image Editor and Manifest Designer in this section, you’ve received some funda-
mental training on how Visual Studio tools for Windows Store development can support Visual Basic
programmers.

programming live tiles
A live tile is an application tile that receives periodic updates from a Window Store app or a web
server. Live tiles can be used to notify the user of an important event in the program, such as the
arrival of email, or to send some sort of teaser information to get the user to activate the app, such as
a juicy news headline.

Because the application tile is the front door to your Windows Store app, adding dynamic live
content to your tile can be an important programming activity. It can draw users to your program and
increase their satisfaction with the app. The following illustration shows the Windows 8.1 Start page
with several active live tiles, including Contacts, Finance, Weather, Photos, and Travel:

258 part II Designing the user interface

In Windows programming terminology, the arrival of new content to a Start page tile is called a
notification. There are four ways that a live tile can receive a notification:

■■ Local A Windows Store app can initiate a notification while the program is running by using
one or more methods in the TileUpdateManager class. The way that you actually update a tile
is to modify an XML template file that is connected to the live tile and represents its content
by using nodes. For example, a running music app might update its tile to contain the text
“Now Playing” while a song is playing in the program.

■■ Scheduled Your app can schedule a notification in advance that will be sent to the app tile at
the appropriate time. This process is similar to sending direct notification to a tile by using the
TileUpdateManager class, but you also use the ScheduleTileNotification object to schedule the
event so that it happens at the desired time. For example, a calendar app might update its live
tile to show a pending afternoon meeting.

■■ Periodic You can connect your application’s tile to a cloud service that will send periodic
updates to the tile. This notification is initiated by the Windows Store app, which identifies the
URL of a cloud location that Windows will poll for tile updates and how often the URL should
be checked. For example, a ski school app might update its tile every hour to show recent
snowfall amounts at a specified ski resort. However, note that in this periodic scenario the app
can only arrange for updates while the program is running.

■■ Push A live tile can also receive updates from a cloud service when the Windows Store app is
not running. This is called a push notification because you arrange for the occasional updates
using the Windows Push Notification Service (WNS). The procedure involves composing an
HTTP POST request, authenticating the cloud server you are using, creating XML content to
define the notification, and arranging to send the needed content from the server to the app.
Rather than periodic updates from the cloud, push updates happen immediately when the
desired information becomes available, meaning that the live content will arrive somewhat
unpredictably. For example, a sports app might update its tile when emerging sports data
arrives, probably based on some criteria established by the cloud service.

If you choose to create a live tile for your app, you will probably find that local notification meth-
ods work just fine for most scenarios. However, the choice is really up to you, and the method or
methods chosen really depend on the type of information that you are delivering. (In many situations,
you won’t even need a live tile to please your customers.)

Just don’t get too crazy. Microsoft recommends that you update live tile content no more than once
every 30 minutes or so. If you decide to go the scheduled notification route, you can also arrange for the
notification to expire after some period of time by using the ScheduledTileNotification.ExpirationTime
method. Finally, be sure that you don’t use live tiles to display advertisements, irrelevant information, or
spam of any kind. Microsoft will not take kindly to this use of the live tile gateway, and the company
has threatened to remove apps from the Windows Store for such behavior.

Creating live tiles is a pretty advanced topic, and the procedure requires some programming tech-
niques that we haven’t covered yet. It is especially involved to create live tiles with push notification,

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 259

although the rewards are great as well. To learn more about this topic and the best way to approach
it, see the section “Tiles, badges, and notifications (Windows Store apps)” in the Windows Store app
section of MSDN, located at http://msdn.microsoft.com/en-us/library/windows/apps/hh779725.aspx.

Planning for touch input

As you have learned throughout this book, Windows Store apps should be designed so that they can
receive input in a variety of ways, including mouse, keyboard, touch, and so on. Traditional desktop
computers are naturally a major platform for Windows Store apps, but so are emerging touch-based
devices, such as Microsoft Surface tablets and touch-enabled laptops. In fact, to be fully certified by
the Windows Store for distribution, a Windows Store app needs to offer support for mouse, keyboard,
and touch input—something that will take a little thought if developers are to create programs that
are ergonomic, fast, and fluid.

Although some of the features in touch-based devices do require specific calls to the .NET
Framework and Windows Runtime API to make them operate, much of the support for touch is pro-
vided automatically to Windows Store apps by Windows 8.1 and Visual Studio 2013. When you create
a Windows Store app by using XAML controls and Visual Studio, basic touch and gesture support is
included by default to the extent that it is supported by the hardware device that you are using. So,
when you run a new Windows Store app on a Surface tablet or touch-enabled laptop, touch input will
work automatically to the extent that your device supports touch and gestures.

Of course, the computer industry is going through a transition right now in terms of support for
touch input and user expectations about how hardware and software should be used. When Microsoft
released Windows 8, it announced that touch input should become a standard feature of Windows
applications, and this commitment to touch has continued with Windows 8.1. However, traditional
mouse and keyboard input is also important and not going away. As a developer, you need to think
about adding support not only for touch-based devices but also for enhanced traditional features, such
as the right button and tilt wheel on a mouse, or interesting third-party devices like the pen or stylus.

As you move beyond the basics of mouse and keyboard input in a Visual Basic program, you’ll
want to consider carefully the value of touch input and how you might innovatively use touch capa-
bilities for Windows users. Although much of the support for touch and gestures comes automatically
in Windows Store apps, there are important considerations about design that you should think about
as you write programs for the Windows Store.

In the following section, you’ll learn the basics about touch input and some of the pitfalls to avoid
when designing apps for Windows 8.1 that support touch and gestures.

XaML controls handle touch automatically
Touch is a considered a primary mode of interaction in Windows 8.1, so Visual Studio 2013 has been
optimized to make touch input straightforward, precise, and trouble free. The XAML controls in the
Visual Studio Toolbox have been designed to support touch input as well as traditional mouse and

http://msdn.microsoft.com/en-us/library/windows/apps/hh779725.aspx

260 part II Designing the user interface

keyboard interaction. The built-in support for touch input in XAML controls includes gestures such as
tap, slide, swipe, press and hold, pinch, and stretch. Also included is support for useful touch proce-
dures such as panning, zoom, rotating, and dragging. Not all controls support touch equally, but in
areas where touch functionality is useful, you’ll find that most of the support for this type of input is
already enabled in the software. The CommandBar and Flyout controls that you have already used in
this chapter provide evidence of this.

In addition, the event handlers for controls that support touch have built-in events that support
touch interaction, such as Tapped. Most XAML controls also have property settings that are related to
touch input and gesture support.

Common gestures
The most fundamental touch input is the tap gesture, shown in the following illustration. Tapping on a
screen element should always invoke its primary action in touch-enabled user interfaces; for example,
a user might tap a photograph to enlarge it or open it for editing in a graphics program. Keep in
mind that while a mouse or a pen might offer very precise on-screen input, fingers typically are not
as accurate, so your screen elements should be large enough to support tap gestures and other touch
input.

Another foundational gesture in a Windows Store app is the panning movement, or slide, shown
in the following illustration. A slide is a one-finger motion that moves the page right or left and often
supports moving items from one location to another. This gesture is typically equivalent to scrolling
with the mouse or using the arrow keys on a keyboard. You can also use a slide gesture in moving,
drawing, or writing operations.

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 261

Input gestures often involve using two or even three fingers to manipulate objects in a Windows
Store app. The on-screen objects in the following illustrations help to demonstrate the zoom-in or
stretch gesture, a technique used to increase the magnification of the page so that objects can be
examined more clearly. The opposite of this gesture is called a pinch, which produces the opposite
visual effect: a zoom-out.

On this touch-enabled screen, notice what the objects look like before zooming:

262 part II Designing the user interface

And notice what the same objects look like after zooming (or stretching):

Programmers can also use the stretch or pinch gestures to allow individual objects to be resized on
a page. Note that some objects can be resized. Resizing capability depends on what the programmer
wants to allow the user to do.

Usability considerations
Designing for touch involves more than simply designing the user interface for finger input and touch
gestures. It also requires thinking about how the touch-enabled device will be held by the user. For
example, if the device is held on the user’s lap, the user can have both hands free to manipulate the
objects on the screen. However, if the user is holding the device in two hands, the lower parts of the
screen will likely be partially obscured by the hands, and only the top half of the device will be com-
pletely visible. Depending on how the device is held, some types of input will be harder or easier.

Furthermore, because most people are right-handed, they will tend to hold the touch-enabled
device with their left hand and touch it with their right. Accordingly, objects placed on the right side
of the screen will be easier to touch than objects on the left. In addition, some users might have
motor impairments or other disabilities that can influence how they interact with touch-enabled
devices.

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 263

Even as you work to consider how touch input and gestures might be best used in an application,
don’t forget about traditional input devices and how users might innovatively use them in a Windows
Store app. For example, consider adding support for the right mouse button or a tilt wheel in your
application. These are very common input features and are commonly used in Windows-based
applications; users will often expect to see them supported. Visual Studio and the Windows Runtime
API offer support for an amazing array of input devices and input techniques, so be sure to add these
features to your applications as you write more sophisticated programs.

Finally, although it is possible to create Windows Store apps on a computer that is not touch
enabled, it is important for you to get some hands-on experience with touch-enabled devices before
you get too far along in the development process. Learning the tap, slide, pinch, and stretch tech-
niques should become a priority, as well as understanding how Windows interacts with the various
visual elements on the screen. The same is true with Windows Phone 8 programming, which you’ll
learn more about in Chapter 20, “Introduction to Windows Phone 8 development,” and Chapter 21,
“Creating your first Windows Phone 8 application.”

Some useful online materials are available on the web to help with touch and gesture support. For
more information about planning for touch in your applications, visit http://msdn.microsoft.com and
search for the topics “Touch interaction design” and “Responding to user interaction.”

Security and permissions settings

When you write programs for your own use, you can be trusted to use the applications appropriately
and for the purposes that they were intended. But when you are creating applications that will be
distributed commercially via the Windows Store, you can’t always be so trusting. Accordingly, it is
important to control the permissions and capabilities that users receive when they operate programs
that you have created. Visual Studio gives you this control via Package.appxmanifest, the settings file
that you just used to configure your Start page tile.

Each Windows Store app runs in a security container with limited access to the computer’s hard-
ware, the network, and the file system. Using the Capabilities category of Package.appxmanifest, you
can control the various permissions that an application receives, establishing an appropriate level of
system security. For example, you can control whether the user can access the computer’s built-in
web camera or microphone through your app, or whether the user can have the ability to browse the
computer’s music or picture libraries.

Table 9-1 describes the important security and permissions settings that can be set in the
Capabilities category of the Package.appxmanifest file.

http://msdn.microsoft.com

264 part II Designing the user interface

TABLE 9-1 Useful security and permissions settings

Capability Description

Enterprise Authentication Allows an app to connect to intranet resources that require domain credentials.

Internet (Client) Allows your app to access the Internet and public networks. Most apps that
require Internet access should use this capability.

Internet (Client & Server) Allows your app to access the Internet and public networks and allows incom-
ing connections from the Internet to your app. This is a superset of the Internet
(Client) capability. You do not need to declare both.

Location Allows your app to access the user’s current location.

Microphone Allows your app to access the user’s microphone.

Music Library Allows your app to access the user’s music library and to add, change, or delete
files. It also allows access to music libraries on HomeGroup computers and to
music file types on locally connected media servers.

Pictures Library Allows your app to access the user’s picture library and to add, change, or de-
lete files. It also allows access to picture libraries on HomeGroup computers and
to picture file types on locally connected media servers.

Private Networks (Client & Server) Allows access to connected home or intranet networks that have the property
authentication.

Proximity Allows your app to access the user’s near-field communication (NFC) device.

Removable Storage Allows your app to access removable storage devices, such as an external hard
drive or USB flash drive, and to add, change, or delete files. Your app can access
only file types that it has declared in the manifest. Your app can’t access remov-
able storage devices on HomeGroup computers.

Shared User Certificates Allows your app to access software and hardware certificates, such as smart
card certificates.

Videos Library Access Allows your app to access the user’s video library and to add, change, or delete
files. It also allows access to video libraries on HomeGroup computers and to
video file types on locally connected media servers.

Webcam Allows your app to access the user’s camera.

In the following exercise, you’ll use the Manifest Designer to edit permissions in the Package.appx-
manifest file for the Flyout Demo project. You can use another project if you like.

Set permissions and capabilities for your app

1. Open the Flyout Demo project now if it is not already open. You’ll find the project in the My
Documents\Visual Basic 2013 SBS\Chapter 09 folder.

2. When we last used Visual Studio, the Manifest Designer was open. If it is not open now, access
it by double-clicking Package.appxmanifest in Solution Explorer.

3. Click the Capabilities tab.

You’ll see the following page, which includes a list of the permissions and capabilities that you
can control in a Windows Store app:

 CHAPTER 9 Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch 265

Notice that the check boxes containing permissions and capabilities are in the same order as
they are in Table 9-1. You can learn additional information about each setting by clicking the
item and reading information in the Description field on the page.

Currently, this application allows only client Internet access; the user is allowed basic Internet
access if you provide it via controls in the application user interface. To remove this capabil-
ity, you would remove the check mark from the Internet (Client) check box. Some capabili-
ties require that you configure additional settings on the Declarations tab of the Manifest
Designer.

4. Read about the various permission and capabilities, and keep them in mind as you create apps
for Windows 8.1.

Visual Studio developers often adjust these settings early in the programming process so that
they apply to testing scenarios. However, they can be adjusted as necessary throughout the
development process.

For example, in the Flyout Demo app, it would be appropriate for you to allow access to the
Music Library on the user’s computer. That way the program could be expanded so that addi-
tional songs could be loaded from the user’s computer and played using the existing controls.

266 part II Designing the user interface

5. Return the permissions and capabilities in this project back to the original (default) settings if
you changed them.

In addition to considering important security issues, you’ve learned another valuable use for
the Package.appxmanifest file. Remember that this file travels with the project and informs the
operating system about the capabilities and settings for your app.

6. Save your changes, and then choose File | Close Project to close the application.

You’re finished with the Flyout Demo program.

7. Close Visual Studio.

You’re finished building Windows Store apps in this chapter. Nice work!

Summary

This chapter has focused on several design features unique to Windows Store applications, includ-
ing the CommandBar and Flyout controls, live tiles on the Start page, support for touch input, and
controlling security and permissions. The material expanded upon the XAML programming skills that
you learned in Chapter 5, “Working with Windows Store app controls,” Chapter 7, “XAML markup step
by step,” and Chapter 8, “Using XAML styles.”

Windows Store app programming is a relatively new paradigm for software developers. However,
from the perspective of the Visual Basic programmer, many of the fundamental coding techniques
and concerns are the same in Windows 8.1 as they are in a Windows Forms environment. The goal
of this chapter has been to introduce some of the newest tools and techniques that you will need to
write Windows Store apps for the Windows 8.1 operating system. These programs have the potential
to revolutionize how consumer applications are created, purchased, and used. Windows Store apps
shine when rich user content and information is at the center of the computing experience, presented
visually with beautiful text, photos, original art, and tiles.

In the next chapter, you’ll strike a new chord completely by creating a fascinating program-type
that typically has no graphical user interface at all—the console application. Console apps run in a
text-based Command window sometimes called the Windows text console. However, despite the
minimal user interface, Visual Basic console apps are full .NET applications with lightning-fast access
to the .NET Framework and a variety of Windows services. To make the task fun, you’ll write some
old-fashioned computation games involving probability.

 267

C H A P T E R 1 0

Creating console applications

After completing this chapter, you will be able to

■■ Understand console applications and their uses.

■■ Learn to use the Console Application template in Visual Studio 2013.

■■ Work with modules, functions, and procedures in the Visual Studio IDE.

■■ Explore the Console object and its useful properties and methods, including WriteLine and
ReadLine.

■■ Build, publish, and run console applications.

This chapter describes how to create a console, or command-line, application in Visual Studio 2013.
Console applications are considered a bit of an anomaly today in the world of advanced graph-

ics user interfaces and Windows Store apps. This is because a console application has an extremely
minimal user interface—the only interaction you get between a console application and the user is
character-based monitor output and the keyboard. However, console applications are extremely use-
ful as a tool for teaching Visual Basic programming, and they are also used today by system admin-
istrators who are designing setup and maintenance programs, as well as by programmers who have
no particular need for a graphical user interface. For this reason, a discussion of console applications
usefully rounds out our discussion of user interface design techniques in Part II and paves the way for
Part III, “Visual Basic programming techniques.”

You'll begin in this chapter by creating a new console application for Windows in Visual Studio
2013. You'll learn to use the Console Application template and how to edit a code module in the
Visual Studio IDE. You'll learn how to use the Console object in a console application with its useful
methods and properties, including Title, WriteLine, Readline, and ReadKey. You'll also learn how to
start a console application from the Windows command prompt and interact with console applica-
tions by using the keyboard. The programs that you create will demonstrate math operations, gaming
strategies, and important Visual Basic language elements, including decision structures, loops, and
math functions in the .NET Framework.

Note Console applications are supported in Visual Studio 2013 Professional, Premium, and
Ultimate versions, but not in Visual Studio Express 2013 for Windows.

268 part II Designing the user interface

Console applications in Visual Studio

A Visual Studio console application is a Windows program that runs in the text-based Command
window, sometimes also called the Windows text console or DOS window. Console applications are
full .NET applications with access to the .NET Framework, a comprehensive, object-oriented class
library that offers a variety of Windows features and services.

The fact that console applications exist might come as a surprise to some Visual Studio program-
mers who, for good reason, might assume that only graphics-based Windows programs are sup-
ported by Windows 8.1 and the Visual Studio product line. But the historic roots of Windows in the
world of MS-DOS programming means that command-line applications (what we now call console
applications) have a long history with PCs. This command-line application support continues with
Visual Studio 2013, and Visual Studio recently added support for UTF 16 encoding with surrogates in
console applications, an enhanced Unicode standard that allows for the representation (potentially) of
over one million distinct characters in the Command window. That's right—you're not limited to the
basic range of ASCII characters, but you can display symbols in a variety of languages.

You can run console applications from within the Visual Studio IDE or directly from the Windows
command prompt. You can also run console apps in Windows PowerShell, a task-based command-
line shell and scripting language that is included with Windows 8 and Windows 8.1. Windows
PowerShell is built on the .NET Framework and is designed especially for system administrators. The
tool helps IT professionals and power users control and automate system-level tasks within Windows.
Although the features and commands of Windows PowerShell go well beyond the scope of this
book (and I'll be using the Windows text console for testing), you can experiment with the Windows
PowerShell tool by searching for “Windows PowerShell” with the Windows Search charm.

What type of user interface will you see in console applications? Traditionally, the only output that
users experience in console apps are text strings displayed within the confines of the character-based
Command window. User input is usually limited to the keyboard. However, developers are not actu-
ally limited to these input and output mechanisms. For example, you could add a reference to the
System.Windows.Forms assembly and use a tool like MessageBox to interact with the user outside of
the console window. But this sort of activity is rarely done. The simple beauty of console applications
is that in some cases you simply don't need a fancy user interface to interact with the user. If what you
need is the Visual Basic language, access to the .NET Framework, and lots of power and speed—but
not impressive graphics or Windows Store app features—you might find that a basic console app is
just the tool for you.

Creating a console application
To create a console application, open the Console Application template in the Visual Basic/Windows
category of the New Project dialog box. Console applications have a somewhat smaller electronic
footprint than Windows Store apps, but there are still an assortment of project files associated with a
console apps, including project and solution files, various setting and resource files, an assembly file,
and the /bin and /obj folders for the executable images. You can also create setup and installation
files for a console application in Visual Studio.

 CHAPTER 10 Creating console applications 269

Try building a sample console application now, using the following steps.

Open the Console application template

1. Start Visual Studio, and click New Project to open a new Visual Studio application.

2. Choose Visual Basic/Windows under Templates, and then select the Console Application
template.

The New Project dialog box looks like this when Console Application is selected:

3. Type My-Temp-Conversion in the Name text box.

4. Click OK to configure the project and load it in the IDE.

Visual Studio creates a new console application with the appropriate supporting files. After a
moment, you'll see the Code Editor and an empty Visual Basic code module, the place where
you will type in your Visual Basic code for the program. There is no user interface designer for
the console application nor is there any XAML markup to manage.

270 part II Designing the user interface

Your IDE will look like this:

Modules and procedures
As you can see in the preceding illustration, a standard feature of the console application is the
module component (Module1.vb) with its Sub Main() and End Sub keywords. A module is a named
storage container designed to hold program code in a Visual Studio application. A module is a little
like a code-behind file, such as MainPage.xaml.vb. However, modules are not associated with the
user interface specifically. Instead, modules typically contain global variable declarations and Sub and
Function procedures. You can include a module in any Visual Basic application.

Note You'll learn more about global variable declarations in Chapter 11, "Mastering data
types, operators, and string processing."

A module file has a .vb file name extension and is visible in Solution Explorer as part of a Visual
Studio project. The first module in a program is named Module1.vb by default, but you can change
the name by right-clicking the file in Solution Explorer, selecting Rename, and typing a new name.
Modules are optional in Windows Store applications (although they are often very useful), but they
are required in console applications. You can add additional modules to a Visual Studio project by
clicking the Add New Item command on the Project menu and selecting the Module template.

A code module in a Visual Basic application typically contains groups of Sub and Function pro-
cedures. These entities are a lot like the event handlers that you have been using so far in this book.
(And in fact, an event handler is just an ordinary Sub procedure that has been associated with a par-
ticular event.) Sub and Function procedures contain Visual Basic source code, and they are designed
to be called and perform useful work in an application. Here are a few things that make Sub and
Function procedures distinct:

■■ Function procedures are called by name from event handlers or other procedures, and they
can also receive arguments, or a list of values in a specific data type separated by commas.
Functions also return a value using the Return statement.

 CHAPTER 10 Creating console applications 271

■■ Sub procedures are also called by name from event handlers and other procedures. They can
receive a list of arguments and pass back modified values through the arguments if they are
passed by reference. However, unlike functions, Sub procedures don't always return one or
more values. Instead of computing new information, Sub procedures are typically used to
process user input, display repetitive output, or set standard properties.

Although Sub and Function procedures can also be defined in code-behind files, if you define them
in a module they have scope (or validity) throughout the entire project. (You'll see an example of
this later in this chapter.) In object-oriented programming terminology, Sub and Function procedures
are essentially the same as methods, and some Visual Basic programming books simply call Sub and
Function procedures methods.

the Sub Main() procedure
Each console application always starts with the same Sub procedure, which in Visual Basic programs
is named Main(). The empty parentheses after the name Main indicate that the procedure has no
arguments associated with it. Each console application needs a Main() procedure so that Windows
and Visual Studio know where to begin execution. You can also define additional Sub or Function
procedures in the Module1.vb file if you like. However, in the following sample program, additional
procedures will not be necessary.

Enter the Visual Basic code for a console application now that converts a temperature in Fahrenheit
to a temperature in Celsius. The exercise demonstrates how to manage input and output, declare
variables, and use the Math class in the .NET Framework.

Build a console application that converts temperature values

1. In the Code Editor, move the insertion point to the blank line between the Sub Main() and
End Sub statements.

2. Type the following Visual Basic program code:

'Display an informative title in the Command window
Console.Title = "Fahrenheit to Celsius Conversion"

'Declare 3 variables for Fahrenheit temp, Celsius temp, and city name
'The Single data type allows the temps to contain decimal values
Dim fahrenheitTemp As Single, celsiusTemp As Single
Dim cityName As String

'Ask the user for the name of a city that they have weather data for
Console.Write("Enter the name of a city: ")
cityName = Console.ReadLine()

'Ask the user for the temperature in Fahrenheit...
Console.Write("Enter the temperature in {0} (Fahrenheit): ", cityName)
fahrenheitTemp = Console.ReadLine

272 part II Designing the user interface

'Convert Fahrenheit temp to Celsius & round to nearest tenth of a degree
'The Math.Round method rounds the temp to the nearest 0.1
celsiusTemp = Math.Round((fahrenheitTemp + 40) * 5 / 9 - 40, 1)

'Display the city name and temperatures using replaceable parameters
Console.WriteLine("The temperature in {0} is {1} Fahrenheit and {2} Celsius.",
 cityName, fahrenheitTemp, celsiusTemp)

'Pause until the user presses a key, which closes the Command window
Console.ReadKey()

The Comment character (') allows you to enter descriptive text that explains what the program
statements in a routine are doing. In this case, I use comments liberally to explain how vari-
ables are declared, input and output are managed, and a Fahrenheit temperature is converted
to Celsius.

In a console application, the Console object provides useful methods and properties for
managing information in a Command window. This routine begins by using the Console.Title
property to set the text that appears in the Command window title bar. Three variables are
defined using syntax that will be described more fully in Chapter 11. In this program, note that
I am using the camel-casing style when declaring variables—that is, using an initial lowercase
letter to differentiate variables from properties, methods, and keywords (for example, the
string variable cityName).

The Console.Write method is used to display a line of text in the Command window, prompt-
ing the user to enter the name of a city where they know the temperature. I use both the
Console.Write and the Console.WriteLine methods in this program to display text in the
Command window. The difference is that Write leaves the cursor at the end of the line that it
displays, while WriteLine adds carriage return and line feed characters to the end of the line.
(The Write method is typically used right before user input so that the cursor blinks in the
appropriate location.)

The Console.ReadLine() method is used to receive user input in a program and assign it to a
variable, such as cityName (a string variable) or fahrenheitTemp (a single-precision floating
point variable). Near the bottom of the program, I also use the Console.ReadKey() method to
wait for input until a key is pressed. This essentially keeps the Command window open after
the program has finished its work. (If you don't include this statement, the Command window
will close immediately after the program finishes—at least if it is running as a stand-alone
console app under Windows.)

The actual mathematical conversion from Fahrenheit to Celsius is achieved by the following
Visual Basic program statement:

CelsiusTemp = Math.Round((fahrenheitTemp + 40) * 5 / 9 - 40, 1)

This line computes the result using a standard conversion formula, mathematical operators,
and the FahrenheitTemp variable. The result is rounded to the nearest tenth using the Round
method in the Math class of the .NET Framework, a powerful feature that is available to all
Visual Studio applications. In this example, I thought a tenth of a point was an appropriate

 CHAPTER 10 Creating console applications 273

level of granularity for the result; however, this value can be adjusted by replacing the 1 argu-
ment near the end of the line with another value. If you changed this to a 2, for example, the
result would round to two decimal places.

Note For more information about mathematical formulas and the .NET Framework,
see Chapter 11.

Finally, I want to draw your attention to the three replaceable parameters that are used in the
following statement near the end of the routine:

Console.WriteLine("The temperature in {0} is {1} Fahrenheit and {2} Celsius.",
 CityName, FahrenheitTemp, CelsiusTemp)

A replaceable parameter is a value between curly brackets corresponding to the arguments
that follow in the WriteLine statement. The {0} parameter corresponds to the cityName vari-
able, the {1} parameter corresponds to the fahrenheitTemp value, and so on. The program
essentially ends after these three values have been displayed with an explanatory sentence in
the Command window. (Note that I divided this line into two lines so that it could be easily
typed and printed in the book. But you can also type it all on one line.)

Your screen will look like this:

274 part II Designing the user interface

3. Save your project, and specify the My Documents\Visual Basic 2013 SBS\Chapter 10 folder as
the location.

Now run the project to see how the console application uses the Command window for its
input and output.

4. Click the Start button on the Standard tool bar.

The program begins, and a Command window opens on top of the IDE. The text Fahrenheit
To Celsius Conversion appears in the window's title bar. You'll see something like the following
illustration:

5. Type Paris and press Enter.

6. The application prompts you for the temperature in Paris (or the city you specified). The pro-
gram used a Console.Write method and a replaceable parameter to display the city in ques-
tion. The program specifically requests a temperature in Fahrenheit.

7. Because you used a single-precision data type for the fahrenheitTemp variable, you can enter
your temperature with or without a decimal point. However, it is important that you do enter
a number here and don't simply press Enter. If you do so now, the program will halt execu-
tion or crash because you will have improperly assigned information to the fahrenheitTemp
variable. Because this is a short demonstration program, we won't fix the problem now, but I'll
show you how to make this program more robust in Chapter 12, “Creative decision structures
and loops.”

8. Type 55 and press Enter.

The program converts 55 degrees Fahrenheit to 12.8 degrees Celsius and displays the result.
Your screen will look like this:

 CHAPTER 10 Creating console applications 275

Notice that the final Console.ReadKey() method in the code causes the Command window to
stay open after the final result is displayed.

9. Press Enter to close the Command window.

The Visual Studio IDE returns. Feel free to run the program again if you like, and this time,
try out a different city name and temperature. Test the program carefully to be sure that it is
working as expected.

10. Save any changes that you have made, and close the Temp-Conversion project.

Congratulations—you've created a simple—and useful—console application in Visual Studio. Let's
try another example that uses more sophisticated variables, a decision structure, and an interesting
random number generator from the .NET Framework.

Interactive math games

Back in the days of command-line applications, there were numerous math games that programmers
would play for hours on their computers, using numbers and complex formulas but rarely much in the
way of a user interface. Math games like this are still diverting, and they can be good resources for
learning to write Visual Studio console applications.

Find the number
In the following exercise, you are asked to build a console app that finds a hidden number from 1
through 100. The program uses a random number generator in the .NET Framework to pick a random
number for you, and then it is your job (or rather, the user's job) to guess the number using a variety
of hints. The program is relatively simple, but it can be easily adapted to pick a random number within
a variety of ranges. (For example, you can edit the program so that it picks a hidden number between
1 and 10 or between 1 and 10,000.) An interesting question in guessing games like this is how many
selections it should probably take the user (on average) to find the hidden number. Are there a
maximum number of guesses you might reasonably be expected to use? Does this number depend

276 part II Designing the user interface

entirely on the range of numbers you draw from? Or from the strategy you take to find the hidden
number? As you experiment with the console application, you'll want to give this some thought.

In addition to the use of random numbers, the Find-The-Number program demonstrates how
to use the Console class, and in particular the Write, WriteLine, and ReadKey methods. The game
also introduces the ForegroundColor property, which changes the color of the text displayed in the
Command window. The guessing logic is handled by a Do…Until Loop and a Select Case decision
structure, which work together to provide clues about the hidden number—and eventually a mes-
sage of congratulations when the number is actually found. You'll learn more about Do loops and
Select Case decision structures in Chapter 12.

Find the hidden number

1. Click New Project on the File menu to create a new Visual Studio application.

2. Choose Visual Basic/Windows under Templates, and then select the Console Application
template.

Because you just used the Console Application template, it should still be highlighted in the
New Project dialog box.

3. Type My-Find-The-Number in the Name text box.

4. Click OK to configure the project and load it in the IDE.

As you've already learned, a console application has no user interface designer. Instead, you
enter the Visual Basic code for the app into a module, between the Sub Main() and End Sub
statements.

5. Type the following program code:

'Set app title in Command window and explain the game
Console.Title = "Find the Hidden Number: A Game of Chance and Skill"
Console.WriteLine("I'm thinking of a number from 1 through 100.")
Console.WriteLine("Can you guess what it is?")
Console.WriteLine()

Dim generator As New Random 'declare generator as source for random numbers
'Pick a random number from 1-101 (not including 101) and assign to RandNum
Dim randNum As Integer = generator.Next(1, 101)
Dim guesses As Integer = 0
Dim guess As Integer

Do 'This Do Loop repeats over and over again until user gets the answer
 Console.Write("Guess: ")
 guess = Console.ReadLine 'read in a number and assign to guess variable
 Select Case guess 'Select Case structure evaluates guess variable
 Case randNum 'if correct number found, congratulate user
 Console.ForegroundColor = ConsoleColor.DarkYellow
 Console.WriteLine("That's Right!")
 Console.ForegroundColor = ConsoleColor.Gray

 CHAPTER 10 Creating console applications 277

 Case Is < randNum 'but if guess is too small, ask for bigger number
 Console.WriteLine("Try a bigger number")
 Case Is > randNum 'or if guess is too big, ask for smaller number
 Console.WriteLine("Try a smaller number")
 End Select
 Console.WriteLine()
 guesses = guesses + 1 ' increment guesses, which tracks num of guesses
Loop Until guess = randNum 'continue looping until user chooses correctly

'After looping complete, display number of guesses it took user to find num
Console.Write("You found the hidden number in {0} guesses.", guesses)
Console.ReadKey() 'pause until user presses a key

The hidden number for the game is selected at random each time the program runs, so you'll
get a new hidden number each time. The selection of the hidden number is handled by the
program statement:

Dim randNum As Integer = generator.Next(1, 101)

You might recall this program logic from Chapter 3, “Creating your first Windows Store
application.” When you use the generator variable, the Next method allows you to pick a new
random number, which is selected according to a pseudo-random number generating algo-
rithm within the .NET Framework. The random number must be an integer within the specified
range—in this case, it must be an integer from 1 to 101. However, note that the upper bound
of the range is exclusive—that is, the number will be picked from 1 to 100. If you want to
specify a different range, simply adjust these values and change the opening WriteLine state-
ment in the program to let the user know.

6. Save the project, and specify the My Documents\Visual Basic 2013 SBS\Chapter 10 folder as
the location.

Now run the console app to see how the guessing game operates in the Command window.

7. Click the Start button on the Standard menu bar.

The Find-The-Number program starts, and you'll see an opening screen that looks like this:

278 part II Designing the user interface

The most effective strategy in this type of hidden number guessing game is to pick a num-
ber that is midway between the high and low values in the range or span where the hidden
number might potentially lie. In this case, the number could be anywhere between 1 and 100,
so the best guess is 51. Try that number now, and keep in mind that the results you see will
vary based on the number the program has selected. (The number will likely be different each
time.)

8. Type 51 and press Enter.

The program compares the number you entered with the random number generated, and the
Select Case decision structure displays a message with appropriate feedback. When I ran the
program, I received the result Try A Smaller Number, as shown in the following screen:

Asked to guess a smaller number, I determined that the hidden value was somewhere
between 1 and 50, so I guessed the number 26. Consider following the same logic for your
guess, although the guessing pattern that you follow will depend on the hints you are given.

9. Enter a second guess, and continuing guessing until you find the hidden number.

When you finish the game, you'll receive a message from the program and the number of
guesses it took you to find the integer. (In my test, the hidden number was 11.) Notice that
the program changes the color of the text when the winning message appears—this is the
ForegroundColor property at work.

Your screen will look similar to the following. Just keep in mind that in most cases you'll
receive a different result than the one shown.

 CHAPTER 10 Creating console applications 279

10. Press Enter to close the Command window.

The Visual Studio IDE returns. Now run the program several more times to see how long it
takes you on average to find the hidden number. Develop new guessing strategies to find the
number, and also intentionally make poor guesses as a way of testing the program's logic.
What is your personal best for lowest number of guesses?

You might also wish to modify the random number selection range so that there are more (or
fewer) hidden numbers to pick from. Test the modified version of Find-The-Number to be sure
that it is working correctly. You'll find that it takes more guesses to find a hidden number in a
larger range. If you start to make a number of guesses, you can expand the Command window
or use the window's scroll bars to see information that scrolls off the screen.

Here is what the program looks like if you change the range from 1-101 to 1-1001:

280 part II Designing the user interface

11. When you're finished, save your changes and close the project.

Would you like to try another math-oriented console application?

Simulating dice
Another interesting game involving mathematics and random numbers is to simulate rolling dice.
Random dice throws can be handled quite easily in a Visual Studio application by using the Next
method in a routine that has a defined random number generator. In the following console applica-
tion, you'll build a dice game in which the user rolls a pair of virtual dice a set number of times. The
program asks the user for what number they are looking for (a dice roll between 2 and 12, inclusively),
and then the game rolls the dice and displays the results.

An interesting feature of this game is the large numeric range permitted for dice rolls. You can
specify a number of dice rolls anywhere between 1 and just over 2.1 billion—that is, the upper bound
of a 32-bit Integer variable, which the program uses to store the number of rolls and number of wins.
Most of the time, you'll simply want to roll the dice 10, 100, or 1000 times, which a typical computer
can process almost instantaneously. However, it is interesting to see what happens when you try a
larger number. (I show you what happens with a test case of 2 billion rolls in our game—the program
worked just fine, but the result took about 5 minutes to calculate on my computer.)

Complete the following steps to create a new console application named Roll-The-Dice.

roll the dice

1. Click New Project on the File menu to create a new Visual Studio application.

2. Choose Visual Basic/Windows under Templates, and then select the Console Application
template.

3. Verify that the Console Application template is highlighted in the New Project dialog box.

4. Type My-Roll-The-Dice in the Name text box.

5. Click OK to configure the project and load the new program in the IDE.

Now you'll enter the code for the dice game in the program's Main module, between the Sub
Main() and End Sub statements.

6. Type the following program code:

Console.Title = "Roll the Dice"
Console.WriteLine("This game determines how many times a lucky dice roll appears.")
Console.WriteLine("Pick a lucky number for a two dice roll (2-12) & times to throw.")
Console.WriteLine()

Dim luckyNumber As Integer ' declare lucky number variable
Dim rolls As Integer ' declare variable for number of rolls
Dim wins As Integer = 0 ' initialize lucky number hits to zero
Dim counter As Integer ' declare counter variable for For...Next loop

 CHAPTER 10 Creating console applications 281

Dim die1 As Integer ' declare variables to store dice rolls
Dim die2 As Integer
Dim generator As New Random ' use Random class to create random rolls

Console.Write("What lucky number are you trying for (2-12): ")
LuckyNumber = Console.ReadLine ' get lucky number from user
Console.Write("How many times do you want to roll the dice? ")
rolls = Console.ReadLine 'get number of dice rolls requested

For counter = 1 To rolls ' a loop rolls the dice the requested number of times
 die1 = Int(generator.Next(1, 7)) ' roll first die and save number
 die2 = Int(generator.Next(1, 7)) ' roll second die and save number
 If die1 + die2 = luckyNumber Then wins = wins + 1 ' add rolls / check for win
Next Counter

Console.WriteLine() ' display number of rolls, lucky number, and wins
Console.Write("Out of {0} rolls, the number {1} came up {2} times.",
 rolls, luckyNumber, Wins)
Console.WriteLine()
Console.Write("That's a win rate of {0}%", ((wins / rolls) * 100))
Console.ReadKey() ' pause until user presses a key

The program uses a For…Next loop to process the number of rolls requested by the user. As
you'll learn in Chapter 12, a For…Next loop completes its work by constantly monitoring a
counter variable and then looping a set number of times. The dice rolling is simulated by using
the generator.Next syntax with in the loop, and the results are displayed at the end of the
routine with the Console.Write method and three replaceable parameters.

7. Save the project, and specify the My Documents\Visual Basic 2013 SBS\Chapter 10 folder as
the location.

Now run the console app to see how the dice game performs in the Command window.

8. Click the Start button on the Standard menu bar.

The Roll-The-Dice program starts, and you'll see an opening screen that looks like this:

282 part II Designing the user interface

9. Type 6 and press Enter.

The program asks you how many times you would like to roll the dice.

10. Type 100 and press Enter.

The console app rolls the dice 100 times and displays the result. The number of times that
the lucky number comes up varies somewhat each time that you run the program, although
the basic laws of probability for dice rolls will be in effect. When I ran the program, the game
rolled the number 6 eighteen times out of 100 rolls, with a win rate of 18%. My screen looked
like this:

11. Press Enter (or any key) to terminate the program.

Continue testing the console application, trying the odds for more difficult (less probable)
rolls.

12. Run the program again.

13. Specify 2 for the lucky number and 1000 for the number of times to roll the dice.

You'll receive output similar to the following screen:

 CHAPTER 10 Creating console applications 283

As noted earlier, you can actually increase the number of rolls quite significantly for this
program, and the console application can handle the mathematics quite easily. For example,
you could try 10,000 rolls, 100,000 rolls, 10,000,000 rolls, or more! Just be aware that if you
significantly increase the number of rolls, it will begin to take a little time for Visual Studio
to compute the results. Further, in the Windows 8.1 multitasking environment, the processor
typically devotes only about 25% of its resources to any one application so that the system
runs smoothly at all times. Still, Visual Studio applications are capable of very significant math-
ematical tasks, and it is interesting to try larger numbers to see what kind of results you get.

If you have 2–3 minutes to wait, try the following calculations to see how the Roll-The-Dice
application handles very large numbers.

14. Press Enter to end the program, and then run it again.

15. Type 7 for the lucky number, and press Enter.

16. Type 2000000000 for the number of rolls, and press Enter. (That's nine zeros after the 2.)

That's right, you've asked the computer to throw the dice 2 billion times!

The program quietly works on the problem and will continue to do so for 2–4 minutes,
depending on the speed of your computer. You can continue working with your computer
in other ways until the calculation is complete. When Visual Studio is finished, you'll see a
Command window that looks something like the following. (The results will vary slightly each
time that you run the program.)

When I ran the program, the number 7 came up 333,349,784 times in 2 billion rolls, with a win
rate of 16.6674892%. This is consistent with probability tables for dice rolls that indicate a 7
tends to come up about 16.67% of the time when two dice are thrown. The following table
shows the basic probably for rolling two dice. You can use the following table to check how
your program is functioning.

284 part II Designing the user interface

Dice Roll Dice combinations possible Probability

 2 1 2.78%

 3 2 5.56%

 4 3 8.33%

 5 4 11.11%

 6 5 13.89%

 7 6 16.67%

 8 5 13.89%

 9 4 11.11%

10 3 8.33%

11 2 5.56%

12 1 2.78%

Total 36 100%

17. Press Enter to terminate the program.

Building, publishing, and running console apps

Console applications can be compiled in release builds and distributed to other users via the Internet
or electronic media, much like other Visual Studio applications. The only real limitation is that console
apps cannot be distributed via the Windows Store, because console apps are not native applications
designed for the Windows 8 or Windows 8.1 user interface. However, you can still create a tile for
console applications on the Windows Start page. When you run a console app under Windows 8.1,
the operating system simply opens the Desktop environment and runs the app in the Command win-
dow, as you've seen in the previous exercises.

Your final task in this chapter is to create a release build, or optimized executable program file,
for the Roll-The-Dice console app that can be launched from the Windows Start page. Keep in mind
that Visual Studio allows you to create two types of executable files for your projects: a debug build
and a release build. Debug builds are the default executable files that are created automatically by
Visual Studio when you design and test your app in the IDE. These are stored in the bin\Debug folder
within your project, and they contain debugging information that is useful for testing but makes the
program run slightly slower.

Release builds are optimized executable files stored in the bin\Release folder within your project.
To adjust the settings for a release build, you click the ProjectName Properties command on the
Project menu, and then click the Compile tab, where you'll see a list of adjustable compilation options
for executable files. The Solution Configurations drop-down list box on the Visual Studio toolbar
indicates whether the executable is a debug build or a release build. If you change the Solution
Configurations setting, the path in the Build Output Path text box will also change. You might recall
first learning about these options in Chapter 3.

 CHAPTER 10 Creating console applications 285

After you've built the program in Release mode, you can launch the console app under Windows
by opening File Explorer, browsing to the bin\Release folder, and double-clicking the .exe file. As you
will learn in the following exercise, you can also right-click the .exe file and add it to the Windows
Start page so that it is easy to launch when you need it.

If you want to distribute the console application to other users, you'll want to create a setup
program for the app by using the Publish command on the Build menu. The Publish command runs
a wizard that prepares a setup package and asks you where you would like to locate the final setup
files. You can choose an Internet location (website or FTP server), CD-ROM, or folder on your com-
puter system. The setup package contains everything you need to install and run the program; the
user simply needs a copy of the .NET Framework on their system, which is installed automatically with
most versions of Windows. (However, for Visual Studio 2013 apps that target the Windows 8.1 operat-
ing system, you need to have version 4.5.1 of the Framework installed.) After Visual Studio builds the
setup package, you can run setup by double-clicking Setup.exe in File Explorer.

In the following steps, you'll compile a release build for the Roll-The-Dice application and then
make an application tile for the game on the Windows Start page.

prepare a release build for the roll-the-Dice console app

1. Click the Solution Configurations drop-down list box on the Standard toolbar, and then click
the Release option. Visual Studio will prepare your project for a release build, with the debug-
ging information removed. The build output path is set to bin\Release\.

2. On the Build menu, click the Build Roll-The-Dice command, as shown in the following screen
shot.

The Build command creates a bin\Release folder in which to store your project (if the folder
doesn't already exist) and compiles the source code in your project. If configured to do so,
the Output window will appear and show you milestones in the assembly and deployment
process. The result is an executable file named Roll-The-Dice.exe, which Visual Studio registers
with the operating system on your computer.

286 part II Designing the user interface

Now you'll examine the bin\Release folder and the executable file with File Explorer.

tip File Explorer, Microsoft's file manager application and navigation tool, was called
Windows Explorer in earlier versions of Windows.

3. Right-click the Roll-The-Dice project in Solution Explorer, and then click Open Folder In File
Explorer.

The assorted files and folders associated with your project appear in a new File Explorer
window.

4. Open the bin\Release folder.

Several project files appear in the Release folder, including Roll-The-Dice.exe, the release build
application file.

5. Right-click Roll-The-Dice at the top (or near the top) of the folder.

There are several Roll-The-Dice files, but this one is listed as an Application type. When you
right-click the file, a selection of commands appears on the shortcut menu. File Explorer will
look like this:

6. Click the Pin To Start command to create a tile for the game on the Windows Start page so
that you have easy access to it.

7. Open the Windows Start page, and scroll to the right side of the page to see the applications
that have been installed most recently.

 CHAPTER 10 Creating console applications 287

The right side of my Windows Start page looks like this:

8. Click the Roll-The-Dice application tile.

Windows opens the Windows Desktop environment and displays the opening lines of the Roll-
The-Dice game in the Command window.

9. Test the console app again, picking a lucky number of the dice roll and the number of times
that the dice should be thrown.

You've demonstrated how to build and launch a console app under Windows 8.1.

10. Close File Explorer, and return to Visual Studio and close the Roll-The-Dice console app.

11. On the File menu, click Exit to close Visual Studio and the game.

You're finished working with console applications in this chapter. Continue to work with them as
you build interesting games and utilities—and when you want to practice Visual Basic programming
techniques. Keep in mind that many of the skills you are learning in this book apply equally well in
the enchanted realm of the command prompt or “black box.” The Command window is a lot of fun
to work with, and even though you have very little in terms of user interface, the breadth of the .NET
Framework awaits you in console apps.

288 part II Designing the user interface

Summary

In this chapter, you learned how to create console applications from scratch within Visual Studio. You
learned about the basic uses for console apps, how to create a console app by using the Console
Application template, and how to use code modules and the Sub Main() procedure. You learned
important Visual Basic syntax elements within console apps, such as the WriteLine and ReadLine
methods. Finally, you learned how to create a release build for a console app and how to publish and
run console apps under Windows.

In the next chapter, you continue working with Visual Basic language elements in Windows Store
apps and Windows Forms apps, such as data types, variables, and operators. You'll also learn more
about the .NET Framework and its features related to data type conversion and string processing.

 289

PART III

Visual Basic
programming
techniques

CHAPTER 11 Mastering data types, operators,
 and string processing .291

CHAPTER 12 Creative decision structures and loops341

CHAPTER 13 Trapping errors by using structured
 error handling. .375

CHAPTER 14 Using arrays, collections, and generics to
 manage data. .397

CHAPTER 15 Innovative data management with LINQ.435

CHAPTER 16 Object-oriented programming techniques.459

 291

C H A P T E R 1 1

Mastering data types, operators,
and string processing

After completing this chapter, you will be able to

■■ Use data types, variables, and constants to manage information in a Visual Basic application.

■■ Master explicit and implicit variable declaration.

■■ Work with the XAML ListBox control to manage data in a Windows Store app.

■■ Use basic and advanced mathematical operators in formulas and event handlers.

■■ Convert information from one data type to another using ToString, Parse, and the Convert
class.

■■ Master string-processing techniques and methods, including sorting and encryption.

Throughout this book, you’ve used data types and variables to store information in a program. For
example, in Chapter 5, “Working with Windows Store app controls,” you learned how to store the

content of a TextBox control in a string variable and manipulate it using Visual Basic code. In Chapter
10, “Creating console applications,” you also managed random number calculations with numeric
variables that are helpful in mathematical games.

In this chapter, you’ll go much farther with data types, mathematical operators, and the .NET
Framework. You’ll learn about the full range of data types provided by the .NET Framework and
helpful strategies for using the Dim statement to declare variables in a Visual Basic application. You’ll
also learn how to use basic and advanced operators in formulas and mathematical calculations and
how to convert data from one type to another using the Parse and ToString methods and the Convert
class. Finally, you’ll learn how to manage ASCII and Unicode values, and to use powerful string-
processing techniques including combining, comparing, sorting, and encryption. Because these skills
apply equally to Windows Store apps and Windows Forms apps, you’ll build both types of Windows
programs in this chapter.

292 part III Visual Basic programming techniques

Strategies for declaring variables and constants

A core programming task in virtually any Windows development project is managing information
with data types and variables. One of my assumptions in this book is that you have written computer
programs before (probably in an earlier incarnation of Visual Basic) and that you have had a basic
orientation to data types, variables, and constants. The goal of this chapter is to go a little farther
than the basics with variables, data types, type conversion, and operators. The first few sections
offer a review of essential concepts and skills, and the later sections explore processing data with the
Windows Store ListBox control, converting data from one type to another, and using advanced meth-
ods in the .NET Framework for string processing. You’ll use the most current tools in Visual Studio
2013, and you’ll build Windows Store apps and Windows Forms apps.

As you have already learned in this book, a variable is a temporary storage location for data in
your Visual Basic application. You can use one or many variables in your event handlers and pro-
cedures, and the variables can contain words, numbers, dates, property settings, and other values.
By using variables, you assign short and easy-to-remember names to each piece of data that you
plan to work with in an application. Variables can hold the result of a specific calculation, informa-
tion received from the user at run time, or a piece of data that you want to display on a page in the
user interface. In Visual Studio, variables are defined with a specific data type so that the Visual Basic
compiler knows how to work with the information and can manage it efficiently. As you’ll see next,
there are a number of useful data types available to you, and you can also create your own custom
data types.

Before you can use a variable, you must set aside memory in the computer for the variable’s use.
I describe this process, and the venerable Dim statement that has long been used to dimension vari-
ables, in the next section.

the Dim statement
There are two ways to declare a variable in a Visual Basic 2013 program. You can declare the vari-
able explicitly, by specifying the variable name and type after the Dim statement. Or you can declare
the variable implicitly—that is, simply by using the variable without declaring it first. Implicit variable
declaration is considered risky because it creates the potential for misspelled variable names and
other errors, so explicit variable declaration is strongly recommended in this book and in professional
programming circles. In fact, implicit variable declaration is not allowed by default; to get that style of
variable declaration to work you’ll need to change a setting in Visual Studio that I’ll describe later in
the section “Implicit variable declaration.”

explicit variable declaration
To declare a variable explicitly in Visual Basic 2013, type the variable name after the Dim statement.
This declaration reserves room in memory for the variable when the program runs and lets Visual
Basic know what type of data it should expect to see later. Although this declaration can be done at
any place in the program code (as long as the declaration happens before the variable is used), most
programmers declare variables in one place at the top of their event handlers or procedures.

 CHAPTER 11 Mastering data types, operators, and string processing 293

For example, the following statement creates space for a variable named lastName that will hold a
textual, or string, value:

Dim lastName As String

In addition to identifying the variable by name, note that I’ve used the As keyword to give the
variable a particular type, and I’ve identified the type by using the keyword String. (You’ll review the
other data types later in this chapter.) A string variable contains textual information: words, letters,
symbols—even numbers. I find myself using string variables a lot; they hold names, places, lines from
a poem, the contents of a text box, and many other types of “wordy” data.

You might also notice the camel-casing style that I’ve used for the lastName variable here.
Although the format of variable names is a matter of personal style, Microsoft currently recommends
the camel-casing style as a way of formatting variables so that they are easy to read and differentiate
from other objects, methods, and properties in a Visual Basic program. In camel casing, the first letter
of each name is lowercase, followed by uppercase letters for each word.

Why do you need to declare variables? Visual Basic wants you to identify the name and the type
of your variables in advance so that the compiler can set aside the memory the program will need to
store and process the information held in the variables. Memory management might not seem like
a big deal to you (after all, modern personal computers have lots of RAM and gigabytes of free hard
disk space), but in some programs, memory can be consumed quickly, and it’s a good practice to take
memory allocation seriously even when you write simple programs. As you probably recall, different
types of variables have different space requirements and size limitations.

After you declare a variable, you’re free to assign information to it in your code by using the
assignment operator (=). For example, the following program statement assigns the last name
“Jefferson” to the lastName variable:

lastName = "Jefferson"

Note that I was careful to assign a textual value to the lastName variable because its data type is
String. I can also assign values with spaces, symbols, or numbers to the variable, such as

lastName = "1313 Mockingbird Lane"

but the variable is still considered a string value. The number portion could be used in a math-
ematical formula only if it were first converted to an integer or a floating-point value by using one of
a handful of conversion functions that I’ll discuss later in this chapter.

After the lastName variable is assigned a value, it can be used in place of the name “Jefferson” in
your code. For example, the assignment statement

TitleTextBlock.Text = lastName

displays “Jefferson” in a text block object named TitleTextBlock in a Windows Store app.

294 part III Visual Basic programming techniques

Implicit variable declaration
If you want to try implicit variable declaration—that is, simply using the variable in a state-
ment or expression without previously declaring it using the Dim statement—you can place the
Option Explicit Off statement at the very top of your page or form’s program code (before any event
handlers), and it will turn off the Visual Basic default requirement that variables be declared before
they’re used. As I mentioned earlier, I don’t recommend this statement as a permanent addition to
your code, but you might find it useful temporarily as you test your code or convert older Visual Basic
programs to Visual Basic 2013.

Another possibility is to use the Option Infer statement, which was added to Visual Basic 2008
and is still useful in Visual Basic 2013. If Option Infer is set to On, Visual Basic will deduce, or infer, the
type of a variable by examining the initial assignment you make. This allows you to declare variables
without specifically identifying the type used, allowing Visual Basic to make the determination. For
example, the expression

Dim attendance = 100

will declare the variable named attendance as an Integer, because 100 is an integer expression. That is,
with Option Infer set to On, it is the same as typing

Dim attendance As Integer = 100

Likewise, the expression

Dim address = "1012 Daisy Lane"

will declare the variable address as type String, because its initial assignment was of type String.
However, if you set Option Infer to Off, Visual Basic will declare the variable as type Object—a general
(although somewhat bulky and inefficient) container for any type of data.

If you plan to use Option Infer to allow this type of inferred variable declaration (a flexible
approach, but one that could potentially lead to unexpected results), place the following two state-
ments at the top of the page in the Code Editor (before the Page Class is defined in a Windows Store
app):

Option Explicit On
Option Infer On

If you are writing a Windows Forms application, you would place the statements above the
Class Form statement for the form that you are designing.

Option Explicit Off allows variables to be declared as they are used, and Option Infer On allows
Visual Basic to determine the type automatically. You can also set these options in new projects using
the Options command on the Tools menu, as discussed in Chapter 2, “The Visual Studio Integrated
Development Environment.”

 CHAPTER 11 Mastering data types, operators, and string processing 295

Defining constants
If a variable in your program contains a value that never changes (such as π, a fixed mathematical
entity), you should consider declaring the value as a constant instead of as a variable.

A constant is a meaningful name that takes the place of a number or a text string that doesn’t
change. Constants are useful because they increase the readability of program code, they can reduce
programming mistakes, and they make global changes easier to accomplish later. Constants operate
a lot like variables, but you can’t modify their values at run time. They are declared with the Const
keyword, as shown in the following example:

Const Pi As Double = 3.14159265

This statement creates a constant named Pi that can be used in place of the value of π in the program
code.

As you’ll learn in the following section, a constant can be declared locally or globally. In most
cases, programmers prefer to use global constant declarations so that they can be easily be refer-
enced throughout the program.

Scope for variables and constants

By default, variables and constants are local to the routines that they are declared in, meaning that
they have validity or scope only in the procedure in which they are dimensioned.

However, if you have more than one event handler associated with a page in the user interface,
you can give your variables and constants scope throughout the page by declaring them near the
top of the page’s class—that is, after the Class statement and before any event handlers are defined.
You’ll see an example of this in the Data Types program later in this chapter.

If your project has more than one page or procedure in it, you can make individual variables and
constants global (that is, you can give them a scope throughout the project) by declaring them in a
code module and using the Public keyword in the declaration.

For example, if you place the statement

Public runningTotal As Integer

in a code module file (Module1.vb by default), the runningTotal variable will be declared publicly and
maintain its value in all event handlers and procedures in the program. Likewise, a string variable
named PreferredColor could be made global if it was declared in a code module using the following
syntax:

Public PreferredColor As String

Code modules were first introduced in this book in Chapter 10, “Creating console applications.”
You create a code module with the Add Module command on the Project menu, and you can set the
name and other characteristics of the module with settings in the Properties window. Code modules

296 part III Visual Basic programming techniques

are useful tools for defining global code resources in Windows Store apps, Windows Forms apps, and
Console apps.

The following screen illustration shows what a new module named Module1 looks like in the Code
Editor, with a global variable declaration for the runningTotal variable at the top of the module. You’ll
see several examples of this global variable syntax in Visual Basic 2013 Step by Step, and another
example of a code module resource near the end of this chapter.

Guidelines for naming variables and constants
It is important that you give the variables and constants in your code appropriate names. Generally,
you want to be as clear as possible about the function and purpose of each variable and constant so
that down the road you (or a programmer on your team) can quickly understand what the identi-
fier is used for in the program. To avoid confusion, consider the following guidelines when you name
variables and constants:

■■ Begin each variable and constant name with a letter or underscore. This is a Visual Basic
requirement. Variable and constant names can contain only letters, underscores, and
numbers.

■■ Although variable and constant names can be virtually any length, try to keep them under
33 characters to make them easier to read. (Variable and constant names were limited to 255
characters way back in Visual Basic 6, but that’s no longer a constraint.)

■■ Make your variable and constant names descriptive by combining one or more words when it
makes sense to do so. For example, the variable name salesTaxRate is much clearer than tax or
rate.

■■ Use a combination of uppercase and lowercase characters and numbers in your variables and
constants. Although the style for variable names changes over time, the style that Microsoft
recommends now is camel casing (making the first letter of a name lowercase) to distinguish
variable and constant names from properties, functions, and module names, which usually
begin with uppercase letters. Examples of camel casing include dateOfBirth, employeeName,
and counter.

 CHAPTER 11 Mastering data types, operators, and string processing 297

■■ Don’t use Visual Basic keywords, objects, or properties as variable or constant names. If you
do, you’ll get an error when you try to run your program.

■■ Optionally, you can begin each variable and constant with a two-character or three-character
abbreviation corresponding to the type of data that’s stored in the identifier. For example,
you could use strName to show that the Name variable contains string data. This convention,
called Hungarian notation, is now falling out of favor, but it was common in earlier versions of
Visual Basic and Windows, and you should learn to recognize the pattern.

Data types and the ListBox control

To allow for the efficient memory management of all types of data, Visual Basic provides several data
types that you can use for your variables and constants. Many of these are familiar data types from
earlier versions of BASIC or Visual Basic, and some of the data types were introduced more recently to
allow for the efficient processing of data in newer 64-bit computers.

Table 11-1 lists the fundamental (or base) data types available in Visual Basic. These are an integral
part of the Visual Basic language within Visual Studio 2013, and you can recognize them easily in the
Code Editor because they are formatted in blue color as soon as you enter them. In some program-
ming books and documentation, these language elements are called primitive data types.

Types in the table preceded by an S are designed for signed numbers, meaning that they can hold
both positive and negative values. Types preceded by a U are unsigned data types, meaning that they
cannot hold negative values. If your program needs to perform a lot of calculations, you can gain a
performance advantage if you choose the most efficient data type for your variables—one with a size
that’s neither too big nor too small.

Note Variable storage size is measured in bits. The amount of space required to store one
standard (ASCII) keyboard character in memory is 8 bits, which equals 1 byte.

In the following exercise, you’ll see how several of these data types work. You’ll also learn how to
use the XAML ListBox control, an important user-interface tool designed to process and manage data
in a Windows Store application.

TABLE 11-1 Fundamental data types in Visual Basic
Data type Size Range Sample usage

Short 16-bit -32,768 through 32,767 Dim artists As Short
artists = 2500

UShort 16-bit 0 through 65,535 Dim hours As UShort
hours = 5000

Integer 32-bit -2,147,483,648 through 2,147,483,647 Dim population As Integer
population = 375000

298 part III Visual Basic programming techniques

Data type Size Range Sample usage

UInteger 32-bit 0 through 4,294,967,295 Dim seconds As UInteger
seconds = 3000000

Long 64-bit -9,223,372,036,854,775,808 through
9,223,372,036,854,775,807

Dim bugs As Long
bugs = 7800000016

ULong 64-bit 0 through 18,446,744,073,709,551,615 Dim sandGrains As ULong
sandGrains =
 1800000000000000000

Single 32-bit
floating
point

-3.4028235E38 through 3.4028235E38 Dim unitCost As Single
unitCost = 899.99

Double 64-bit
floating
point

-1.79769313486231E308 through
1.79769313486231E308

Dim pi As Double
pi = 3.1415926535

Decimal 128-bit 0 through +/-79,228,162,514,264,
337,593,543,950,335 (+/-7.9...E+28)
with no decimal point; 0 through +/-
7.9228162514264337593543950335 with 28
places to the right of the decimal. Append "D"
to the number if you want to force Visual Basic
to initialize a Decimal.

Dim debt As Decimal
debt = 7600300.5D

Byte 8-bit 0 through 255 Dim retKey As Byte
retKey = 13

SByte 8-bit -128 through 127 Dim negNum As SByte
negNum = -20

Char 16-bit Any Unicode symbol in the range 0–65,535.
Append "c" when initializing a Char.

Dim unicodeChar As Char
unicodeChar = "Ä"c

String Usually
16-bits per
character

0 to approximately 2 billion
16-bit Unicode characters

Dim greeting As String
greeting = "hello world"

Boolean 16-bit True or False. (During conversions to a
Boolean value, 0 is converted to False, other
values to True.)

Dim flag as Boolean
flag = True

Date 64-bit January 1, 0001, through
December 31, 9999

Dim birthday as Date
birthday = #3/17/1900#

Object 32-bit Any type can be stored in a variable of type
Object. In addition, object variables can con-
tain defined objects in your project, like a text
box object named TextBox1.

Dim myControl As Object
myControl = TextBox1

Use fundamental data types

1. On the File menu, click Open Project.

The Open Project dialog box opens.

2. Open the Data Types solution from the My Documents\Visual Basic 2013 SBS\Chapter 11\Data
Types folder.

3. If the project’s page isn’t visible, double-click MainPage.xaml in Solution Explorer.

 CHAPTER 11 Mastering data types, operators, and string processing 299

Data Types is a complete Visual Basic Windows Store app that I created to demonstrate how
fundamental data types and the ListBox control work. You’ll run the program to see what the
data types look like, and then you’ll look at how the variables are declared and processed with
a ListBox control in the Visual Basic code. You’ll also learn where to place variable declarations
so that they’re available to all the event handlers on the page.

4. Click the Start Debugging button on the Standard toolbar.

The Data Types application opens with white user interface controls on a green background.
Data Types lets you experiment with 11 data types, including integer, single-precision floating
point, and date. The program displays an example of each type when you click its name in the
list box. Notice how the list box functions automatically, highlighting the selected item. You
can select items with the mouse, keyboard, or touch gestures (provided your device supports
touch).

5. Select the Integer type in the list box.

The number 37500000 appears in the Sample Data text box, as shown in the following
illustration.

Note With the Short, Integer, and Long data types, the default presentation does not
include commas. However, you can display commas by using the Format function.

300 part III Visual Basic programming techniques

6. Select the Date type in the list box.

The date 11/19/1985 appears in the Sample Data box, as shown in the following screen shot:

7. Select each data type in the list box to see how Visual Basic displays it in the Sample Data box.

Try using mouse clicks, the direction keys on the keyboard, and touch to select items in the list
box.

8. When you’re finished, close the program and redisplay the contents of the Windows Store app
in the Visual Studio IDE.

Now you’ll examine how the fundamental data types are declared in code and how they’re used in
the DataTypeListBox_SelectionChanged event handler. You’ll also learn how to add items to a ListBox
control using XAML markup.

 CHAPTER 11 Mastering data types, operators, and string processing 301

process data selections using the ListBox control

1. Open the MainPage.xaml.vb file, and enlarge the Code Editor to see more of the program
code.

The Code Editor looks like this:

Near the top of the MainPage class definition in the Code Editor, you’ll see a dozen or
so Dim statements that I added to declare 11 variables in the program—one for each of
the fundamental data types provided by Visual Basic. (I didn’t create an example for the
SByte, UShort, UInteger, and ULong types, because they closely resemble their signed or
unsigned counterparts.)

By placing each Dim statement near the top of the main page’s class initialization area, I’m
ensuring that the variables will have scope throughout all of this page’s event handlers. That
way, I can set the value of a variable in one event handler and read it in another. Normally,
variables are valid only in the event handler in which they’re declared. To make them valid
across the page, you need to declare variables at the top of your page’s code.

302 part III Visual Basic programming techniques

2. Click the MainPage.xaml tab in the IDE, and examine the XAML markup that defines the list
box on the page.

The XAML ListBox control presents a dynamic list of items on the screen and allows the user to
browse the list and make a selection. Like other Windows Store controls, ListBox is located in
the XAML Toolbox, and after you add it to a page in the user interface, you can customize its
appearance with property settings. (You can use XAML markup or the Properties window to
adjust the properties for the ListBox control.)

The items in a list box are assigned a number by Visual Studio so that you can reference them
programmatically. The first item is 0, the second item is 1, the third item is 2, and so on. When
the user selects an item in the list box, the SelectionChanged event fires for the list box and
within the corresponding event handler the SelectedIndex property returns the number of the
item selected. I typically use a decision structure to process the input that comes through a
SelectedIndex property; for example, you can use a Select Case structure or an If…Then…Else
structure to determine which item was selected and then perform the necessary action.

Within the MainPage.xaml file in the Code Editor, you’ll see XAML markup for each of the
objects defined in the user interface. A list box object named DataTypeListBox has the follow-
ing markup, which defines 11 list box items representing the sample data in the program:

<ListBox x:Name="DataTypeListBox"
 HorizontalAlignment="Left"
 Height="444"
 Margin="68,134,0,0"
 VerticalAlignment="Top"
 Width="206">
 <ListBoxItem Name ="List1"
 Content ="Short"
 FontSize="14"/>
 <ListBoxItem Name ="List2"
 Content ="Integer"
 FontSize="14"/>
 <ListBoxItem Name ="List3"
 Content ="Long"
 FontSize="14"/>
 <ListBoxItem Name ="List4"
 Content ="Single"
 FontSize="14"/>
 <ListBoxItem Name ="List5"
 Content ="Double"
 FontSize="14"/>
 <ListBoxItem Name ="List6"
 Content ="Decimal"
 FontSize="14"/>
 <ListBoxItem Name ="List7"
 Content ="Byte"
 FontSize="14"/>
 <ListBoxItem Name ="List8"
 Content ="Char"
 FontSize="14"/>

 CHAPTER 11 Mastering data types, operators, and string processing 303

 <ListBoxItem Name ="List9"
 Content ="String"
 FontSize="14"/>
 <ListBoxItem Name ="List10"
 Content ="Boolean"
 FontSize="14"/>
 <ListBoxItem Name ="List11"
 Content ="Date"
 FontSize="14"/>
</ListBox>

If you have specific questions about how XAML markup is formatted, review the material in
Chapter 7, “XAML markup step by step.” Remember that XAML markup is dynamic—if you make
changes to the ListBox markup, you’ll see the changes reflected immediately in the Designer.

3. Now return to the MainPage.xaml.vb file, and examine the DataTypeListBox_SelectionChanged
event handler.

This Visual Basic code processes the selections the user makes in the list box and looks like this:

Select Case DataTypeListBox.SelectedIndex 'process the user's list box selection
 Case 0
 birds = 12500
 SampleTextBox.Text = birds
 Case 1
 insects = 37500000
 SampleTextBox.Text = insects
 Case 2
 worldPop = 7100000000
 SampleTextBox.Text = worldPop
 Case 3
 price = 899.99
 SampleTextBox.Text = price
 Case 4
 pi = 3.1415926535
 SampleTextBox.Text = pi
 Case 5
 debt = 7600300.5D
 SampleTextBox.Text = debt
 Case 6
 retKey = 13
 SampleTextBox.Text = retKey
 Case 7
 UnicodeChar = "Ä"c
 SampleTextBox.Text = UnicodeChar
 Case 8
 dog = "pointer"
 SampleTextBox.Text = dog
 Case 9
 flag = True
 SampleTextBox.Text = flag
 Case 10
 birthday = #11/19/1985#
 SampleTextBox.Text = birthday
End Select

304 part III Visual Basic programming techniques

This routine is a Select Case decision structure, which you have already experimented with in
this book. (You’ll study Select Case more comprehensively in Chapter 12, “Creative decision
structures and loops.”) For now, notice how each section of the Select Case block assigns a
sample value to one of the fundamental data type variables and then assigns the variable to
the Text property of the SampleTextBox object on the page.

4. Scroll through the DataTypeListBox_SelectionChanged event handler, and examine each of the
variable assignments closely.

Try changing the data in a few of the variable assignment statements and running the pro-
gram again to see what the data looks like. In particular, you might try assigning values to
variables that are outside their accepted range, as shown in the data types table presented
earlier. If you make such an error, Visual Basic adds a jagged line below the incorrect value
in the Code Editor, and the program won’t run until you change it. To learn more about your
mistake, you can point to the jagged underlined value and read a short tooltip error message
about the problem.

tip By default, a green jagged line indicates a warning, a red jagged line indicates a
syntax error, a blue jagged line indicates a compiler error, and a purple jagged line
indicates some other error.

5. If you made any changes that you want to save to disk, click the Save All button on the
Standard toolbar.

6. Close the Data Types project.

Now you’ll work with some of the fundamental data types and combine them with arithmetic
operators.

Operators and formulas

In this section, you’ll learn about the extremely useful operators that can be used in Visual Basic pro-
grams. You’ll begin by reviewing how to use the arithmetic operators to create mathematical formulas
in an event handler, and then you’ll learn about shortcut operators that provide similar functionality
in an abbreviated form.

Remember that in Visual Basic a formula is just a program statement that combines numbers, vari-
ables, operators, and other keywords to create a new value. Visual Basic contains dozens of language
elements designed for use in formulas, and you’ll see them often in this book.

 CHAPTER 11 Mastering data types, operators, and string processing 305

arithmetic operators
In the following program, you’ll practice working with arithmetic operators, the symbols used to tie
together the parts of a formula. With a few exceptions, the arithmetic symbols you’ll use are the ones
you use in everyday life, and their operations are fairly intuitive. Visual Basic includes the arithmetic
operators listed in Table 11-2.

TABLE 11-2 Arithmetic operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

\ Integer (whole number) division

Mod Remainder division

^ Exponentiation (raising to a power)

& String concatenation (combination)

The operators for addition, subtraction, multiplication, and division are pretty straightforward and
can be used in any formula where numbers or numeric variables are used. The Basic Math program
demonstrates how you can use them in a Windows Store app.

Build formulas using addition, subtraction, multiplication, and division

1. On the File menu, click Open Project.

2. Open the Basic Math project in the My Documents\Visual Basic 2013 SBS\Chapter 11\Basic
Math folder.

3. If the project’s page isn’t visible, double-click MainPage.xaml in Solution Explorer.

The Basic Math page opens in the Designer. This simple Windows Store app demonstrates
how the addition, subtraction, multiplication, and division operators work with numbers that
you type. It also demonstrates how you can use text box, radio button, and button objects to
process user input in a program.

4. Click the Start Debugging button on the Standard toolbar.

The Basic Math program starts. The program displays two text boxes in which you enter
numeric values, a group of operator radio buttons, a box that displays results, and a button
object (Calculate) to perform the math.

5. Type 100 in the first text box, and then press Tab.

The insertion point, or focus, moves to the second text box.

306 part III Visual Basic programming techniques

6. Type 17 in the second text box.

You can now apply any of the mathematical operators to the values in the text boxes.

7. Click the Addition radio button, and then click the Calculate button.

The operator is applied to the two values, and the number 117 appears in the calculation
results box, as shown in the following screen shot.

8. Practice using the subtraction, multiplication, and division operators with the two numbers in
the variable boxes. (Click Calculate to calculate each formula.)

The results appear in the result box. Feel free to experiment with different numbers in the
variable text boxes. (Try a few numbers with decimal points if you like.) I used the Double data
type to declare the variables, so you can use very large numbers.

Now try the following test to see what happens.

9. Type 100 in the first text box, type 0 in the second text box, click the Division radio button,
and then click Calculate.

Dividing by zero is not allowed in mathematical calculations, because it produces an infinite
result. Visual Basic can handle this calculation and displays a value of Infinity in the results text
box. Being able to handle some divide-by-zero conditions is a feature that Visual Basic 2013
automatically provides.

10. When you’ve finished contemplating this and other tests, close the Basic Math program.

The program terminates, and the IDE returns.

Now take a look at the program code to see how the results were calculated. Basic Math uses a
few of the standard XAML controls you experimented with in Chapter 5 and an event handler that
uses variables and operators to process the simple mathematical formulas. The program declares its

 CHAPTER 11 Mastering data types, operators, and string processing 307

variables at the top of the page (where the class is defined) so that they can be used in all the event
handlers on the page. Although this program has only one event handler, placing the variables at the
top of the page will allow for easy program expansion.

examine the Basic Math program code

1. Double-click the Calculate button on the page.

The Code Editor displays the Calculate_Click event handler. At the top of the page’s code,
you’ll see the following statement, which declares two variables of type Double below the
main page’s class definition:

'Declare firstNum and secondNum as double-precision variables
Dim firstNum, secondNum As Double

I used the Double type because I wanted a large, general-purpose variable type that could
handle many different numbers—integers, numbers with decimal points, very big numbers,
small numbers, and so on. The variables are declared on the same line by using the shortcut
notation. Both firstNum and secondNum are of type Double and are used to hold the values
input in the first and second text boxes, respectively.

2. Scroll down in the Code Editor to see the contents of the Calculate_Click event handler.

The program code looks like this:

Private Sub Calculate_Click(sender As Object, e As RoutedEventArgs) Handles Calculate.
Click
 'Assign textbox values to variables
 firstNum = FirstTextBox.Text
 secondNum = SecondTextBox.Text

 'Determine checked button and calculate
 If Addition.IsChecked Then
 Result.Text = firstNum + secondNum
 End If
 If Subtraction.IsChecked Then
 Result.Text = firstNum - secondNum
 End If
 If Multiplication.IsChecked Then
 Result.Text = firstNum * secondNum
 End If
 If Division.IsChecked Then
 Result.Text = firstNum / secondNum
 End If
End Sub

The first two statements in the event handler transfer data entered in the text box objects into
the firstNum and secondNum variables. The TextBox control handles the data transfer using
the Text property—a property that accepts input from the user and makes it available for use
in the program. (In this case, the program relies on you to enter data of the proper data type;
an error will result if you type non-numeric data into the text boxes.)

308 part III Visual Basic programming techniques

After the text box values are assigned to the variables, the event handler determines which
radio button has been selected, computes the mathematical formula, and displays the result
in a third text box. The first radio button test looks like this:

'Determine checked button and calculate
If Addition.IsChecked Then
 Result.Text = firstNum + secondNum
End If

Only one radio button object in a group can be selected at any given time. In a Windows
Store app, radio buttons are added to a group by setting the GroupName property of each
radio button to the same name. (In this case, I set the group name to “Operator.”) In the event
handler, you can tell whether a radio button has been selected by evaluating the IsChecked
property. If it’s True, the button has been selected. If the IsChecked property is False, the
button has not been selected. After this simple test, you’re ready to compute the result and
display it in the third text box object. That’s all there is to using basic arithmetic operators.

tip You can learn more about the syntax of If…Then tests in Chapter 12. If you want to
learn more about how XAML radio buttons work in a Windows Store app, see Chapter
3, “Using Controls,” in my companion book Start Here! Learn Microsoft Visual Basic 2012
(Microsoft Press, 2012). I also provide detailed information about how to create and
use XAML CheckBox controls in that book, which offer a useful alternative to
RadioButton controls.

3. On the File menu, click the Close Project button.

You’re done using the Basic Math program.

advanced arithmetic operators
In addition to the four basic arithmetic operators, Visual Basic includes four additional arithmetic
operators for special-purpose calculations. These include integer division (\), remainder division
(Mod), exponentiation (̂), and string concatenation (&). The extra operators are useful in a wide range
of mathematical formulas and virtually all text processing routines. The following utility (a revised ver-
sion of the Basic Math program) shows how you can use each of these operators in a Windows Store
app.

explore integer division, remainder division, exponentiation, and concatenation

1. On the File menu, click Open Project, and then open the Advanced Math solution in the My
Documents\Visual Basic 2013 SBS\Chapter 11\Advanced Math folder.

2. If the project’s page isn’t visible, double-click MainPage.xaml in Solution Explorer.

 CHAPTER 11 Mastering data types, operators, and string processing 309

The Advanced Math user interface opens in the Designer. This program is very similar to the
Basic Math app, with the exception of the operators presented by the radio buttons and the
decision structures in the Calculate_Click event handler.

3. Click the Start Debugging button on the Standard toolbar.

The program displays two text boxes in which you enter numeric values, a group of operator
radio buttons, a text box that displays results, and a button named Calculate.

4. Type 9 in the first text box, and then press Tab.

5. Type 2 in the second text box.

You can now apply any of the advanced operators to the values in the text boxes.

6. Click the Integer Division radio button, and then click Calculate.

The operator is applied to the two values, and the number 4 appears in the results box, as
shown here:

Integer division produces only the whole number result of the division operation. Although
9 divided by 2 equals 4.5, the integer division operation returns only the first part, an integer
(the whole number 4). You might find this result useful if you’re working with quantities that
can’t easily be divided into fractional components, such as the number of adults who can fit in
a car.

7. Click the Remainder radio button, and then click Calculate.

The number 1 appears in the results box. Remainder division (modulus arithmetic) returns the
remainder (the part left over) after two numbers are divided. Because 9 divided by 2 equals 4
with a remainder of 1 (2 * 4 + 1 = 9), the result produced by the Mod operator is 1. In addition
to adding an early-1970s vibe to your code, the Mod operator can help you track “leftovers” in
your calculations, such as the amount of money left over after a financial transaction.

310 part III Visual Basic programming techniques

8. Click the Exponentiation radio button, and then click the Calculate button.

The number 81 appears in the result box. The exponentiation operator (̂) raises a number to
a specified power. For example, 9 2̂ equals 92, or 81. In a Visual Basic formula, 92 is written as
9 2̂.

9. Click the Concatenation radio button, and then click the Calculate button.

The number 92 appears in the results box. The string concatenation operator (&) combines
two strings in a formula, but not through addition. The result is a combination of the “9” char-
acter and the “2” character. String concatenation can be performed on numeric variables—for
example, if you’re displaying the inning-by-inning score of a baseball game as they do in
old-time score boxes—but concatenation is more commonly performed on string values or
variables.

Because I declared the firstNum and secondNum variables as type Double, you can’t combine
words or letters by using the program code as written. For an example, try the following test,
which causes an error and ends the program.

10. Type birth in the first text box, type day in the second text box, verify that Concatenation is
selected, and then click Calculate.

Visual Basic is unable to process the text values you entered, so the program stops running,
and an error message appears on the screen.

 CHAPTER 11 Mastering data types, operators, and string processing 311

This type of error is called an exception or run-time error—a programming mistake that
surfaces not during the design and compilation of the program but later, when the program
is running and encounters a condition that it doesn’t know how to process. The secondary
message, Conversion From String ‘Birth’ To Type ‘Double’ Is Not Valid, means that the words
you entered in the text boxes (“birth” and “day”) could not be converted by Visual Basic to
variables of the type Double. Double types can contain only numbers—period.

As I discuss later in the section “Converting data types,” there are ways around such a prob-
lem, because there are specific functions in Visual Studio that allow you to convert one type of
data to another. But for now, we’ll move on. You have been reminded about the fickleness of
data types and when not to mix them.

11. Click the Stop Debugging button on the Standard toolbar to end the program.

Your program ends and returns you to the IDE.

Now take a look at the program code to see how variables were declared and how the
advanced operators were used.

12. Scroll to the code at the top of the Code Editor, if it is not currently visible.

You see the following comment and program statement:

'Declare firstNum and secondNum as double-precision variables
Dim firstNum, secondNum As Double

As you might recall from the previous exercise, firstNum and secondNum are the variables that
hold numbers coming in from the FirstTextBox and SecondTextBox objects.

13. Change the data type from Double to String so that you can properly test how the string con-
catenation (&) operator works.

14. Scroll down in the Code Editor to see how the advanced operators are used in the program code.

You see the following code:

'Assign textbox values to variables
firstNum = FirstTextBox.Text
secondNum = SecondTextBox.Text

'Determine checked button and calculate
If IntDivision.IsChecked Then
 Result.Text = firstNum \ secondNum
End If
If RemainderDiv.IsChecked Then
 Result.Text = firstNum Mod secondNum
End If
If Exponent.IsChecked Then
 Result.Text = firstNum ^ secondNum
End If
If Concatenation.IsChecked Then
 Result.Text = firstNum & secondNum
End If

312 part III Visual Basic programming techniques

Like the Basic Math program, this program loads data from the text boxes and places it in the
firstNum and secondNum variables. The program then checks to see which radio button the
user checked and computes the requested formula. In this event handler, the integer division
(\), remainder (Mod), exponentiation (̂), and string concatenation (&) operators are used.
Now that you’ve changed the data type of the variables to String, run the program again to
see how the & operator works on text.

15. Click the Start Debugging button.

16. Type birth in the first text box, type day in the second text box, click Concatenation, and then
click Calculate.

The program now concatenates the string values and doesn’t produce a run-time error, as
shown here:

17. Close the program.

As you can see, the String data type has fixed the concatenation problem. However, it is not a
total solution because variables of type String will not function correctly if you try the Integer
Division, Remainder, or Exponentiation operations with them. So, if you really wanted to have
your program process numbers and text strings interchangeably, you’d need to add some
additional program logic to your code. However, for now, you’re finished working with the
Advanced Math program.

 CHAPTER 11 Mastering data types, operators, and string processing 313

Note Exceptions are difficult to avoid completely—even the most sophisticated application
programs, such as Microsoft Word or Microsoft Office Excel, sometimes run into error con-
ditions that they can’t handle, producing run-time errors, or crashes. For more information
about identifying different types of errors in your code and fixing them using tools and re-
sources in the Visual Studio IDE, see Chapter 9, “Debugging Applications,” in the companion
book Start Here! Learn Microsoft Visual Basic 2012.

Shortcut operators
A little while ago, Microsoft added a timesaving feature to the Visual Basic programming lan-
guage that allows developers to use operators in a more compact way. The feature is known as a
shortcut operator, and there are operators to choose from corresponding to most of the Visual Basic
arithmetic operators. Although they have been available for a while, many programmers still don’t
know about them or use them, but I recommend that you take a look and consider trying them out;
their compact format is clever and compelling.

Shortcut operators are primarily used for mathematical and string operations that involve chang-
ing the value of an existing variable. For example, if you combine the + symbol with the = symbol,
you can add to a variable without repeating the variable name twice in the formula. Thus, you can
write the formula X = X + 6 by using the syntax X += 6.

Table 11-3 shows examples of these shortcut operators. They are easy to use, as you can see from
the syntax examples provided. The syntax is also reminiscent of assignment operator syntax in the C
programming language.

TABLE 11-3 Shortcut operators

Operation Long-form syntax Shortcut syntax

Addition (+) X = X + 6 X += 6

Subtraction (–) X = X – 6 X -= 6

Multiplication (*) X= X * 6 X *= 6

Division (/) X = X / 6 X /= 6

Integer division (\) X = X \ 6 X \= 6

Exponentiation (̂) X = X ^ 6 X ^= 6

String concatenation (&) X = X & "ABC" X &= "ABC"

314 part III Visual Basic programming techniques

How Visual Basic calculates formulas
In the previous exercises, you experimented with several arithmetic operators and one string opera-
tor. Visual Basic lets you mix as many arithmetic operators as you like in a formula, as long as each
numeric variable and expression is separated from another by one operator. For example, this is an
acceptable Visual Basic formula:

numberOfFish = 20000 - 750 * 20 / 3 ^ 2

The formula processes several values that collectively estimate the population of fish in a body of
water and then assigns the result to a single-precision variable named numberOfFish. But how is such
an expression evaluated by the Visual Basic compiler? That is, what sequence does Visual Basic follow
when solving the formula? You might not have noticed, but the order of evaluation matters a great
deal in this example.

Visual Basic solves this problem by establishing a specific order of precedence for mathematical
operations. This list of rules tells Visual Basic which operator to use first, second, and so on when
evaluating an expression that contains more than one operator.

Table 11-4 lists the operators from first to last in the order in which they are evaluated. (Operators
on the same level in this table are evaluated from left to right as they appear in an expression.)

TABLE 11-4 How formulas are evaluated

Operator Order of precedence

() Values within parentheses are always evaluated first.

^ Exponentiation (raising a number to a power) is second.

– Negation (creating a negative number) is third.

* / Multiplication and division (in no particular priority) are fourth.

\ Integer division is fifth.

Mod Remainder division is sixth.

+ - Addition and subtraction are last.

Given the order of precedence in this table, the expression

NumberOfFish = 20000 - 750 * 20 / 3 ^ 2

is evaluated by Visual Basic in the following steps (each line shows how one pair of values is
computed):

NumberOfFish = 20000 - 750 * 20 / 9
NumberOfFish = 20000 - 15000 / 9
NumberOfFish = 20000 – 1666.67
NumberOfFish = 18333.33

 CHAPTER 11 Mastering data types, operators, and string processing 315

Changing the order of precedence in a formula
You can use one or more pairs of parentheses in a formula to clarify the order of precedence or
impose your own order of precedence over the standard one. For example, Visual Basic calcu-
lates the formula

Number = (8 - 5 * 3) ^ 2

by determining the value within the parentheses (–7) before doing the exponentiation—even
though exponentiation is higher in order of precedence than subtraction and multiplication,
according to the preceding table. You can further refine the calculation by placing nested pa-
rentheses in the formula. For example,

Number = ((8 - 5) * 3) ^ 2

directs Visual Basic to calculate the difference in the inner set of parentheses first, perform the
operation in the outer parentheses next, and then determine the exponentiation. The result
produced by the two formulas is different: the first formula evaluates to 49 and the second to
81. Parentheses can change the result of a mathematical operation, as well as make it easier to
read.

Converting data types

As you have learned so far, it is important when using variables and constants to assign information of
the proper data type to the temporary storage location that you are using in a program. The process
typically begins with user input; when you receive data from the user, it is important to collect and
store the data in a recognizable format so that it can be used effectively later. To accomplish this, you
should pick an input control that requests the information in a structured and predictable way. For
example, if you want to collect string data in a Windows Store app, you might use the XAML TextBox
control in the Toolbox to gather the string information and then assign it to a string variable. Or alter-
natively, if you are designing a Windows Forms app, you might use the helpful MaskedTextBox control
to prompt the user for input using a predefined input mask or pattern that collects the information in
a formatted way.

If you have information stored in a variable that is not in the proper format, you can use one of
Visual Studio’s conversion methods to translate the data from one type to another, or you can parse
(or systematically extract) the information that you need so that input or other information can be
used more effectively.

In the following sections, you’ll learn how to use the ToString method to convert numbers to text,
how to use the Parse method to convert text to a numeric value, and how to use the Convert class to
convert one specific data type to another. Finally, you’ll review a comprehensive list of data type con-
version functions that has existed in the Visual Basic language for some time. These tools supplement
the Convert class, and you will see them in lots of Visual Basic code.

316 part III Visual Basic programming techniques

Rather than provide extensive tutorial programs in this section, I have provided the information as
a reference with detailed examples so that you can return to it as you need to.

the ToString method
As a feature of Visual Studio’s object-oriented design, most objects that represent data in some way
in a program have a special ToString method that can be used to create a string representation of the
data contained within object. This method is therefore one of the simplest methods to convert num-
bers or other information to text in a Visual Basic program.

The textual information returned by the ToString method depends on the object. For example, if
you have a single-precision variable in a program that contains a numeric value with decimal point,
the default use of ToString will return the complete number. The following sample code shows how
this might work with a variable of type Single named costOfFood:

Dim costOfFood As Single
Dim outputString As String
costOfFood = 49.95
outputString = costOfFood.ToString

After these lines of code are executed by the Visual Basic compiler, the String variable outputString
will contain the string value “49.95”. Such an operation would be useful if a number in a program
needed to be put into string format for output, storage in a file, or special formatting operations.

The method works for more sophisticated objects as well, although the textual informa-
tion returned by ToString is sometimes related to the class name of the object rather than the
data held within the object. For example, the following Visual Basic code places the string value
“Windows.UI.Xaml.Controls.TextBox” in the outputString variable and in a text box named MyTextBox
on the main page:

Dim outputString As String
outputString = MyTextBox.ToString
MyTextBox.Text = outputString

This is because the namespace path and class name for the MyTextBox object in the program is
Windows.UI.Xaml.Controls.TextBox. So, you can use the ToString method to convert variables and con-
stants to strings but also to extract interesting (and potentially useful) information from the objects in
your programs.

the Parse method
The Parse method allows you to convert a string in the proper format into the Date type or one of the
fundamental numeric data types. It is very useful and has an object-oriented syntax. The only down
side to the Parse method is that it might not always work as expected—if the string specified does
not contain a number, the converted value is typically 0 (zero) or otherwise undefined.

You specify the fundamental data type along with the Parse method, and the valid data types are
Short, UShort, Integer, UInteger, Long, ULong, Single, Double, Decimal, Byte, SByte, and Boolean. Just be

 CHAPTER 11 Mastering data types, operators, and string processing 317

sure that the string you convert can actually be stored in the type you specify. For example, the follow-
ing Visual Basic code assigns the value 12345.6789 to a String variable named InputString and uses the
Double type and the Parse method to convert the value from a string to a double-precision number:

Dim inputString As String = "12345.6789"
Dim sampleNumber As Double
sampleNumber = Double.Parse(inputString)
MyTextBox.Text = sampleNumber

The code also displays the new number in a text box named MyTextBox on the page. Just keep in
mind that you can convert strings only to dates or numbers in this way.

If the conversion does not work, you will see an error message in Visual Studio. This will typically
appear as a runtime error, which can result from a string that contains text and not simply a numeric
value that is in string format. Or perhaps you are trying to convert a value that is simply too large to
fit into the variable that you have specified. Consider the following code:

Dim inputString As String = "forty"
Dim sampleNumber As Double
sampleNumber = Double.Parse(inputString)
MyTextBox.Text = sampleNumber

Although human beings can tell that the value of the inputString variable is 40 in this example, the
Visual Basic compiler cannot convert “forty” to a number as requested, and the following runtime
error results when you run the program and execute this code:

318 part III Visual Basic programming techniques

Notice, in particular, the message Input String Was Not In A Correct Format in the error message
dialog box.

Likewise, the following sample code will also produce a runtime error, but for a slightly different
reason:

Dim inputString As String = "12345.6789"
Dim sampleNumber As Integer
sampleNumber = Integer.Parse(inputString)
MyTextBox.Text = sampleNumber

The problem is that the large number in the InputString variable contains decimal places and is
simply too different from an Integer type to be usefully converted without some closer attention. This
is sometimes called an invalid conversion. Rather than truncate the number or make some other ad-
hoc adjustment to the original value, the compiler generates a runtime error message and asks you
to be more specific about the type conversion. The appropriate fix is to use a data type that is large
enough and precise enough to hold the original information. Rather than use Short or Integer, it is saf-
est to use Double or Decimal for numbers that might be large or precise.

However, despite these usage caveats, the Parse method is a helpful tool for string conversion and
is commonly used when information is received through the TextBox control and prepared for use in a
program. A handy companion to the Parse method is the TryParse method, which converts the string
representation of a number to its double-precision floating-point number equivalent. The method
returns a Boolean success code after the attempted conversion to help you determine whether the
parse succeeded or failed.

the Convert class
Similar to the preceding, the Convert class is a part of the .NET Framework and is specifically designed
to be used in Visual Studio programs for the purpose of type conversion. The Convert class contains
dozens of methods that convert data from one type to another, complementing and extending what
you can do with the ToString and Parse methods. (You’ll see that virtually all of the fundamental data
types are supported, and in many different size formats.) The complete list of methods is readily avail-
able via Visual Studio’s IntelliSense feature when you type Convert in the Code Editor.

You will have few problems understanding how to use the Convert class methods when you see the
basic format. The only thing you need to keep in mind is that it is sometimes advantageous to specify
a specific size for the given data type when you use the Convert methods. For example, you can use
either the ToInt16, ToInt32, or ToInt64 method when you convert a number to the Integer format.
These methods allocate storage in memory for 16-bit, 32-bit, and 64-bit Integer variables, respec-
tively. (These sizes correspond to the Short, Integer, and Long data types in Visual Basic.) Depending
on the potential size of your variables and the platform that you are using, you might want to be very
detailed in your syntax.

 CHAPTER 11 Mastering data types, operators, and string processing 319

The following sample code demonstrates how you can use the ToDecimal method in the Convert
class. The code begins by placing the integer value 55333 into the sampleNumber variable. The
sampleNumber value is converted to a decimal value in advance of a multiplication operation, and
then the resulting newDecimalNumber variable is displayed on the page in the MyTextBox object.
(The value displayed in the text box is 65846.27.)

Dim sampleNumber As Integer = 55333
Dim newDecimalNumber As Decimal
newDecimalNumber = Convert.ToDecimal(sampleNumber) * 1.19
MyTextBox.Text = newDecimalNumber.ToString

Older type conversion functions and their uses
Although the Convert class in the .NET Framework will be suitable for most type conversion scenarios,
Visual Basic programmers should also be aware of older type conversion functions that exist in the
Visual Basic language and still appear in a good amount of production code in the marketplace. These
functions convert the information in an existing variable, constant, or literal value to a new data type.
You can recognize the functions in code by looking for the C prefix that begins each function name.
Table 11-5 lists the functions and what data type they produce.

TABLE 11-5 Visual Basic type conversion functions

Visual Basic function Data type produced

CBool Boolean

CByte Byte

CChar Char

CDate Date

CDbl Double

CDec Decimal

CInt Integer

CLng Long

CObj Object

CSByte SByte

CShort Short

CSng Single

CStr String

CUInt UInteger

CULng ULong

CUShort UShort

320 part III Visual Basic programming techniques

For example, the following sample code declares an Integer variable and a String variable and con-
verts the Integer variable to a String variable by using the CStr function:

Dim sampleNumber As Integer = 55333
Dim sampleString As String
sampleString = CStr(sampleNumber) 'sampleString = "55333"

Processing strings with the String class

As you learned in Chapter 10, the .NET Framework is a comprehensive, object-oriented class library
that allows you to streamline a number of development tasks, including building mathematical
formulas, rendering graphics, connecting to databases, and requesting system information. The .NET
Framework is installed as a core component of the Windows operating system, and Microsoft Visual
Studio programs rely on many of its features to load and operate.

In addition to important system-wide features, the .NET Framework also includes useful meth-
ods to help you manage string-processing tasks, such as combining strings, sorting strings, and
searching strings for useful patterns. In this section, you’ll experiment with the methods in the
System.String class to help expand your knowledge of the String data type and its many uses.

Common tasks
The most common task you’ve accomplished so far with strings in this book is concatenating them by
using the concatenation operator (&). For example, the following program statement concatenates
three literal string expressions and assigns the result “Bring on the circus!” to the string variable
slogan:

Dim slogan As String
slogan = "Bring" & " on the " & "circus!"

In addition to this familiar feature, you can also concatenate and manipulate strings by using
methods in the String class of the .NET Framework library. For example, the String.Concat method
allows equivalent string concatenation by using this syntax:

Dim slogan As String
slogan = String.Concat("Bring", " on the ", "circus!")

Visual Basic 2013 features two methods for string concatenation and many other string-processing
tasks: You can use operators and functions from earlier versions of Visual Basic (Mid, UCase, LCase,
and so on), or you can use newer methods from the .NET Framework (Substring, ToUpper, ToLower,
and so on). There’s no real penalty for using either string-processing technique, although the older
methods exist primarily for compatibility purposes. (By supporting both methods, Microsoft hopes
to welcome upgraders and their existing code base, allowing them to learn new features at their own
pace.) In the rest of this chapter, I’ll focus on the newer string-processing functions from the .NET
Framework String class. However, you can use either string-processing feature set or a combination of
both.

 CHAPTER 11 Mastering data types, operators, and string processing 321

Table 11-6 lists several methods and one property in the String class that appear in subsequent
exercises and their close equivalents in the Visual Basic programming language. The fourth column in
the table provides sample code using the String class.

TABLE 11-6 Elements of the String class and Visual Basic equivalents
String method
or property

Visual Basic
function Description String example

ToUpper UCase Changes letters in a string to
uppercase.

Dim name, newName As String
name = "Ace"
newName = name.ToUpper
'newName = "ACE"

ToLower LCase Changes letters in a string to
lowercase.

Dim name, newName As String
name = "Ace"
newName = name.ToLower
'newName = "ace"

Length Len Determines the number of
characters in a string.

Dim river As String
Dim size As Short
river = "Columbia"
size = river.Length
'size = 8

Contains N/A Determines whether the speci-
fied string occurs in the current
string.

Dim region As String
Dim chk As Boolean
region = "Brazil"
chk = region.Contains("Br")
'chk = True

Substring Mid, Left, Right Returns a fixed number of
characters in a string from a
given starting point. (Note: The
first element in a string has an
index of 0.) Also generates an
exception when a target set of
characters doesn’t exist.

Dim cols, middle As String
cols = "First Second Third"
middle = cols.SubString(6, 6)
'middle = "Second"

IndexOf InStr Finds the starting point of one
string within a larger string.

Dim name As String
Dim start As Short
name = "Abraham"
start = name.IndexOf("h")
'start = 4

Trim Trim, LTrim, RTrim Removes leading and trailing
spaces from a string.

Dim spacey, trimmed As String
spacey = " Hello "
trimmed = spacey.Trim
'trimmed = "Hello"

Remove N/A Removes characters from the
middle of a string.

Dim raw, clean As String
raw = "Hello333 there"
clean = raw.Remove(5, 3)
'clean = "Hello there"

Insert N/A Adds characters to the middle
of a string.

Dim old, new As String
old = "Hi Roberto"
new = old.Insert(3, "there")
'new = "Hi there Roberto"

322 part III Visual Basic programming techniques

String method
or property

Visual Basic
function Description String example

Compare StrComp Compares strings and can dis-
regard case differences.

Dim str1 As String = "Soccer"
Dim str2 As String = "SOCCER"
Dim match As Integer
match = String.Compare(str1,
_ str2, True)
'match = 0 [strings match]

CompareTo StrComp Compares a string to the cur-
rent string and checks for case
differences.

Dim str1 As String = "Soccer"
Dim str2 As String = "SOCCER"
Dim Match As Integer
Match = str1.CompareTo(str2)
'Match = -1 [strings do not
match]

Replace Replace Replaces all instances of a sub-
string in a string with another
string.

Dim old, new As String
old = "*se*ll"
new = old.Replace(_
 "*", "ba")
'new = "baseball"

StartsWith N/A Determines whether a string
starts with a specified string.

Dim str1 As String
Dim result As Boolean
str1 = "Hi Eva"
result = str1.StartsWith("Hi")
'result = True

EndsWith N/A Determines whether a string
ends with a specified string.

Dim str1 As String
Dim chk As Boolean
str1 = "Hi Eva"
chk = str1.EndsWith("Eva")
'chk = True

Split Split Splits a string into substrings
based on a specified separator
and puts the substring in an
array.

Dim allText As String = _
 "a*b*c*1*2*3"
Dim strArray() As String
strArray = allText.Split("*")
'strArray =
' {"a", "b", "c", "1", "2", "3"}

Sorting text
An extremely useful skill to develop when working with textual elements is the ability to sort a list of
strings. The basic concepts in sorting are simple. You draw up a list of items to sort and then compare
the items one by one until the list is sorted in ascending or descending alphabetical order.

In Visual Basic, you compare one item with another by using the same relational operators that
you use to compare numeric values. The tricky part (which sometimes provokes long-winded discus-
sions among computer scientists) is the specific sorting algorithm that you use to compare elements
in a list. We won’t get into the advantages and disadvantages of different sorting algorithms in this
chapter. (The bone of contention is usually speed, which makes a difference only when several thou-
sand items are sorted.) Instead, we’ll explore how the basic string comparisons are made in a sort.

 CHAPTER 11 Mastering data types, operators, and string processing 323

Along the way, you’ll learn the skills necessary to sort your own strings, text boxes, list boxes, and
databases.

Before Visual Basic can compare one character with another in a sort, it must convert each char-
acter into a number by using one of several translation tables, including the ASCII character set (also
called the ANSI character set). (The acronym ASCII stands for American Standard Code for Information
Interchange. The acronym ANSI stands for American National Standards Institute.) Each of the basic
symbols that you can display on your computer has a different ASCII code. These codes include the
basic set of typewriter characters (codes 32 through 127) and special control characters, such as tab,
line feed, and carriage return (codes 0 through 31). For example, the lowercase letter a corresponds
to the ASCII code 97, and the uppercase letter A corresponds to the ASCII code 65. As a result, Visual
Basic treats these two characters quite differently when sorting or performing other comparisons.

In the 1980s, IBM extended ASCII with codes 128 through 255, which represent accented, Greek,
and graphic characters, as well as miscellaneous symbols. ASCII and these additional characters and
symbols are typically known as the IBM extended character set.

The ASCII character set is still the most important numeric code for beginning programmers to
learn, but it isn’t the only character set. As the market for computers and application software has
become more global, a more comprehensive standard for character representation called Unicode
has emerged. Originally Unicode could display up to 65,536 symbols—plenty of space to represent
the traditional symbols in the ASCII character set plus many (written) international languages and
symbols.

A standards body maintains the Unicode character set and adds symbols to it periodically. In fact,
Visual Studio 2012 added support for UTF 16 encoding with surrogates, an enhanced Unicode stan-
dard that allows for the representation (potentially) of over one million distinct characters. So, after
you learn to use ASCII characters and strings, you can transfer what you know to the global world of
Unicode and a vast array of languages and characters.

Working with aSCII codes
To determine the ASCII code of a particular letter, you can use the Visual Basic Asc function. For
example, the following program statement assigns the number 122 (the ASCII code for the lowercase
letter z) to the ascCode integer variable:

Dim ascCode As Integer
ascCode = Asc("z")

Conversely, you can convert an ASCII code to a letter with the Chr function. For example, this pro-
gram statement assigns the letter z to the letter character variable:

Dim letter As Char
letter = Chr(122)

324 part III Visual Basic programming techniques

The same result could also be achieved if you used the ascCode variable just declared, as shown
here:

letter = Chr(ascCode)

How can you compare one text string or ASCII code with another? You simply use one of the six
relational operators Visual Basic supplies for working with textual and numeric elements. These rela-
tional operators are shown in Table 11-7.

TABLE 11-7 Visual Basic relational operators

Operator Meaning

<> Not equal to

= Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

A character is greater than another character if its ASCII code is higher. For example, the ASCII
value of the letter B is greater than the ASCII value of the letter A, so the expression:

"A" < "B"

is true, and the expression:

"A" > "B"

is false.

When comparing two strings that each contain more than one character, Visual Basic begins by
comparing the first character in the first string with the first character in the second string and then
proceeds character by character through the strings until it finds a difference. For example, the strings
Mike and Michael are the same up to the third characters (k and c). Because the ASCII value of k is
greater than that of c, the expression:

"Mike" > "Michael"

is true.

If no differences are found between the strings, they are equal. If two strings are equal through
several characters but one of the strings continues and the other one ends, the longer string is greater
than the shorter string. For example, the expression:

"AAAAA" > "AAA"

is true.

 CHAPTER 11 Mastering data types, operators, and string processing 325

After you’ve experimented with the Asc function a little, you can move to the AscW and ChrW
methods supplied by the String class of the .NET Framework. These alternatives are useful because all
string values in Visual Studio .NET are based on Unicode, and these methods fully support Unicode
values. The AscW method returns an Integer value representing the character code corresponding to
a character. The ChrW method returns the character associated with the specified character code.

Sorting strings in a text box
The following exercise demonstrates how you can use relational operators, concatenation, and several
string methods to sort lines of text in a Windows Forms app named Sort Text. The program also
shows you how to open and close files using the StreamReader and StreamWriter classes in the .NET
Framework. The Windows desktop application offers an Open command that opens an existing text
file and a Close command that closes the file. There’s also a Sort Text command on the File menu that
you can use to sort the text currently displayed in the text box.

The StreamReader and StreamWriter classes are easy-to-use resources for working with text files
in an application. Although this example demonstrates their use in a Windows Forms application, you
can also use them in a Windows Store app. The StreamReader class is designed to facilitate reading
lines of information from a standard text file. The StreamWriter class is a companion resource that
allows you to write lines of text to a text file.

How will the Sort Text program manage its sorting activities? First, because the entire contents
of a text box are stored in a single text string, the program must break the long text box string into
smaller substrings. These substrings can then be sorted by using the ShellSort Sub procedure, a sort-
ing routine based on an algorithm created by Donald Shell in 1959. To simplify these tasks, I created
a code module for the ShellSort Sub procedure so that I can call it from any event handler in the
project. Although you will learn to use the powerful Array.Sort method in Chapter 14, “Using arrays,
collections, and generics to manage data,” the ShellSort procedure is a more flexible and customizable
tool. Building the routine from scratch also gives you a little more experience with processing textual
values—an important learning goal of this chapter.

Another interesting aspect of this program is the routine that processes the lines in the Windows
Forms text box object. I wanted the program to be able to sort a text box of any size. To accomplish
this, I created the code that follows. The code uses the Replace, EndsWith, and Substring methods
of the String class. The Replace method is used to replace the different newline characters (carriage
return, line feed, or carriage return and line feed) with just the carriage return character. The EndsWith
method checks for a carriage return at the very end of the text.

326 part III Visual Basic programming techniques

The Substring method is used to remove the last carriage return if it exists:

Dim sortArray() As String
Dim textString As String
Dim counter As Integer

textString = NoteTextBox.Text
'replace different new line characters with one version
textString = textString.Replace(vbCrLf, vbCr)
textString = textString.Replace(vbLf, vbCr)
'remove last carriage return if it exists
If textString.EndsWith(vbCr) Then
 textString = textString.Substring(0, textString.Length - 1)
End If

'split each line into an array
sortArray = textString.Split(vbCr)

This code also uses the very handy Split method of the String class. The Split method breaks a
string down into substrings and puts each substring into an array. The breaks are based on a sepa-
rator string that you specify (in this case, a carriage return). The resulting array of strings then gets
passed to the ShellSort Sub procedure for sorting, and ShellSort returns the string array in alphabetical
order. After the string array is sorted, it gets copied back to the text box using a For loop.

run the Sort text program

1. Open the Sort Text project located in the My Documents\Visual Basic 2013 SBS\Chapter 11\
Sort Text folder.

Sort Text is a Windows Forms app that I designed for the Windows Desktop.

2. Click the Start Debugging button to run the program.

3. Type the following text, or some text of your own, in the text box:

Zebra

Gorilla

Moon

Banana

Apple

Turtle

 CHAPTER 11 Mastering data types, operators, and string processing 327

4. Click the Sort Text command on the File menu.

The text you typed is sorted and redisplayed in the text box as follows:

5. Click the Open command on the File menu, and then open the Abc.txt file in the My
Documents\Visual Basic 2013 SBS\Chapter 11 folder, as shown here:

The Abc.txt file contains 36 lines of text. Each line begins with either a letter or a number from
1 through 10.

328 part III Visual Basic programming techniques

6. Click the Sort Text command on the File menu to sort the contents of the Abc.txt file.

The Sort Text program sorts the file in ascending order and displays the sorted list of lines in
the text box, as shown here:

7. Scroll through the file to see the results of the alphabetical sort.

Notice that although the alphabetical portion of the sort ran perfectly, the sort produced a
strange result for one of the numeric entries—the line beginning with the number 10 appears
second in the list rather than tenth. What’s happening here is that Visual Basic read the 1
and the 0 in the number 10 as two independent characters, not as a number. Because we’re
comparing the ASCII codes of these strings from left to right, the program produces a purely
alphabetical sort. If you want to sort only numbers with this program, you need to prohibit
textual input, modify the code so that the numeric input is stored in numeric variables, and
then compare the numeric variables instead of strings.

examining the Sort text program code
Let’s take a closer look at the code for this program.

examine the Sort text program

1. On the File menu of the Sort Text program, click the Exit command to stop the program.

2. Open the Code Editor for Form1, and then display the code for the
SortTextToolStripMenuItem_Click event handler.

We’ve already discussed the first part of this event handler, which splits each line into an
array. The remainder of the event handler calls a procedure to sort the array and displays the
reordered list in the text box.

 CHAPTER 11 Mastering data types, operators, and string processing 329

The entire SortTextToolStripMenuItem_Click event handler looks like this:

Dim sortArray() As String
Dim textString As String
Dim counter As Integer

textString = NoteTextBox.Text
'replace different new line characters with one version
textString = textString.Replace(vbCrLf, vbCr)
textString = textString.Replace(vbLf, vbCr)
'remove last carriage return if it exists
If textString.EndsWith(vbCr) Then
 textString = textString.Substring(0, textString.Length - 1)
End If

'split each line into an array
sortArray = textString.Split(vbCr)

'sort array
ShellSort(sortArray, sortArray.Length)

'then display sorted array in text box
textString = ""
For counter = 0 To sortArray.Length - 1
 textString = textString & sortArray(counter) & vbCrLf
Next counter
NoteTextBox.Text = textString
NoteTextBox.Select(0, 0) 'remove text selection

The Split method creates an array that has the same number of elements as the text box has
lines of text. After the array is full of text, I call the ShellSort procedure located in the Module1.
vb module, which I discussed earlier in this chapter. After the array is sorted, I use a For loop to
reconstruct the lines and copy them into the text box.

3. Display the code for the Module1.vb module in the Code Editor.

This module defines the content of the ShellSort procedure. The ShellSort procedure uses an
If statement and the <= relational operator to compare array elements and swap any that are
out of order. The procedure looks like this:

Sub ShellSort(ByVal sort() As String, ByVal numOfElements As Integer)
 Dim temp As String
 Dim i, j, span As Integer
 'The ShellSort procedure sorts the elements of sort()
 'array in descending order and returns it to the calling
 'procedure.

 span = numOfElements \ 2
 Do While span > 0
 For i = span To numOfElements - 1
 For j = (i - span) To 0 Step -span
 If sort(j) <= sort(j + span) Then Exit For
 'swap array elements that are out of order
 temp = sort(j)
 sort(j) = sort(j + span)

330 part III Visual Basic programming techniques

 sort(j + span) = temp
 Next j
 Next i
 span = span \ 2
 Loop
End Sub

The method of the sort is to continually divide the main list of elements into sublists that
are smaller by half. The sort then compares the tops and the bottoms of the sublists to
see whether the elements are out of order. If the top and bottom are out of order, they’re
exchanged. The result is an array named sort() that’s sorted alphabetically in ascending order.
To change the direction of the sort, simply reverse the relational operator (change <= to >=).

Note that I’ve named the For…Next loop counter variables i and j here. Although it is usu-
ally clearer to specify longer variable names, it is common to use a single letter when you are
declaring variables that will be used in nested loops. (It makes the code a little more compact
and easier to read.) Since the 1960s, these loop counter variables have been named i and j, but
you can use whatever name you like.

The remaining event handlers in Form1 (OpenToolStripMenuItem_Click, CloseToolStripMenuItem_
Click, SaveAsToolStripMenuItem_Click, InsertDateToolStripMenuItem_Click, and
ExitToolStripMenuItem_Click) are all related to menu commands that I created; you can
examine them in greater detail using the Code Editor. In particular, the Open menu command
uses the My.Computer.FileSystem object along with the ReadAllText method to open a text
file and display its contents within a TextBox control. Here is an excerpt from the important
OpenToolStripMenuItem_Click event handler:

Dim allText As String = ""
OpenFileDialog1.Filter = "Text files (*.txt)|*.txt"
If OpenFileDialog1.ShowDialog() = DialogResult.OK Then 'display Open dialog box
 Try 'open file and trap any errors using handler
 allText = My.Computer.FileSystem.ReadallText(OpenFileDialog1.FileName)
 NoteLabel.Text = OpenFileDialog1.FileName 'update label
 NoteTextBox.Text = allText 'display file

The final three lines copy the entire contents of the file selected in the Open dialog box to the
AllText String variable, update the label on the form to display the name of the open file, and
then display the entire text file in the text box object.

Let’s move on to another variation of this program that manipulates the strings in a text box or a
file.

 CHAPTER 11 Mastering data types, operators, and string processing 331

Protecting text with basic encryption

Now that you’ve had some experience with ASCII codes, you can begin to write simple encryption
routines that shift the ASCII codes in your documents and scramble the text to hide it from intruding
eyes. This process, known as encryption, mathematically alters the characters in a file, making them
unreadable to the casual observer. Of course, to use encryption successfully, you also need to be able
to reverse the process—otherwise, you’ll simply be trashing your files rather than protecting them.
And you’ll want to create an encryption scheme that can’t be easily recognized, a complicated process
that’s only begun by the sample programs in this chapter.

The following exercises show you how to encrypt and decrypt text strings safely. You’ll run the
Encrypt Text program now to see a simple encryption scheme in action. As I note at the end of this
chapter, these exercises are just the tip of the iceberg for using encryption, cryptography, and file
security measures—and these issues have become major areas of interest for programmers in the
last decade or so. Still, even basic encryption is fun and a useful demonstration of text-processing
techniques.

encrypt text by changing aSCII codes

1. Close the Sort Text project, and then open the Windows Forms app named Encrypt Text,
located in the My Documents\Visual Basic 2013 SBS\Chapter 11\Encrypt Text folder.

2. Click the Start Debugging button to run the program.

3. Type the following text, or some text of your own, in the text box:

Here at last, my friend, you have the little book long since expected and promised, a
little book on vast matters, namely, “On my own ignorance and that of many others.”

Francesco Petrarca, c. 1368

The resulting application window and text look something like this:

332 part III Visual Basic programming techniques

4. On the File menu, click the Save Encrypted File As command, and then save the file in the My
Documents\Visual Basic 2013 SBS\Chapter 11 folder with the name Padua.txt.

As you save the text file, the program scrambles the ASCII code and displays the results in the
text box shown here:

If you open this file in Microsoft Word or another text editor, you’ll see the same result—the
characters in the file have been encrypted to prevent unauthorized reading.

5. To restore the file to its original form, choose the Open Encrypted File command on the File
menu, and then open the Padua.txt file in the My Documents\Visual Basic 2013 SBS\Chapter 11
folder.

The file appears again in its original form, as shown here:

6. On the File menu, click the Exit command to end the Windows desktop program.

 CHAPTER 11 Mastering data types, operators, and string processing 333

examine the encrypt text program code

1. Open the SaveAsItem_Click event handler in the Code Editor to see the program code that
produces the encryption that you observed when you ran the program.

Although the effect you saw might have looked mysterious, it was a very straightforward
encryption scheme. Using the Asc and Chr functions and a For loop, I simply incremented the
ASCII code for each character in the text box by one and then saved the updated string to the
specified text file.

The entire event handler is listed here—in particular, note the items in bold:

Dim encrypt As String = ""
Dim letter As Char
Dim counter, charsInFile As Short

SaveFileDialog1.Filter = "Text files (*.txt)|*.txt"
If SaveFileDialog1.ShowDialog() = DialogResult.OK Then
 Try
 'save text with encryption scheme (ASCII code + 1)
 charsInFile = NoteTextBox.Text.Length
 For counter = 0 To charsInFile - 1
 letter = NoteTextBox.Text.Substring(counter, 1)
 'determine ASCII code and add one to it
 encrypt = encrypt & Chr(Asc(letter) + 1)
 Next counter
 'write encrypted text to file
 My.Computer.FileSystem.WriteAllText(SaveFileDialog1.FileName, encrypt, False)
 NoteTextBox.Text = encrypt
 NoteTextBox.Select(0, 0) 'remove text selection
 CloseItem.Enabled = True
 Catch ex As Exception
 MsgBox("An error occurred." & vbCrLf & ex.Message)
 End Try
End If

Note especially the statement:

encrypt = encrypt & Chr(Asc(letter) + 1)

which determines the ASCII code of the current letter, adds 1 to it, converts the ASCII code
back to a letter, and then appends it to the encrypt string.

2. Now display the OpenItem_Click event handler in the Code Editor to see how the program
reverses the encryption.

This program code is nearly identical to that of the Save Encrypted File As command, but
rather than adding 1 to the ASCII code for each letter, it subtracts 1. Here’s the complete
OpenItem_Click event handler, with noteworthy statements in bold:

Dim allText As String
Dim i, charsInFile As Short
Dim letter As Char
Dim decrypt As String = ""

334 part III Visual Basic programming techniques

OpenFileDialog1.Filter = "Text files (*.txt)|*.txt"
If OpenFileDialog1.ShowDialog() = DialogResult.OK Then 'display Open dialog box
 If My.Computer.FileSystem.FileExists(OpenFileDialog1.FileName) Then
 Try 'open file and trap any errors using handler
 allText = My.Computer.FileSystem.ReadAllText(OpenFileDialog1.FileName)
 'now, decrypt string by subtracting one from ASCII code
 charsInFile = allText.Length 'get length of string
 For i = 0 To charsInFile - 1 'loop once for each char
 letter = allText.Substring(i, 1) 'get character
 decrypt = decrypt & Chr(Asc(letter) - 1) 'subtract 1
 Next i 'and build new string
 NoteTextBox.Text = decrypt 'then display converted string
 NoteLabel.Text = OpenFileDialog1.FileName
 NoteTextBox.Select(0, 0) 'remove text selection
 NoteTextBox.Enabled = True 'allow text cursor
 CloseItem.Enabled = True 'enable Close command
 OpenItem.Enabled = False 'disable Open command
 Catch ex As Exception
 MsgBox("An error occurred." & vbCrLf & ex.Message)
 End Try
 End If
End If

This type of simple encryption might be all you need to conceal the information in your text files.
However, files encrypted in this way can easily be decoded. By searching for possible equivalents
of common characters such as the space character, determining the ASCII shift required to restore
the common character, and running the conversion for the entire text file, a person experienced in
encryption could readily decipher the file’s content. Also, this sort of encryption doesn’t prevent a
malicious user from physically tampering with the file—for example, opening the file up and modify-
ing it. But if you just want to hide information quickly, this simple encryption scheme should do the
trick.

Using the Xor operator
The preceding encryption scheme is quite safe for text files because it shifts the ASCII character
code value up by just 1. However, you’ll want to be careful about shifting ASCII codes more than a
few characters if you store the result as text in a text file. Keep in mind that dramatic shifts in ASCII
codes (such as adding 500 to each character code) won’t produce actual ASCII characters that can be
decrypted later. For example, adding 500 to the ASCII code for the letter A (65) would give a result
of 565. This value couldn’t be translated into a character by the Chr function and would generate an
error. (However, you could use the ChrW method in this particular example, because there are plenty
of Unicode characters up in that range.)

One way around this problem is to convert the letters in your file to numbers when you encrypt
the file so that you can reverse the encryption no matter how large (or small) the numbers are. If you
followed this line of thought, you could then apply mathematical functions—multiplication, loga-
rithms, and so on—to the numbers as long as you knew how to reverse the results.

One tool for encrypting numeric values is already built into Visual Basic. This tool is the Xor operator,
which performs the “exclusive or” operation, a function carried out on the bits that make up the

 CHAPTER 11 Mastering data types, operators, and string processing 335

number itself. The Xor operator can be observed by using a simple MsgBox function in a Windows
Forms app. For example, the program statement:

MsgBox(Asc("A") Xor 50)

would display a numeric result of 115 in a message box in a Windows Forms app when the Visual
Basic compiler executes it. Likewise, the program statement:

MsgBox(115 Xor 50)

would display a result of 65 in a message box, the ASCII code for the letter A (our original value).
That is, the Xor operator produces a result that can be reversed—if the original Xor code is used again
on the result of the first operation. This interesting behavior of the Xor function is used in many popu-
lar encryption algorithms. It can make your secret files more difficult to decode.

Run the Xor Encryption program now to see how the Xor operator works in the note-taking utility
you’ve been building.

encrypt text with the Xor operator

1. Close the Encrypt Text project, and then open the Xor Encryption project in the My
Documents\Visual Basic 2013 SBS\Chapter 11\Xor Encryption folder.

Xor Encryption is a Windows Forms app designed for the Windows Desktop, utilizing much of
the code and the Toolbox controls from the previous examples.

2. Click the Start Debugging button to run the program.

3. Type the following text (or some of your own) in the encrypted text file:

Rothair’s Edict (Lombard Italy, c. 643)

296. On Stealing Grapes. He who takes more than three grapes from another man’s
vine shall pay six soldi as compensation. He who takes less than three shall bear no
guilt.

4. On the File menu, click the Save Encrypted File As command, and then save the file in the My
Documents\Visual Basic 2013 SBS\Chapter 11 folder with the name Oldlaws.txt.

The program prompts you for a secret encryption code (a number) that will be used to
encrypt the file and decrypt it later. (Take note—you’ll need to remember this code to decode
the file.)

336 part III Visual Basic programming techniques

5. Type 500, or another numeric code, and then press Enter.

Visual Basic encrypts the text by using the Xor operator and then stores it on disk as a series of
numbers. You won’t see any change on your screen, but rest assured that the program created
an encrypted file on disk. (You can verify this with a word processor or a text editor.)

6. Click the Close command on the program’s File menu to clear the text in the text box.

Now you’ll restore the encrypted file.

7. On the File menu, click the Open Encrypted File command.

8. Open the My Documents\Visual Basic 2013 SBS\Chapter 11 folder, and then double-click the
Oldlaws.txt file.

9. Type 500 (or the encryption code that you specified, if different) in the Xor Encryption dialog
box when it appears, and then click OK.

The result is shown in the following illustration:

The program opens the file and restores the text by using the Xor operator and the encryption
code you specified.

10. On the File menu, click the Exit command to end the program.

examining the encryption program code
The Xor operator is used in both the SaveAsItem_Click and the OpenItem_Click event handlers. By
now, these generic menu processing routines will be fairly familiar to you. The SaveAsItem_Click event
handler consists of the following program statements (noteworthy lines in bold):

Dim letter As Char
Dim codeString As String
Dim i, charsInFile, code As Short
Dim streamToWrite As StreamWriter = Nothing

 CHAPTER 11 Mastering data types, operators, and string processing 337

SaveFileDialog1.Filter = "Text files (*.txt)|*.txt"
If SaveFileDialog1.ShowDialog() = DialogResult.OK Then
 Try
 codeString = InputBox("Enter Encryption Code")
 If codeString = "" Then Exit Sub 'if cancel clicked
 'save text with encryption scheme
 code = CShort(codeString)
 charsInFile = NoteTextBox.Text.Length
 streamToWrite = My.Computer.FileSystem.OpenTextFileWriter(_
 SaveFileDialog1.FileName, False)
 For i = 0 To charsInFile - 1
 letter = NoteTextBox.Text.Substring(i, 1)
 'convert to number w/ Asc, then use Xor to encrypt
 streamToWrite.Write(Asc(letter) Xor code) 'and save in file
 'separate numbers with a space
 streamToWrite.Write(" ")
 Next
 CloseItem.Enabled = True
 Catch ex As Exception
 MsgBox("An error occurred." & vbCrLf & ex.Message)
 Finally
 If streamToWrite IsNot Nothing Then
 streamToWrite.Close()
 End If
 End Try
End If

In the Write method, the Xor operator is used to convert each letter in the text box to a numeric
code, which is then saved to disk one number at time. The numbers are separated with spaces.

The final result of this encryption is no longer textual, but numeric—suitable to bewilder all but
the nosiest snoopers. For example, the following screen shot shows the encrypted file produced by
the preceding encryption routine, displayed in Notepad. (I’ve enabled Word Wrap so that you can see
all the code.)

338 part III Visual Basic programming techniques

The OpenItem_Click event handler contains the following program statements. (Again, pay particu-
lar attention to the lines in bold.)

Dim allText As String
Dim i As Short
Dim ch As Char
Dim codeString As String
Dim code, number As Short
Dim numbers() As String
Dim decrypt As String = ""

OpenFileDialog1.Filter = "Text files (*.txt)|*.txt"
If OpenFileDialog1.ShowDialog() = DialogResult.OK Then 'display Open dialog box
 Try 'open file and trap any errors using handler
 codeString = InputBox("Enter Encryption Code")
 If codeString = "" Then Exit Sub 'if cancel clicked
 code = CShort(codeString)
 'read encrypted numbers
 allText = My.Computer.FileSystem.ReadAllText(OpenFileDialog1.FileName)
 allText = allText.Trim
 'split numbers in to an array based on space
 numbers = allText.Split(" ")
 'loop through array
 For i = 0 To numbers.Length - 1
 number = CShort(numbers(i)) 'convert string to number
 ch = Chr(number Xor code) 'convert with Xor
 decrypt = decrypt & ch 'and build string
 Next
 NoteTextBox.Text = decrypt 'then display converted string
 NoteLabel.Text = OpenFileDialog1.FileName
 NoteTextBox.Select(0, 0) 'remove text selection
 NoteTextBox.Enabled = True 'allow text cursor
 CloseItem.Enabled = True 'enable Close command
 OpenItem.Enabled = False 'disable Open command
 Catch ex As Exception
 MsgBox("An error occurred." & vbCrLf & ex.Message)
 End Try
End If

When the user clicks the Open Encrypted File command, this event handler opens the encrypted
file, prompts the user for an encryption code, and displays the translated file in the text box object.
The ReadAllText method reads the encrypted file. The Split method splits the numbers as strings into
an array and uses the space as a separator. The For loop reads each numeric string in the array, con-
verts the string to a number, and stores it in the number short integer variable. The number variable
is then combined with the code variable by using the Xor operator, and the result is converted to a
character by using the Chr function. These characters (stored in the ch variable of type Char) are then
concatenated with the decrypt string variable, which eventually contains the entire decrypted text file,
as shown here:

ch = Chr(number Xor code) 'convert with Xor
decrypt = decrypt & ch 'and build string

 CHAPTER 11 Mastering data types, operators, and string processing 339

Encryption techniques like this are useful, and they can also be very instructional. Because encryp-
tion relies so much on string-processing techniques, it’s a good way to practice a fundamental and
important Visual Basic programming skill. As you become more experienced, you can also use the
encryption services provided by the .NET Framework to add much more sophisticated security
and cryptography services to your programs. For an introduction to these topics, search MSDN for
“Cryptographic Tasks” and objects in the System.Security.Cryptography namespace.

Summary

In this chapter, you learned about the full range of data types provided by Visual Studio and how to
declare and use variables and constants in your programs. You learned how to combine arithmetic
operators with variables and numeric values to create formulas and how to convert data from one
type to another using the Parse and ToString methods, and the Convert class. Finally, you explored the
world of string processing and encryption using methods in the .NET Framework.

In the next chapter, you continue working with Visual Basic language elements, focusing on loops
and decision structures that are useful in both Windows Store apps and Windows Forms apps.

[G11xx18]

 341

C H A P T E R 1 2

Creative decision structures
and loops

After completing this chapter, you will be able to

■■ Use an If…Then statement to branch to a set of program statements based on a varying
condition.

■■ Use the Windows Forms MaskedTextBox control to gather input in a specific format.

■■ Master Select Case statement syntax to manage ListBox control selections in a Windows Store
app.

■■ Master For…Next loop syntax and learn advanced looping features.

■■ Build a multiline text box for output using string concatenation and formatting techniques.

■■ Master Do loops and execute code until a specific condition is met.

In the past few chapters, you used several features of Microsoft Visual Basic 2013 to process user
input. You used menus, command bars, dialog boxes, and other Toolbox controls to display choices

for the user, and you processed input by using property settings, variables, operators, formulas, and
the Microsoft .NET Framework.

In this chapter, you’ll learn more about branching conditionally to a specific area in your program
based on input you receive from the user. You’ll learn how to evaluate the contents of variables and
properties by using conditional expressions, and then you’ll execute one or more program statements
based on the results. You’ll also use a For…Next loop to execute statements a set number of times,
and you’ll use a Do loop to execute statements until a conditional expression is met. In short, you’ll
review and expand your knowledge of Visual Basic decision structures and loops, which collectively
control how your program executes, or flows, internally.

To make your practice sessions as useful as possible, this chapter contains sample code designed
for both Windows Store apps and Windows Forms apps. The rationale is eminently practical—while
the syntax of basic decision structures and loops has not changed fundamentally in the last few
releases of Visual Basic, the way that developers use these tools has changed a great deal. It is
therefore good to see how they are used in the context of both Windows Store and Windows Forms
platforms.

342 part III Visual Basic programming techniques

Event-driven programming

The programs you’ve written so far in this book have displayed Toolbox controls, menus, command
bars, and dialog boxes on the screen, and with these programs, users could manipulate the screen
elements in whatever order they saw fit. The programs put the user in charge, waited patiently for
a response, and then processed the input predictably. In programming circles, this methodology is
known as event-driven programming. You build a program by creating a group of “intelligent” objects
that know how to respond to input, and then the program processes the input by using event han-
dlers associated with the objects.

Where does this input come from? Fundamentally, of course, most input comes from the user of
your program, who is typing in text boxes, clicking the mouse, using a touch input gesture, and so on.
However, program input can also come from the computer system itself. For example, your program
might be notified when an email arrives or when a specified period of time has elapsed on the system
clock. In these situations, the computer, not the user, triggers the important events. But regardless of
how an event is triggered, Visual Basic reacts by calling the event handler associated with the object
that recognized the event and executes the program code in the event handler. So far, you’ve dealt
primarily with the Click, CheckedChanged, and SelectedIndexChanged events. However, Visual Basic
objects also can respond to many other types of events.

The event-driven nature of Visual Basic means that most of the computing done in your programs
is accomplished by event handlers. These event-specific blocks of code process input, calculate new
values, display output, and handle other tasks.

In this chapter, you’ll learn how to use decision structures to compare variables, properties, and
values, and how to execute one or more statements based on the results. You’ll also use loops to
execute a group of statements over and over until a condition is met or while a specific condition is
true. Together, these powerful flow-control structures will help you build your event handlers so that
they can respond to almost any situation.

events supported by Visual Basic objects
Each object in Visual Basic has a predefined set of events to which it can respond. These
events are listed when you select an object name in the Class Name list box at the top of
the Code Editor and then click the drop-down arrow in the list box to the right of the Class
Name list box (see following illustration). Or you will see the same events in the Proper-
ties window. (Events are visually identified in Microsoft Visual Studio by a lightning bolt
icon.) You can write an event handler for any of these events, and if that event occurs in the
program, Visual Basic will execute the event handler that’s associated with it. For example,
a XAML TextBox control in a Windows Store app supports more than 33 events, including
DoubleTapped, Drop, KeyUp, and KeyDown. You probably won’t need to write code for more
than three or four of these events in your applications, but it’s nice to know that you have so
many choices when you create elements in your interface. The following screen shot shows a
partial listing of the events for a XAML TextBox control in the Code Editor:

 CHAPTER 12 Creative decision structures and loops 343

Using conditional expressions
One of the most useful tools for processing information in an event handler is a conditional expres-
sion. A conditional expression is a part of a complete program statement that asks a True-or-False
question about a property, a variable, or another piece of data in the program code. For example, the
conditional expression

Price < 100

evaluates to True if the Price variable contains a value that is less than 100, and it evaluates to False if
Price contains a value that is greater than or equal to 100.

You can use the following comparison operators shown in Table 12-1 within a conditional
expression.

TABLE 12-1 Visual Basic comparison operators

Comparison operator Meaning

= Equal to

< > Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Table 12-2 shows some conditional expressions and their results. You’ll work with conditional
expressions several times in this chapter.

344 part III Visual Basic programming techniques

TABLE 12-2 Using conditional expressions

Conditional expression Result

10 <> 20 True (10 is not equal to 20)

score < 20 True if Score is less than 20; otherwise False

score = Label1.Text True if the Text property of the Label1 object contains the same value as the
Score variable; otherwise False

NameTextBox.Text = “Bill” True if the word “Bill” is in the NameTextBox object; otherwise False

If…Then decision structures

When a conditional expression is used in a block of statements called a decision structure, it controls
whether other statements in your program are executed and in what order they’re executed. You can
use an If…Then decision structure to evaluate a condition in the program and take a course of action
based on the result. In its simplest form, an If…Then decision structure is written on a single line,
where condition is a conditional expression and statement is a valid Visual Basic program statement:

If condition Then statement

Notice that I’m using italic formatting to introduce elements in the Visual Basic language that you
replace with some meaningful value. This method of teaching statement syntax is also something
you’ll see in the Visual Studio product documentation from time to time.

For example, the following If…Then decision structure uses the conditional expression score >= 20
to determine whether the program should set the Text property of the MyTextBox object to “You
win!”

If score >= 20 Then MyTextBox.Text = "You win!"

If the Score variable contains a value that’s greater than or equal to 20, Visual Basic sets the Text
property; otherwise, it skips the assignment statement and executes the next line in the event handler.
This sort of comparison always results in a True or False value. A conditional expression never results
in a value of maybe.

testing several conditions in an If…Then decision structure
More sophisticated If…Then decision structures include several conditional expressions. These struc-
tures will be several lines long and contain the important keywords ElseIf, Else, and End If:

If condition1 Then
 statements executed if condition1 is True
ElseIf condition2 Then
 statements executed if condition2 is True
[Additional ElseIf conditions and statements can be placed here]
Else
 statements executed if none of the other conditions is True
End If

 CHAPTER 12 Creative decision structures and loops 345

In this structure, condition1 is evaluated first. If this conditional expression is True, the block of
statements below it is executed, one statement at a time, and then execution jumps down just past
the closing End If statement. (For this reason, only a subset of statements within an If…Then decision
structure are executed.) If the first condition isn’t True, the second conditional expression (condition2)
is evaluated. If the second condition is True, the second block of statements is executed, and then
execution jumps down just past the closing End If statement. (You can add additional ElseIf conditions
and statements if you have more conditions to evaluate.) If none of the conditional expressions is
True, the statements below the Else keyword are executed. As I’ve already noted, the whole structure
is closed by the End If keywords.

The following code shows how a multiple-line If…Then structure could be used to determine the
amount of tax due in a hypothetical progressive tax return. (The income and percentage numbers are
from the U.S. Internal Revenue Service 2012 Tax Rate Schedule for single filing status.)

Dim adjustedIncome, taxDue As Double
adjustedIncome = 50000
If adjustedIncome <= 8700 Then '10% tax bracket
 taxDue = adjustedIncome * 0.1
ElseIf adjustedIncome <= 35350 Then '15% tax bracket
 taxDue = 870 + ((adjustedIncome - 8700) * 0.15)
ElseIf adjustedIncome <= 85650 Then '25% tax bracket
 taxDue = 4867.5 + ((adjustedIncome - 35350) * 0.25)
ElseIf adjustedIncome <= 178650 Then '28% tax bracket
 taxDue = 17442.5 + ((adjustedIncome - 85650) * 0.28)
ElseIf adjustedIncome <= 388350 Then '33% tax bracket
 taxDue = 43482.5 + ((adjustedIncome - 178650) * 0.33)
Else '35% tax bracket
 taxDue = 112683.5 + ((adjustedIncome - 388350) * 0.35)
End If

Important The order of the conditional expressions in your If…Then and ElseIf statements
is critical. What happens if you reverse the order of the conditional expressions in the tax
computation example and list the rates in the structure from highest to lowest? Taxpayers
in the 10 percent, 15 percent, 25 percent, 28 percent, and 33 percent tax brackets are all
placed in the 35 percent tax bracket because they all have an income that’s less than or
equal to $388,350. (This occurs because Visual Basic stops at the first conditional expres-
sion that is True, even if others are also True.) All the conditional expressions in this example
test the same variable, so they need to be listed in ascending order to get the taxpayers to
be placed in the right groups. Moral: When you use more than one conditional expression,
consider the order carefully.

This useful decision structure tests the double-precision variable adjustedIncome at the first income
level and subsequent income levels until one of the conditional expressions evaluates to True, and
then determines the taxpayer’s income tax accordingly. With some simple modifications, it could
be used to compute the tax owed by any taxpayer in a progressive tax system, such as the one in
the United States. Provided that the tax rates are complete and up to date and that the value in the
adjustedIncome variable is correct, the program as written will give the correct tax owed for single

346 part III Visual Basic programming techniques

U.S. taxpayers for 2012. When the tax rates change, it’s a simple matter to update the conditional
expressions. With an additional decision structure to determine taxpayers’ filing status, the program
readily extends itself to include all U.S. taxpayers.

tip Expressions that can be evaluated as True or False are also known as
Boolean expressions, and the True or False result can be assigned to a Boolean variable or
property. You can assign Boolean values to certain object properties or Boolean variables
that have been created by using the Dim statement and the As Boolean clause.

In the next exercise, you’ll use an If…Then decision structure that recognizes users as they enter
a program—a simple way to get started with writing your own decision structures. You’ll also learn
how to use the MaskedTextBox control in the Windows Forms Toolbox to receive input from the user
in a specific format. The program is designed for the Windows Forms platform, because there is no
masked edit control in the default Toolbox for Windows Store apps. However, you can create similar
functionality using the XAML TextBox control.

Validate users by using If…Then

1. Start Visual Studio, and create a new Windows Forms application project named My User
Validation.

The new Windows desktop app is created, and a blank form opens in the Designer. As noted
earlier, this particular program will use terms and tax data from the United States.

2. Click the form, and then set the form’s Text property to User Validation.

3. Use the Label control in the Toolbox to create a label on your form, and use the Properties
window to set the Text property of the object to Enter Your Social Security Number.

4. Use the Button control to create a button on your form, and set the button’s Text property to
Sign In.

5. Click the MaskedTextBox control on the Common Controls tab in the Windows Forms Toolbox,
and then create a masked text box object on your form below the label.

The MaskedTextBox control is similar to the TextBox control that you have been using, but by
using MaskedTextBox, you can control the format of the information entered by the user into
your program. You control the format by setting the Mask property; you can use a predefined
format supplied by the control or choose your own format. You’ll use the MaskedTextBox
control in this program to require that users enter a Social Security number in the standard
nine-digit format used by the U.S. Social Security Administration.

6. With the MaskedTextBox1 object selected, click the Mask property in the Properties window,
and then click the ellipses button in the second column.

 CHAPTER 12 Creative decision structures and loops 347

The Input Mask dialog box opens, showing a list of your predefined formatting patterns, or
masks.

7. Click Social Security Number in the list.

The Input Mask dialog box looks like this:

Although you won’t use it now, take a moment to note the <Custom> option, which you can
use later to create your own input masks using numbers and placeholder characters such as a
hyphen (-).

8. Click OK to accept Social Security Number as your input mask.

Visual Studio displays your input mask in the MaskedTextBox1 object, as shown in the follow-
ing screen shot:

348 part III Visual Basic programming techniques

9. Double-click the Sign In button.

The Button1_Click event handler appears in the Code Editor.

10. Type the following program statements in the event handler:

If MaskedTextBox1.Text = “219-09-9999” Then
 MsgBox(“Welcome to the system!”)
Else
 MsgBox(“I don’t recognize this number”)
End If

This simple If…Then decision structure checks the value of the MaskedTextBox1 object’s Text
property, and if it equals “219-09-9999,” the structure displays the message “Welcome to
the system!” If the number entered by the user is some other value, the structure displays
the message “I don’t recognize this number.” However, the beauty in this program is how the
MaskedTextBox1 object automatically filters input to ensure that it is in the correct format.

11. Click the Save All button on the Standard toolbar to save your changes. Specify the My
Documents\Visual Basic 2013 SBS\Chapter 12 folder as the location for your project.

12. Click the Start Debugging button on the Standard toolbar.

The program runs as a Windows desktop app. The form prompts the user to enter a Social
Security number (SSN) in the appropriate format and displays underlines and hyphens to offer
the user a hint of the format required.

13. Type abcd to test the input mask.

Visual Basic prevents the letters from being displayed because letters do not fit the requested
format. A nine-digit SSN is required.

14. Type 000123456 to test the input mask.

Visual Basic displays the number 000-12-3456 in the masked text box, ignoring the 10th digit
that you typed. Again, Visual Basic has forced the user’s input into the proper format. Your
form looks like this:

 CHAPTER 12 Creative decision structures and loops 349

15. Click the Sign In button.

Visual Basic displays the message “I don’t recognize this number” because the SSN does not
match the number the If…Then decision structure is looking for.

16. Click OK, delete the SSN from the masked text box, enter 219-09-9999 as the number, and
then click Sign In again.

This time the decision structure recognizes the number and displays a welcome message. You
see the following message box:

Your code has prevented an unauthorized user from using the program, and you’ve learned a
useful skill related to controlling input from the user.

17. Exit the program.

Using logical operators in conditional expressions
You can test more than one conditional expression in If…Then and ElseIf clauses if you want to include
more than one selection criterion in your decision structure. The extra conditions are linked by using
one or more of the logical operators listed in Table 12-3.

TABLE 12-3 Visual Basic logical operators

Logical operator Meaning

And If both conditional expressions are True, the result is True.

Or If either conditional expression is True, the result is True.

Not If the conditional expression is False, the result is True. If the conditional expression is
True, the result is False.

Xor If one and only one of the conditional expressions is True, the result is True. If both are
True or both are False, the result is False. (Xor stands for exclusive Or.)

350 part III Visual Basic programming techniques

Note When your program evaluates a complex expression that mixes different operator
types, it evaluates mathematical operators first, comparison operators second, and logical
operators third. In addition, the And, Or, and Xor operators are considered binary operators
because they take two operands, while the Not operator is unary because it takes a single
operand.

Table 12-4 lists some examples of the logical operators at work. In the expressions, it is assumed
that the Vehicle string variable contains the value “Bike” and that the integer variable Price contains
the value 200.

TABLE 12-4 Using logical expressions

Logical expression Result

vehicle = “Bike” And price < 300 True (both conditions are True)

vehicle = “Car” Or price < 500 True (one condition is True)

Not price < 100 True (condition is False)

vehicle = “Bike” Xor price < 300 False (both conditions are True)

In the following exercise, you’ll modify the My User Validation Windows desktop app to prompt
the user for a personal identification number (PIN) during the validation process. To do this, you will
add a second text box to get the PIN from the user and then modify the If…Then clause in the deci-
sion structure so that it uses the And operator to verify the PIN.

add password protection by using the And operator

1. Display the User Validation form, and then add a second Windows Forms Label control to the
user interface below the first masked text box.

2. Set the new label’s Text property to PIN.

3. Add a second MaskedTextBox control to the form below the first masked text box and the new
label.

4. Click the smart tag on the MaskedTextBox2 object to open the MaskedTextBox Tasks list, and
then click the Set Mask command to display the Input Mask dialog box.

5. Click the Numeric (5-digits) input mask, and then click OK.

Like many PINs found online, this PIN will be five digits long. Again, if the user types a pass-
word of a different length or format, it will be rejected.

6. Double-click the Sign In button to display the Button1_Click event handler in the Code Editor.

 CHAPTER 12 Creative decision structures and loops 351

7. Modify the event handler so that it contains the following code:

If MaskedTextBox1.Text = “219-09-9999” _
And MaskedTextBox2.Text = “54321” Then
 MsgBox(“Welcome to the system!”)
Else
 MsgBox(“I don’t recognize this number”)
End If

The statement now includes the And logical operator, which requires that the user’s PIN cor-
respond with his or her SSN before the user is admitted to the system. (In this case, the valid
PIN is 54321; in a real-world program, this value would be extracted along with the SSN from
a secure database.) I modified the earlier program by adding a line continuation character (_)
to the end of the first line and by adding the second line beginning with And.

8. Click the Start Debugging button on the Standard toolbar.

The Windows desktop app runs.

9. Type 219-09-9999 in the Social Security Number masked text box.

10. Type 54321 in the PIN masked text box.

11. Click the Sign In button.

The user is welcomed to the program, as shown in the following screen shot:

12. Click OK to close the message box.

13. Experiment with other values for the SSN and PIN.

Test the program carefully to be sure that the welcome message is not displayed when other
PINs or SSNs are entered.

352 part III Visual Basic programming techniques

14. Click the Close button on the form when you’re finished.

The program ends, and the development environment returns.

tip You can further customize this program by using the PasswordChar property in the
masked text box objects. The PasswordChar property can be used to display a placeholder
character, such as an asterisk (*), when the user types sensitive information. (You specify
the character by using the Properties window.) Using a password character gives users
additional secrecy as they enter their protected password—a standard feature of such
operations.

Short-circuiting by using AndAlso and OrElse
Visual Basic offers two more logical operators that you can use in your conditional statements:
AndAlso and OrElse. These operators work the same as And and Or, respectively, but offer an impor-
tant subtlety in the way they’re evaluated that is worth a few moments of thoughtful consideration.
They are somewhat advanced, so you might not have had much experience with them in earlier
programing contexts.

Consider an If statement that has two conditions that are connected by an AndAlso operator. For
the statements of the If structure to be executed, both conditions must evaluate to True. If the first
condition evaluates to False, Visual Basic skips to the next line or the Else statement immediately,
without testing the second condition. (Conversely, the standard And operator will test both conditions
no matter what.) The partial, or short-circuiting, evaluation of an If statement makes logical sense—
why should Visual Basic continue to evaluate the If statement if both conditions cannot be True?

The OrElse operator works in a similar fashion. Consider an If statement that has two conditions
that are connected by an OrElse operator. For the statements of the If structure to be executed, at
least one condition must evaluate to True. If the first condition evaluates to True, Visual Basic begins
to execute the statements in the If structure immediately, without testing the second condition. (But
conversely, the standard Or operator will always test both conditions no matter what.)

Here’s an example of how short-circuiting functions in Visual Basic when two conditions
are evaluated in an If statement using the AndAlso operator. A rather complex conditional test
(7 / humanAge <= 1) is used after the AndAlso operator to determine what some people call the “dog
age” of a person:

Dim humanAge As Integer
humanAge = 7
'One year for a dog is seven years for a human
If humanAge <> 0 AndAlso 7 / humanAge <= 1 Then
 MsgBox("You are at least one dog year old")
Else
 MsgBox("You are less than one dog year old")
End If

 CHAPTER 12 Creative decision structures and loops 353

As part of a larger program that determines the so-called dog age of a person by dividing his or
her current age by 7, this bare-bones routine tries to determine whether the value in the humanAge
integer variable is at least 7. (If you haven’t heard the concept of “dog age” before, bear with me—
following this logic, a 28-year-old person would be four dog years old. This has been suggested as
an interesting way of relating to dogs, because dogs have a lifespan of roughly one-seventh that of
humans.)

The code uses two If statement conditions and can be used in a variety of different contexts—I
used it in the Click event handler for a button object. The first condition checks to see whether a non-
zero number has been placed in the humanAge variable—I’ve assumed momentarily that the user
has enough sense to place a positive age into humanAge because a negative number would produce
incorrect results. The second condition tests whether the person is at least seven years old. If both
conditions evaluate to True, the message “You are at least one dog year old” is displayed in a message
box. If the person is less than seven, the message “You are less than one dog year old” is displayed.

Now imagine that I’ve changed the value of the humanAge variable from 7 to 0. What happens?
The first If statement condition is evaluated as False by the Visual Basic compiler, and that evaluation
prevents the second condition from being evaluated, thus halting, or short-circuiting, the If statement
and saving us from a nasty “divide by zero” error that could result if we divided 7 by 0 (the new value
of the humanAge variable). And recall that if you divide by zero in a Visual Basic program and don’t
catch the problem somehow, the result will be an error because division by zero isn’t permitted.

In summary, the AndAlso and OrElse operators in Visual Basic open up a few new possibilities for
Visual Basic programmers, including the potential to prevent run-time errors and other unexpected
results. It’s also possible to improve performance by placing conditions that are time-consuming to
calculate at the end of the condition statement because Visual Basic doesn’t perform these expensive
condition calculations unless it’s necessary. However, you need to think carefully about all the pos-
sible conditions that your If statements might encounter as variable states change during program
execution.

Mastering Select Case decision structures

You used Select Case code blocks earlier in this book when you wrote event handlers to process selec-
tions in a list box. Recall that a Select Case structure is similar to an If…Then…ElseIf structure, but it’s
more elegant and efficient when the branching depends on one key variable, or test case. Select Case
structures also make your program code more readable.

The basic syntax for a Select Case structure looks like this:

Select Case variable
 Case value1
 statements executed if value1 matches variable
 Case value2
 statements executed if value2 matches variable
 Case value3
 statements executed if value3 matches variable

354 part III Visual Basic programming techniques

 ...
 Case Else
 statements executed if no match is found
End Select

Select Case code blocks begin with the Select Case keyword and end with the End Select keyword.
You replace variable with the variable, property, or other expression that is to be the key value, or test
case, for the structure. You replace value1, value2, and value3 with numbers, strings, or other values
related to the test case being considered. If one of the values matches the variable, the statements
below the Case clause are executed, and then Visual Basic jumps to the line after the End Select state-
ment and picks up execution from there. You can include any number of Case clauses in a Select Case
structure, and you can include more than one value in a Case clause. If you list multiple values after a
case, separate them with commas.

The following example shows how a Select Case structure could be used to print an appropri-
ate message about a person’s age and cultural milestones in a program. Because the age vari-
able contains a value of 18, the string “You can vote now!” is assigned to the Text property of the
AdviceTextBox object. (You’ll notice that the milestones have a U.S. slant to them; please customize
freely to match your cultural setting.)

Dim age As Integer
age = 18
Select Case age
 Case 16
 AdviceTextBox.Text = "You can drive now!"
 Case 18
 AdviceTextBox.Text = "You can vote now!"
 Case 21
 AdviceTextBox.Text = "You can drink wine with your meals."
 Case 65
 AdviceTextBox.Text = "Time to retire and have fun!"
End Select

A Select Case structure also supports a Case Else clause that you can use to display a message if
none of the preceding cases matches the age variable. Here’s how Case Else would work in the follow-
ing example—note that I’ve changed the value of age to 25 to trigger the Case Else clause:

Dim age As Integer
age = 25
Select Case age
 Case 16
 AdviceTextBox.Text = "You can drive now!"
 Case 18
 AdviceTextBox.Text = "You can vote now!"
 Case 21
 AdviceTextBox.Text = "You can drink wine with your meals."
 Case 65
 AdviceTextBox.Text = "Time to retire and have fun!"
 Case Else
 AdviceTextBox.Text = "You're a great age! Enjoy it!"
End Select

 CHAPTER 12 Creative decision structures and loops 355

Using comparison operators with a Select Case structure
More sophisticated Select Case decision structures use comparison operators to include a range of
test values. The Visual Basic comparison operators that can be used are =, <>, >, <, >=, and <=. To
use the comparison operators, you need to include the Is keyword or the To keyword in the expres-
sion to identify the comparison you’re making. The Is keyword instructs the compiler to compare the
test variable to the expression listed after the Is keyword. The To keyword identifies a range of values.
The following structure uses Is, To, and several comparison operators to test the age variable and to
display one of five messages:

Select Case age
 Case Is < 13
 AdviceTextBox.Text = "Enjoy your youth!"
 Case 13 To 19
 AdviceTextBox.Text = "Enjoy your teens!"
 Case 21
 AdviceTextBox.Text = "You can drink wine with your meals."
 Case Is >= 100
 AdviceTextBox.Text = "Looking good!"
 Case Else
 AdviceTextBox.Text = "That's a nice age to be."
End Select

If the value of the age variable is less than 13, the message “Enjoy your youth!” is displayed. For the
ages 13 through 19, the message “Enjoy your teens!” is displayed, and so on.

Is it clear how Select Case is an alternative to If…Then…Else in VB code? Select Case code blocks
are typically easier to decipher, for one. But also, Select Case code blocks are more efficient than
If…Then…Else structures when you’re making three or more branching decisions based on one vari-
able or property. However, when you’re making two or fewer comparisons or when you’re working
with several different values, you’ll probably want to use an If…Then decision structure.

In the following exercise, you’ll practice using a Select Case structure to process input received
from a list box control in a Windows Store app. You’ll use the ListBox.SelectedIndex property to collect
the input, and you’ll use the SelectionChanged event to display a greeting in one of four languages.

Use a Select Case structure to process input from a list box

1. On the File menu, click New Project.

The New Project dialog box opens.

2. Choose Visual Basic/Windows Store under Templates, and then verify that the Blank App
(XAML) template is selected.

3. Type My Select Case in the Name text box.

356 part III Visual Basic programming techniques

4. Click OK to open and configure the new project.

Visual Studio creates the new Windows Store project with the appropriate support files.

5. Right-click the MainPage.xaml file in Solution Explorer, and then select View Designer.

A blank page opens in the Designer.

6. Change the magnification percentage in the Designer’s Zoom box to 100%.

7. Click the XAML TextBlock control in the Toolbox, and then create a text label near the top of
the page to display a title for the program.

8. Type Greetings from around the World in the text block object, and set the point size to
28-point. Set the Name property of the object to PageTitle.

9. Use the TextBlock control to create a second text object below the first.

You’ll use this text block as a title for the list box.

10. Type Choose a Country in the text block object, and set the point size to 12-point. Set the
Name property of the object to ListBoxTitle.

11. Click the XAML ListBox control in the Toolbox, and then create a list box below the second
label. Set the Name property of the object to CountryListBox.

You’ll add XAML markup to this list box object in the next procedure, which is the easiest
mechanism for adding items to a list box.

12. Use the TextBlock control to draw a third text label below the list box.

13. Remove the text from the text block object, but set the point size to 12-point for the object.
Set the Name property of the object to Country.

The text block seems to disappear from the page, but it is still present. (You can see it listed in
the XAML portion of the Code Editor.) When the program runs and the user selects a country
name in the list box, that name will be copied into this text block object.

14. Use the TextBox control to create a rectangular output window below the third text block
object.

15. Remove the text from the text box object, and set the Name property of the object to
GreetingTextBox.

When you’ve finished setting properties, your page and IDE will look similar to this:

 CHAPTER 12 Creative decision structures and loops 357

Now you’ll enter the XAML markup to add items to the list box on the page. To accomplish this
task, you’ll edit the list box object’s XAML markup in the Code Editor.

Use XaML markup to define a ListBox

1. Click the Swap Panes button in the Designer (a button containing two arrows—one pointing
up and the other pointing down).

The Swap Panes button gives you more room to see the XAML markup in the Code Editor.

2. Locate the ListBox object in the XAML markup in the Code Editor. Move the insertion pointer
to the end of the line (use the scroll bar if necessary).

3. Change the markup at end of this line from “/>” to “>”. (That is, remove the “/” character.)

4. You are removing the “/” character there because your ListBox object will now be defined
by several lines of XAML markup. When you have subordinate elements for an object, the
concluding “/>” is placed at the end of the tag defining the object. Subordinate elements
are typically placed on their own lines and indented, but this is not a requirement. (For more
information about such syntax, see Chapter 7, “XAML markup step by step.”)

5. After the edit, move the insertion point to the end of the line and press Enter.

358 part III Visual Basic programming techniques

6. Type the following XAML markup to define the items in the list box:

<ListBoxItem Name=”List1”
 Content=”Australia”/>
<ListBoxItem Name=”List2”
 Content=”Germany”/>
<ListBoxItem Name=”List3”
 Content=”Italy”/>
<ListBoxItem Name=”List4”
 Content=”Mexico”/>
</ListBox>

New items are added to a list box by defining ListBoxItem properties for each item. Notice that
in this markup I have given each item its own name, which I have specified using sequentially
numbered names (List1, List2, List3, and List4). These names are arbitrary and designed here for
simplicity—you can use different names for the items if you want. In addition, I have specified
textual content for each item by using the Content property. This defines what appears in the list
box on the page. Finally, notice that the entire series of items is concluded by the tag </ListBox>.
This is necessary, as noted earlier, because the list box now contains subordinate elements.

Beyond these basic settings, you can also define FontFamly, FontSize, FontWeight, Foreground,
Height, Width, and other properties for list box items. The appearance of list boxes is entirely
customizable. Just be sure to give each list box item a unique Name property, so that it can be
referred to in Visual Basic program code.

When you complete your XAML input, the Visual Studio IDE will look like this:

 CHAPTER 12 Creative decision structures and loops 359

7. Click the Swap Panes button in the Designer again to move the XAML tab of the Code Editor
back to the bottom of the Designer.

Now you’ll enter the program code to manage the list box selections and other activities in
the program.

Use Visual Basic code to process list box items

1. In the XAML tab of the Code Editor, click the line of XAML markup that begins with statement
ListBox x:Name=”CountryListBox”.

A simple way to define an event handler for a list box is to select the list box in the Code
Editor and then click the Event Handler button (the lightning bolt) in the Properties window.
However, you need to be sure to select the list box object itself and not simply one of the
items in the list box.

When you click the list box, its properties are loaded into the Properties windows, and you’ll
see CountryListBox in the Name property.

The event that you want to capture while the program runs is the SelectionChanged event,
which fires whenever a list box item is selected by the user.

2. In the Properties window, click the Event Handler button near the Name text box.

The Event Handler button displays the events that the list box can respond to, including
SelectionChanged.

3. Double-click next to the SelectionChanged event in the Properties window.

Visual Studio inserts an event handler named CountryListBox_SelectionChanged in the
SelectionChanged text box and opens the MainPage.xaml.vb code-behind file in the Code
Editor.

4. Type the following Visual Basic statements in the Code Editor between the Private Sub and
End Sub statements:

Select Case CountryListBox.SelectedIndex
 Case 0
 Country.Text = “Australia”
 GreetingTextBox.Text = “How ya goin’ programmer?”
 Case 1
 Country.Text = “Germany”
 GreetingTextBox.Text = “Hallo, programmierer”
 Case 2
 Country.Text = “Italy”
 GreetingTextBox.Text = “Ciao, programmatore”
 Case 3
 Country.Text = “Mexico”
 GreetingTextBox.Text = “Hola, programador”
End Select

360 part III Visual Basic programming techniques

At last we see Select Case at work in the heart of this Windows Store app, which displays a list
of countries in a list box and uses a Select Case decision structure to process the user’s pick.
The property used for the test case is CountryListBox.SelectedIndex. The SelectedIndex prop-
erty always contains the number of the item selected in the list box; the item at the top is 0
(zero), the second item is 1, the next item is 2, and so on. (A value of -1 means that there has
been no selection in the list box, a situation that is not handled by this particular routine.) By
using SelectedIndex, the Select Case structure can quickly identify the user’s choice and display
the correct greeting on the page. The greeting is displayed in the GreetingTextBox object, and
the country name is placed in the text block named Country.

5. Click the Save All button on the Standard toolbar to save your changes. Specify the My
Documents\Visual Basic 2013 SBS\Chapter 12 folder as the location.

Now run the program to see how the Select Case statement works.

6. Click the Start Debugging button on the Standard toolbar to run the program.

7. Click each of the country names in the Choose A Country list box.

The program displays a greeting for each of the countries listed. The following screen shot
shows the greeting for Italy:

8. Close the program.

The Windows Store app stops, and the development environment returns.

9. Click Close Project on the File menu to unload the Windows Store app.

 CHAPTER 12 Creative decision structures and loops 361

You’ve finished working with If…Then and Select Case decision structures in this chapter. However,
you’ll have several additional opportunities to work with them in this book. They are essential
decision-making mechanisms in the Visual Basic language, and you’ll find that you use them in almost
every program that you write.

Mastering For…Next loops

With a For…Next loop, you can execute a specific group of program statements a set number of
times in an event handler or a code module. This approach can be useful if you’re performing several
related calculations, working with elements on the screen, or processing several pieces of user input.
A For…Next loop is really just a shorthand way of writing out a long list of program statements.
Because each group of statements in such a list does essentially the same thing, you can define just
one group of statements and request that it be executed as many times as you want.

The syntax for a For…Next loop looks like this:

For variable = start To end
 statements to be repeated
Next [variable]

In this syntax statement, For, To, and Next are required keywords, as is the equal to operator (=).
You replace variable with the name of a numeric variable that keeps track of the current loop count,
and you replace start and end with numeric values representing the starting and stopping points for
the loop. The variable after Next is optional, but if you include variable at the bottom of the loop, it
must match variable at the top of the loop. Also note that you must declare variable before it’s used
in the For…Next statement and that you don’t type in the brackets, which I include to indicate an
optional item. The line or lines between the For and Next statements are the instructions that are
repeated each time the loop is executed.

For example, the following For…Next loop displays the numbers “1234” in a text box object named
SampleTextBox on the page or form in a Visual Basic app:

Dim i As Integer
For i = 1 To 4
 SampleTextBox.Text = SampleTextBox.Text & i
Next i

Each time through the loop a digit is appended to the text box because the string concatenation
character (&) is used to combine the numbers. The counter variable employed in the loop is i, a single
letter that, by convention, stands for the first integer counter in a For…Next loop and is declared as an
Integer type. (You can also use a more verbose counter variable name if you like.)

Each time this particular loop is executed, the counter variable i is incremented by 1. The first time
through the loop, the variable contains a value of 1, the value of start; the last time through, it con-
tains a value of 4, the value of end. As you’ll see in the following examples, you can use this counter
variable to great advantage in your loops.

362 part III Visual Basic programming techniques

tip In loops that use counter variables, the usual practice is to use the Integer type for the
variable declaration, as I did previously. However, you will get similar performance in Visual
Basic 2013 if you declare the counter variable as type Long or Decimal.

Using a loop to fill a TextBox with string data
A counter variable is just like any other variable in a routine. It can be assigned to properties, used in
calculations, or displayed in a program. One of the practical uses for a counter variable is to display
output in a TextBox control in a Window Store or Windows desktop app.

Is there any trick to displaying more than one line of text in a text box? The answer is no—the
XAML TextBox control for a Windows Store app automatically displays multiple lines of text. However,
in a Windows Forms app, you do need to set the TextBox control’s Multiline property to True. (You can
also choose to set the ScrollBars property to Vertical if the Windows Forms TextBox will receive more
lines than it can display.)

Consider the following sample For…Next loop that displays ten lines of text in a TextBox control on
the page (or form) that is named SampleTextBox.

Dim i As Integer
For i = 1 To 10
 SampleTextBox.Text = SampleTextBox.Text & "Line " & i & vbCrLf
Next i

The code initializes a counter variable i, and uses a For…Next loop to update the contents of the
text box object ten times. Each time through, a new line is added to the text box. The added content
consists of the word “Line” and the current line number (which is stored in the counter variable). The
vbCrLf constant is also used to add a carriage return and line feed to each line. Without this, all the
information would be written on the same line, as it was in the previous example.

This code will work to update a TextBox control in either a Windows Store app or a Windows Forms
app. For example, you could place it in an event handler associated with the Click event handler for a
button object.

After the loop is executed, the text box object looks like this on the page:

 CHAPTER 12 Creative decision structures and loops 363

tip Worried about running out of room in the text box object? It will take a while if you’re
displaying only simple text lines. In a Windows Forms (Windows desktop) app, the maxi-
mum number of characters is specified in the MaxLength property for a text box. By default,
MaxLength is set to 32,767 characters. If you need more characters, you can increase this
value. If you want more formatting options, you can use the RichTextBox control in the
Windows Forms Toolbox—a similar but even more capable control for displaying and
manipulating text. (However, this control is currently available only to Windows desktop
applications.)

Complex For…Next loops

The counter variable in a For…Next loop can be a powerful tool in your programs. With a little imagi-
nation, you can use it to create several useful sequences of numbers in your loops. To create a loop
with a counter pattern other than 1, 2, 3, 4, and so on, you can specify a different value for start in the
loop and then use the Step keyword to increment the counter at different intervals. For example, the
code:

Dim i As Integer
For i = 5 To 25 Step 5
 SampleTextBox.Text = SampleTextBox1.Text & "Line " & i & vbCrLf
Next i

displays the following sequence of line numbers in a text box:

Line 5
Line 10
Line 15
Line 20
Line 25

You can also specify decimal values in a loop if you declare i as a floating-point type. For example,
the For…Next loop:

Dim i As Single
For i = 1 To 2.5 Step 0.5
 SampleTextBox.Text = SampleTextBox.Text & "Line " & i & vbCrLf
Next i

displays the following line numbers in a text box named SampleTextBox:

Line 1
Line 1.5
Line 2
Line 2.5

364 part III Visual Basic programming techniques

In addition to displaying the counter variable, you can use the counter to set properties, calculate
values, or process files. The following exercise shows how you can use the counter to assist in convert-
ing miles to kilometers. The demonstration program is a Window Store app, but you can use the same
techniques for Windows Forms/Windows desktop apps.

Convert distances using a For…Next loop

1. On the File menu, click the New Project command.

2. Create a new Windows Store Application project named My Miles-Kilometers.

When the project loads, display the MainPage.xaml file in the Designer.

3. Click the TextBox control in the XAML Toolbox, and then create a tall, rectangular text box
object on the page.

4. Click the Button control, and then create a small button object on the page below the text
box.

5. Set the following properties for the two objects:

Object Property Setting

TextBox Name
Text

DataTextBox
(empty)

Button Name CreateButton

Content “Create Table”

You’ll also set an additional property for the TextBox object by using XAML markup in the
Code Editor. The ScrollViewer.VerticalScrollBarVisibility property determines whether a vertical
scroll bar appears in the text box. In the Properties window, it can also be set in the extended
portion of the Layout category of properties. But it is good to have some practice setting
properties in markup, too.

6. In the XAML pane of the Code Editor, in the line defining the DataTextBox object (somewhere
after the Name property is set), type

ScrollViewer.VerticalScrollBarVisibility=”Auto”

By setting the property to “Auto”, Visual Studio will automatically add a scroll bar if there is
more information in the text box than can be seen at one time. This will be the case for this
particular example.

Your page should look like this in the Designer:

 CHAPTER 12 Creative decision structures and loops 365

Now you’ll create an event handler for the button’s Click event and convert a series of values
from miles to kilometers.

7. Double-click the Create Table button on the page.

An event handler named CreateButton_Click opens in the Code Editor.

8. Type the following Visual Basic code:

Dim miles As Single
Dim kilometers As Single
Const milesToKM As Single = 1.609344
DataTextBox.Text = “Miles” & vbTab & “Kilometers” & vbCrLf
For miles = 0.1 To 6.3 Step 0.1 ‘loop 63 times; display every tenth mile
 kilometers = milesToKM * miles
 ‘display miles and kilometers separated by a Tab character
 ‘format output with ToString; 1 numeric decimal place for miles
 ‘and 5 numeric decimal places for kilometers
 DataTextBox.Text &= miles.ToString(“N1”) & vbTab _
 & kilometers.ToString(“N5”) & vbCrLf
Next miles

366 part III Visual Basic programming techniques

This code begins by declaring two variables and a constant. The single-precision variables
miles and kilometers will store distances corresponding to miles and kilometers, respectively.
miles will also be the counter variable in the For…Next loop. The third value in this group is
milesToKM, a constant of the single-precision type that holds the conversion value used when
converting miles to kilometers. That number is 1.609344—the approximate number of kilo-
meters in a mile.

After declaring essential values and printing a header in the text box object, the event handler
uses a For…Next loop to create a conversion table that shows equivalencies between miles and
kilometers. The loop uses the Step keyword to loop once for every tenth of a mile. The string
concatenation shortcut operator (&=) is used to build each line in the table and append it to
the previous lines. (You learned how to use the &= operator in Chapter 11, “Mastering data
types, operators, and string processing.”) The loop also uses the vbTab and vbCrLf constants to
assist in formatting the information.

Less obvious, but equally important, is the use of the ToString function to convert the miles
and kilometers numeric variables into strings so that they can be more easily formatted.
The syntax utilizes standard numeric format strings, which takes the form Axx, where A is an
alphabetic character called the format specifier and xx is an optional integer known as the
precision specifier. The range of the precision specifier is 0 to 99; this number affects the num-
ber of formatted digits displayed by ToString.

I wanted to show the number of miles with one decimal digit after the decimal point, and
the number of kilometers with five decimal digits after the decimal point. Without this
sort of structure, the table will display numbers of different length and look uneven. I used
the “N” format specifier to request a numeric value with decimal places. However, there
are other options for different types of information. You can review the complete list of
format specifiers if you search online for the topic “Standard Numeric Format Strings” at
http://msdn.microsoft.com.

Finally, notice the number of iterations in the For…Next loop. I specified that the loop should
cycle 63 times, incrementing one-tenth of a mile (by 0.1) each time through. I chose this num-
ber of iterations to create a table of values stretching from 0.1 to 6.3 miles.

9. Click the Save All button on the Standard toolbar to save your changes. Specify the My
Documents\Visual Basic 2013 SBS\Chapter 12 folder as the location.

10. Click the Start Debugging button to run the program, and then click the Create Table button.

The For…Next loop displays the following output:

http://msdn.microsoft.com

 CHAPTER 12 Creative decision structures and loops 367

Notice the formatted numbers and how well they line up in the table. Also notice that when
you move the mouse pointer into the text box, a scroll bar appears to show the information in
the lower half of the table.

11. Use the vertical scroll bar to scroll down and view the remaining conversion data.

As you can see, the final values indicate that 10 kilometers is approximately equal to 6.2 miles.
Long-distance runners will be well aware of this fact, because it is an internationally recog-
nized equivalency.

12. When you’re finished, close the Windows Store app.

The program stops, and the IDE returns. Modify the For…Next loop if you want to experiment
with the number of iterations in the loop or how the table is formatted.

13. When you’re finished, click Close Project on the File menu.

the Exit For statement
Most For…Next loops run to completion without incident, but now and then you’ll find it useful to
abort the processing of a For…Next loop when a particular exit condition occurs. Visual Basic allows
for this possibility by providing the Exit For statement, which you can use to terminate the execution
of a For…Next loop early and move execution to the first statement after the loop.

For example, the following For…Next loop calculates the circumference of a series of circles. (Recall
that the formula for the circumference of a circle when the radius is known is 2 * pi * radius.) In the

368 part III Visual Basic programming techniques

following routine, Radius is an integer variable that is also used as the counter variable for the loop.
With each iteration through the loop, a new circumference is calculated and the result is displayed in
a text box named OutputBox. However, notice that if the circumference exceeds 50, the looping will
be stopped prematurely by the Exit For statement.

Dim circumference As Single
Dim radius As Integer
For radius = 1 To 10
 'formula for circumference of circle is 2 * pi * radius
 circumference = 2 * 3.14 * radius
 'if circle circumference is greater than 50, stop looping
 If circumference > 50 Then Exit For
 OutputBox.Text = circumference 'display result in text box
Next Radius

This code is designed to be placed in an event handler for an input control, such as the Click event
handler for a button object. When the code is run, the value in circumference gradually increases until
it exceeds 50 during the eighth time through the loop. The If…Then statement in the loop detects this
condition, and the Exit For statement forces the loop to terminate prematurely. As a result, the value
from the seventh iteration through the loop (43.96) is the final result displayed in the text box object.

Writing Do loops

As an alternative to a For…Next loop, you can write a Do loop that executes a group of Visual Basic
statements until a certain condition is True. Do loops are valuable because often you can’t know in
advance how many times a loop should repeat. For example, you might want to let the user enter
names in a database until the user types the word Done in an input control. In that case, you can use
a Do loop to cycle indefinitely until the Done text string is entered.

A Do loop has several formats, depending on where and how the loop condition is evaluated. The
most common syntax is:

Do While condition
 block of statements to be executed
Loop

For example, the following Do loop prompts the user for input and displays that input in a text
box until the word Done is typed in the input box. The routine utilizes the InputBox function, which is
available to Windows desktop apps, and also a text box object named OutputBox.

Dim inputName As String = ""
Do While inputName.ToUpper <> "DONE"
 inputName = InputBox("Enter your name or type Done to quit.")
 If inputName.ToUpper <> "DONE" And inputName <> "" Then
 OutputBox.Text = inputName
 End If
Loop

 CHAPTER 12 Creative decision structures and loops 369

The conditional statement in this loop is inputName.ToUpper <> "DONE", which the Visual Basic
compiler translates to mean “loop as long as the inputName variable when formatted in uppercase
doesn’t contain the word ‘DONE’.” This brings up an interesting fact about this type of Do loop: If
the condition at the top of the loop isn’t True when the Do statement is first evaluated, the Do loop
is never executed. Here, if the inputName string variable when converted to uppercase did contain
the “DONE” value before the loop started (perhaps from an earlier assignment in the event handler),
Visual Basic would skip the loop altogether and continue with the line below the Loop keyword.

If you always want the loop to run at least once in a program, put the conditional test at the bot-
tom of the loop. For example, the loop:

Dim inputName As String = ""
Do
 inputName = InputBox("Enter your name or type Done to quit.")
 If inputName.ToUpper <> "DONE" And inputName <> "" Then
 OutputBox.Text = inputName
 End If
Loop While inputName.ToUpper <> "DONE"

is essentially the same as the previous Do loop, but here the loop condition is tested after a name
is received from the InputBox function. This has the advantage of updating the inputName variable
before the conditional test in the loop so that a preexisting Done value won’t cause the loop to be
skipped. Testing the loop condition at the bottom ensures that your loop is executed at least once.

avoiding an endless loop
Because of the repetitive nature of Do loops, it’s very important to design your test conditions so that
each loop has a true exit point. If a loop test never evaluates to False, the loop executes endlessly,
and your program might not respond to input. Consider the following example from a Visual Basic
Windows desktop app:

Dim number as Double
Do
 number = InputBox("Enter a number to square. Type -1 to quit.")
 number = number * number
 OutputBox.Text = number
Loop While number >= 0

In this loop, the user enters number after number, and the program squares each number and
displays it in the text box. Unfortunately, when the user has had enough, he or she can’t quit because
the advertised exit condition doesn’t work. When the user enters –1, the program squares it, and the
number variable is assigned the value 1. (The problem can be fixed by setting a different exit condi-
tion. The next example demonstrates how to check whether the user clicked the Cancel button and
exited the loop.) Watching for endless loops is essential when you’re writing Do loops. Fortunately,
they’re pretty easy to spot if you test your programs thoroughly.

370 part III Visual Basic programming techniques

Converting temperatures
The following exercise shows how you can use a Do loop to convert Fahrenheit temperatures to
Celsius temperatures in a Windows Forms/Windows desktop app. The simple program prompts the
user for input by using the InputBox function, converts the temperature, and displays the output in a
message box using the MsgBox function.

Note that InputBox and MsgBox are not available in Windows Store apps, because the Windows 8.1
design guidelines discourage the overt use of pop-up boxes in Windows Store programs. This is a bit
unfortunate, because InputBox and MsgBox are very easy to use, especially for testing purposes.

The closest equivalent for Windows Store apps is the MessageDialog class in the
Windows.UI.Popups namespace, which supports a variety of message types and also
asynchronous operations. (For more information, search for “MessageDialog Class” online at
http://msdn.microsoft.com.) You can also use the Flyout control, discussed in Chapter 9, “Exploring
Windows 8.1 design features: Command bar, flyout, tiles, and touch.”

Convert temperatures by using a Do loop

1. On the File menu, click New Project.

The New Project dialog box opens.

2. Create a new Visual Basic Windows/Windows Forms Application project named My Celsius
Conversion.

The new project is created, and a blank form opens in the Designer.

In this exercise, you’ll place all the code for your program in the Form1_Load event handler so
that Visual Basic immediately prompts you for the Fahrenheit temperature when you start the
application. In a Windows Forms app, the Form_Load event handler is typically one of the first
routines to run when the program starts. Within this routine, you’ll use the InputBox function
to request the Fahrenheit data, and you’ll use the MsgBox function to display the converted
value.

3. Double-click the form.

The Form1_Load event handler appears in the Code Editor.

4. Type the following program statements in the Form1_Load event handler:

Dim fahrenTemp, celsius As Single
Dim fTempInput As String
Dim prompt As String = “Enter a Fahrenheit temperature.”
Do
 fTempInput = InputBox(prompt, “Fahrenheit to Celsius”)
 If IsNumeric(fTempInput) Then
 fahrenTemp = CSng(fTempInput)
 celsius = Int((fahrenTemp + 40) * 5 / 9 - 40)
 MsgBox(celsius, , “Temperature in Celsius”)

 CHAPTER 12 Creative decision structures and loops 371

 End If
Loop While fTempInput <> “”
End

tip Be sure to include the End statement at the bottom of the Form1_Load event
handler. When the user has had his or her fill of converting temperatures, this is how
the program terminates.

This code handles the calculations for the project. The first line declares two single-precision
variables, fahrenTemp and Celsius, to hold the Fahrenheit and Celsius temperatures, respec-
tively. The second line declares a string variable named fTempInput that holds a string version
of the Fahrenheit temperature. The third line declares a string variable named prompt, which
will be used in the InputBox function, and assigns it a value. The Do loop repeatedly prompts
the user for a Fahrenheit temperature, converts the number to Celsius, and then displays it on
the screen by using the MsgBox function.

The value that the user enters in the input box is stored in the fTempInput variable. The
InputBox function always returns a value of type String, even if the user enters numbers.
Because we want to perform mathematical calculations on the entered value, fTempInput
must be converted to a number. The IsNumeric method, introduced here for the first time, is
used to determine whether the user input can be evaluated as a number. If so, the CSng func-
tion is used to convert a string into the Single data type. CSng is one of many conversion func-
tions that you can use to convert a string to a different data type. (See Chapter 11 for a listing
of more functions, as well as information about conversion methods and strategies.) After the
conversion, the value is stored in the fahrenTemp variable.

The loop executes until the user clicks the Cancel button or until the user presses Enter or
clicks OK with no value in the input box. Clicking the Cancel button or entering no value
returns an empty string (“”). The loop checks for the empty string by using a While conditional
test at the bottom of the loop. The program statement:

Celsius = Int((FTemp + 40) * 5 / 9 - 40)

handles the conversion from Fahrenheit to Celsius in the program. This statement employs
a standard conversion formula, but it uses the Int function to return a value that contains no
decimal places to the Celsius variable. (Everything to the right of the decimal point is dis-
carded.) This cutting sacrifices accuracy, but it helps you avoid long, unsightly numbers such as
21.11111, the Celsius equivalent to 70 degrees Fahrenheit.

5. Click the Save All button on the Standard toolbar to save your changes. Specify the My
Documents\Visual Basic 2013 SBS\Chapter 12 folder as the location.

Now you’ll try running the Windows desktop app.

6. Click the Start Debugging button on the Standard toolbar.

The program starts, and the InputBox function prompts you for a Fahrenheit temperature.

372 part III Visual Basic programming techniques

7. Type 212.

Your screen looks like this:

8. Click OK.

The temperature 212 degrees Fahrenheit is converted to 100 degrees Celsius, as shown in this
message box:

9. Click OK. Then type 72 in the input box, and click OK again.

The temperature 72 degrees Fahrenheit is converted to 22 degrees Celsius.

10. Click OK, and then click Cancel in the input box.

The program closes, and the IDE returns. You’re finished working with decision structures in
this chapter. You’ll build on these essential techniques as you work through the book.

11. On the File menu, click Exit to exit Visual Studio.

Using the Until keyword in Do loops
The Do loops you’ve worked with so far have used the While keyword to execute a group of state-
ments as long as the loop condition remains True. With Visual Basic, you can also use the Until key-
word in Do loops to cycle until a certain condition is True. Use the Until keyword at the top or bottom
of a Do loop to test a condition, just like the While keyword. For example, the following Do loop uses
the Until keyword to loop repeatedly until the user enters the word Done in the input box:

Dim inputName As String = ""
Do
 inputName = InputBox("Enter your name or type Done to quit.")
 If inputName.ToUpper <> "DONE" And inputName <> "" Then
 OutputBox.Text = inputName
 End If
Loop Until inputName.ToUpper = "DONE"

 CHAPTER 12 Creative decision structures and loops 373

As you can see, a loop that uses the Until keyword is similar to a loop that uses the While keyword,
except that the test condition usually contains the opposite operator—in this case, the = (equal to)
operator versus the <> (not equal to) operator. If using the Until keyword makes sense to you, feel
free to use it with test conditions in your Do loops.

Summary

In this chapter, you explored how to use Visual Basic decision structures and loops effectively in
Windows Store apps and Windows desktop apps created via the Windows Forms model. You prac-
ticed writing programs using If…Then and Select Case statements, as well as For…Next loops and Do
loops.

While the syntax of these powerful Visual Basic flow control structures has not changed greatly
in the last few versions of Visual Basic, the platforms and context within which you use them has
changed. For this reason, you learned how to use If…Then with a TextBox and MaskedTextBox con-
trol in a Windows Forms app, and you learned how to use a Select Case statement with the ListBox
control in a Windows Store app. You also had more practice processing data and using mathematical
formulas, including routines that computed income tax, determined circumference, converted miles
to kilometers, and converted Fahrenheit to Celsius.

In the next chapter, you continue working with Visual Basic language elements, focusing on trap-
ping runtime errors using structured error-handling techniques and using Try…Catch code blocks.

[G11xx18]

 375

C H A P T E R 1 3

trapping errors by using
structured error handling

After completing this chapter, you will be able to

■■ Manage run-time errors and exceptions by using the Try…Catch error handler.

■■ Create an error handler that tests specific error conditions by using the Catch statement.

■■ Write complex error handlers that use the Exception object and the Message property.

■■ Build nested Try…Catch statements.

■■ Use error handlers in combination with defensive programming techniques.

■■ Leave error handlers prematurely by using the Exit Try statement.

Run-time errors and other program defects are a fact of life for software developers. As a Visual
Basic programmer, you’ve undoubtedly had your share of error messages and unexpected pro-

gram behaviors as you have planned and written your software. In this chapter, you’ll focus on how
to handle run-time errors, also referred to as exceptions, which occur as a result of normal operating
conditions—for example, errors due to a broken Internet connection, a faulty web service, an offline
printer, or a necessary image file that is missing from a DVD or flash drive. The routines that handle
exceptions are called structured error handlers (or structured exception handlers), and you can use
them to detect run-time errors, suppress unwanted error messages, and adjust program conditions so
that your application can regain control and run again.

Visual Basic 2013 provides the powerful Try…Catch code block for handling errors and exceptions,
a tool that has been updated to work in the multithreading, asynchronous programming environ-
ment of Windows 8.1. In this chapter, you’ll learn how to trap run-time errors by using Try…Catch
code blocks, and you’ll learn how to use the Exception object to identify specific run-time errors. You’ll
learn how to use multiple Catch statements to write flexible error handlers, build nested Try…Catch
code blocks, and employ the Exit Try statement to exit a Try…Catch code block prematurely. The
programming techniques that you’ll learn are similar to the structured error handlers provided by the
most advanced programming languages, such as Java and C++. Using these skills, you will create reli-
able, or robust, Visual Basic programs that manage unforeseen circumstances and provide users with
a consistent and trouble-free computing experience.

376 part III Visual Basic programming techniques

Processing errors by using the Try…Catch statement

A program crash is an unexpected problem from which a program can’t recover. You might have
experienced your first program crash when Visual Basic couldn’t resolve a hardware problem detected
in your system or when you tried a web-related operation that caused the program to stall or termi-
nate prematurely. It’s not that Visual Basic isn’t smart enough to handle the glitch; it’s just that the
program hasn’t been told what to do when something goes wrong.

Fortunately, you don’t have to live with occasional errors that cause your programs to crash. You
can create structured error handlers to manage and respond to the errors before they force the Visual
Basic compiler to terminate your program. An error handler handles the run-time error by telling the
program how to continue when one of its statements doesn’t work. Error handlers can be placed in
every event handler where there is the potential for trouble. In fact, an error handler can appear in
any code module or function in a Visual Basic program.

Error handlers handle, or trap, a problem by using a Try…Catch code block and a special error-
handling object named Exception. The Exception object has a Message property that you can use to
display a description of the error. For example, if the run-time error is associated with loading a file
from a flash drive that has gone missing, your error handler might display a custom error message
that identifies the problem and prompts the user to insert the missing media, rather than allowing the
failed operation to crash the program. Other error handlers might be more subtle, working behind
the scenes (without user interaction) to retry an operation or solve a problem.

When to use error handlers
You can use error handlers in any situation where an action (either expected or unexpected) has
the potential to trigger, or throw, an exception or produce an error that stops program execution.
Typically, error handlers are used to manage error conditions related to external events—for example,
exceptions caused by a failed Internet connection or web service transaction between computers, a
missing flash drive or DVD, an offline printer or scanner, or a hardware problem of some sort. Table
13-1 lists potential problems that can be addressed by error handlers.

TABLE 13-1 Potential problems for error handlers

Problem Description

Network/Internet problems Network servers, Internet connections, web services, and
other resources that fail, or go down, unexpectedly.

Database problems Unable to make a database connection, a query can’t be
processed or times out, a database returns an error, and
so on.

Drive/media problems Unformatted or incorrectly formatted CDs, DVDs, or me-
dia that aren’t properly inserted; bad sectors, CDs, DVDs,
or flash drives that are full; problems with a CD or DVD
drive; and so on.

File system problems A path to a necessary file that is missing or incorrect.

 CHAPTER 13 Trapping errors by using structured error handling 377

Problem Description

Printer problems Printers that are offline, out of paper, out of memory, or
otherwise unavailable.

Software not installed A file or component that your application relies on but
that is not installed on the user’s computer, or an operat-
ing system incompatibility.

Security problems An application or process that attempts to modify op-
erating system files, use the Internet inappropriately, or
modify other programs or files.

Permissions problems User permissions that are not appropriate for performing
a task.

Overflow errors An activity that exceeds the allocated storage space.

Out-of-memory errors Insufficient application or resource space available in the
Microsoft Windows memory management scheme.

Clipboard problems Problems with data transfer or the Windows Clipboard.

Logic errors Syntax or logic errors undetected by the compiler and
previous tests (such as an incorrectly spelled file name).

Unhandled errors or exceptions that actually cause a Visual Basic program to stop functioning
are not as common as they were in earlier years, especially in the Windows Store application model,
which has a little more built-in error handling than some of the earlier versions of Windows. For this
reason, the sample projects in this chapter will be designed to assist Windows Forms applications that
run on the Windows desktop. However, the Try…Catch techniques taught here are also routinely used
in Windows Store programming tasks. (The syntax is the same.) Regardless of the Windows platform
that you use, it is very important to take error handling seriously. Managing exceptions is not just
about stopping cataclysmic program crashes but rather on setting the groundwork for a predictable
computing experience that is free from distracting error messages, unanticipated delays, and confus-
ing requests for information.

Setting the trap: the Try…Catch code block
To create an exception handler in code, you place the Try statement in a routine right before the
statement you’re worried about, and the Catch statement follows immediately with a list of the state-
ments that you want to run if an exception actually occurs. A number of optional statements, such
as Finally, Exit Try, and nested Try…Catch code blocks can also be included, as the examples in this
chapter will demonstrate. The typical components of a Try…Catch exception handler are as follows:

Try
 Statements that might produce a run-time error
Catch
 Statements to run if a run-time error occurs
Finally
 Optional statements to run whether an error occurs or not
End Try

378 part III Visual Basic programming techniques

The Try statement identifies the beginning of an error handler in which Try, Catch, and End Try are
the essential keywords, and Finally and the statements that follow are optional. Note that program-
mers sometimes call the statements between the Try and Catch keywords protected code because any
run-time errors resulting from these statements won’t cause the program to crash. (Instead, Visual
Basic executes the error-handling statements in the Catch code block.)

path name and drive errors
The following example demonstrates a common run-time error situation—a problem with a path
name, flash drive, or attached peripheral device. To complete this exercise, you’ll load a sample Visual
Basic project for the Windows desktop that I created to show how a photograph is opened in a pic-
ture box object on a form.

To prepare for the exercise, insert a blank USB flash drive or memory stick into drive E (or equiva-
lent), and use File Explorer to copy Road.bmp from this book’s sample files to it. (I took this photo-
graph on a recent road trip through Montana.) Alternatively, you can copy the .bmp file to a DVD or
CD on drive D or to another type of removable storage media, such as a digital camera or MP3 player.

Note You’ll find the Road.jpg file, along with the Drive Error project, in the My
Documents\Visual Basic 2013 SBS\Chapter 13 folder.

To complete the exercise, you’ll need to be able to remove the flash drive or DVD as test conditions
dictate, and you’ll need to modify the program code with the drive letter you’re using. You’ll use the
flash drive throughout the chapter to force run-time errors and recover from them.

experiment with disc drive errors

1. Insert a flash drive or memory stick into the USB port on your computer, and copy the
Road.jpg file to it.

Use File Explorer or a third-party tool to copy the file to the root directory of the flash drive.
Make a note of the drive letter that your system has assigned to the flash drive so that you can
use it in your program code.

2. Start Visual Studio, and then open the Drive Error project, a Windows Forms application that is
located in the My Documents\Visual Basic 2013 SBS\Chapter 13\Drive Error folder.

The Drive Error project opens in the IDE.

 CHAPTER 13 Trapping errors by using structured error handling 379

3. If the project’s form isn’t visible, display it now.

The Drive Error project is a skeleton program that displays the Road.jpg file in a picture box
object when the user clicks the Check Drive button. I designed the project as a convenient way
to create and trap run-time errors, and you can use it throughout this chapter to build error
handlers by using the Try…Catch code block.

4. Double-click the Check Drive button on the form to display the CheckButton_Click event
handler.

You’ll see the following line of program code between the Private Sub and End Sub
statements:

TestImage.Image = System.Drawing.Bitmap.FromFile("e:\road.jpg")

In a Windows Forms program that has an active PictureBox control, a call to the FromFile
method in this format will open the specified file in the picture box object. This particular call
to FromFile opens the Road.jpg file on drive E and displays it in the picture box object on the
form. However, if the flash drive is no longer in the USB port, if you are using a DVD for the
file and the DVD drive door is open, or if the file is not on the flash drive or DVD at all, the
statement produces a “File Not Found” error message. This is the run-time error (or exception)
that we want to trap.

5. If your flash drive or attached peripheral device is using a drive letter other than E, change the
drive letter in this program statement to match the letter you’re using.

For example, a DVD drive typically uses the letter D. USB flash drives, digital cameras, and
other detachable media typically use E, F, or higher letters for the drive. It depends on what
other drives you have attached or installed on your computer.

6. With your flash drive still in the USB port, click the Start Debugging button on the Standard
toolbar to run the program.

The form for the project opens, as shown here:

380 part III Visual Basic programming techniques

7. Click the Check Drive button on the form.

8. The program loads the Road.jpg file from the flash drive into the picture box, as shown in the
following screen shot:

 CHAPTER 13 Trapping errors by using structured error handling 381

The program displays the image simply to indicate that the file-load function is working cor-
rectly. The SizeMode property of the picture box object is set to StretchImage, so the file fills
the entire picture box.

Now see what happens when the flash drive isn’t in the USB port when the program attempts
to load the file.

9. Remove the flash drive from the USB port.

If you are using a different media type, that’s just fine—but remove it now.

382 part III Visual Basic programming techniques

10. In the running Drive Error program, click the Check Drive button again on the form.

The program can’t find the file, and Windows issues a run-time error, or unhandled exception,
which causes the program to crash. Visual Studio enters debugging mode, highlighting the
problem statement in the Code Editor.

Your screen will look like this:

Notice how helpful Visual Studio is trying to be here, by offering troubleshooting tips to assist
you in locating the source of the unhandled exception that has stopped the program. The
Actions list allows you to learn even more about the specific error message that is displayed at
the top of the pop-up window.

11. Click the Stop Debugging button on the Standard toolbar to close the program.

The development environment returns.

Now you’ll modify the code to handle this plausible error scenario in the future, but first a word
about Windows Store apps and exception handling.

 CHAPTER 13 Trapping errors by using structured error handling 383

Windows Store apps and built-in exception handling
The run-time error scenario that you just encountered took place in a Windows Forms (Windows
desktop) app. I don’t mean to pick on Windows Forms in this way, but it is easier to get a Windows
desktop app to crash when loading images than it is to disable a Windows Store app. This is the
case for two reasons. First, in a Windows Store app, it is customary for the images to travel with the
application. Photos and other resources are placed in the project’s Assets folder before they are
loaded into controls. Using the Assets folder is especially important because Windows Store apps are
downloaded from the Windows Store online and need to be ready for a variety of operating condi-
tions and user scenarios. Microsoft hopes to protect apps from direct file operations in the local
system as much as possible, allowing files to be loaded from the hard drive or attached media only
through tools such as the File Picker. As a result, the process for loading images in a Windows Store
app is a bit more involved (and safe) than doing a direct file load via a Windows Forms method like
System.Drawing.Bitmap.FromFile.

Second, the process for loading images into a XAML Image control under Windows 8.1 involves
using the UriSource and Source properties, which provide a little more exception handling than what
you get from the PictureBox control in Windows Forms. If the image file being loaded into the XAML
Image control cannot be located, the exception is handled so that there is not a program-terminating
crash. Of course, this might still mean that in the Windows Store app the user will not actually see the
missing image with the invalid path name—it might be that nothing appears and the program keeps
on running.

If you are curious, here is the code that you would use to load the Road.jpg photo from the Assets
folder in a Windows Store app into an Image control named TestImage:

Dim bm As BitmapImage = New BitmapImage
Bm.UriSource = New Uri("ms-appx:/Assets/Road.jpg", UriKind.Absolute)
TestImage.Source = bm

OK. So this process is a little more involved than using the simple System.Drawing.Bitmap.FromFile
method that we employed in the Drive Error program to load an image. The steps here are to declare
a variable of type BitmapImage, to build an absolute path name to the resource using the UriSource
property, and then to locate the image in the project’s Assets folder by using the string “ms-appx:/
Assets/Road.jpg”. However, this code works perfectly well in a Windows Store app that has an Image
control on the page. The only thing that you need to do before you run the program is to add the
Road.jpg image to the project’s Assets folder by using Visual Studio’s Solution Explorer tool.

Because I wanted you to experience the hard crash that can happen when a Visual Basic program
abruptly terminates, I have used the simpler Windows Forms example to help you practice your error
handling skills. But the Try…Catch code block and basic exception handling method work the same
in either a Windows Forms or a Windows Store app. Although the control names and methods are
slightly different, the core Visual Basic coding skills pertaining to exception handling are the same.

384 part III Visual Basic programming techniques

Writing a flash drive error handler

The problem with the Drive Error program isn’t that it somehow defies the inherent capabilities of
Visual Basic to process errors. We just haven’t specified what Visual Basic should do when it encoun-
ters an exception that it doesn’t know how to handle. The solution to this problem is to write a
Try…Catch code block that recognizes the error and tells Visual Basic what to do about it. You’ll add
this error handler now.

Note Beginning with this exercise, I have saved the changes made to the Drive Error
skeleton program in the Drive Handler project, which is located in the My Documents\
Visual Basic 2013 SBS\Chapter 13\Drive Handler folder. You’ll see that name in the screen
shots that follow. However, you can continue using the Drive Error program, adding error-
handling code to it as directed. If you open up the Drive Handler project that I created,
you’ll see the results of all the step by step exercises in the chapter.

Use Try…Catch to trap the error

1. Display the CheckButton_Click event handler if it isn’t visible in the Code Editor.

You need to add an error handler to the event handler that’s causing the problem. As you’ll
see in this example, you actually create the Try…Catch code block around the code that rep-
resents the potential source of trouble, protecting the rest of the program from the exception
that it might produce.

2. Modify the event handler so that the existing FromFile statement fits between Try and Catch
statements, as shown in the following code block:

Try
 TestImage.Image = System.Drawing.Bitmap.FromFile("e:\road.jpg")
Catch
 MsgBox("Please insert the flash drive in drive E!")
End Try

You don’t need to retype the FromFile statement—just type the Try, Catch, MsgBox, and
End Try statements above and below it. If Visual Studio adds Catch, a variable declaration, or
the End Try statement in the wrong place, simply delete the statements and retype them as
shown in the book. (The Code Editor tries to be helpful, but sometimes Visual Studio’s Auto
Complete feature gets in the way.)

This program code demonstrates the most basic use of a Try…Catch code block. It places the
problematic FromFile statement in a Try code block so that if the program code produces
an error, the statements in the Catch code block are executed. The Catch code block simply
displays a message box asking the user to insert the required media in drive E so that the
program can continue. This Try…Catch code block contains no Finally statement, so the error
handler ends with the keywords End Try.

 CHAPTER 13 Trapping errors by using structured error handling 385

Again, if you are using a removable storage device or media associated with a different drive
letter, you would make those changes in the statements that you just typed.

test the error handler

1. Remove the flash drive from drive E if you did not do so in the preceding exercise, and then
click the Start Debugging button to run the program.

2. Click the Check Drive button.

Instead of stopping program execution, Visual Basic invokes the Catch statement, which dis-
plays the following message box:

3. Click OK, and then click the Check Drive button again.

The program displays the message box again, asking you to insert the flash drive in drive E.
Each time there’s a problem loading the file, this message box appears.

4. Insert the flash drive in the USB port (drive E), wait a moment for the system to recognize the
USB device (close any windows that appear when you insert the flash drive), click OK, and then
click the Check Drive button again.

The photograph appears in the picture box, as expected. The error handler has completed its
work effectively—rather than the program crashing inadvertently, it’s told you how to correct
your mistake, and you can continue working with the application.

5. Click the Close button on the form to stop the program.

It’s time to learn some of the variations of the Try…Catch error handler.

Using the Finally clause to perform cleanup tasks

As with the syntax description for Try…Catch noted earlier in the chapter, you can use the optional
Finally clause with Try…Catch to execute a block of statements regardless of how the application exe-
cutes the Try or Catch blocks. That is, whether or not the Try statements produced a run-time error,
there might be some code that you need to run each time an error handler is finished. For example,
you might want to update variables or properties, display the results of a computation, close database
connections, or perform cleanup operations by clearing variables or disabling unneeded objects on a
form or on the page.

386 part III Visual Basic programming techniques

The following exercise demonstrates how the Finally clause works, by displaying a second message
box whether or not the FromFile method produces a run-time error.

Use Finally to display a message box

1. Display the CheckButton_Click event handler, and then edit the Try…Catch code block so that
it contains two additional lines of code above the End Try statement. The complete error han-
dler should look like this:

Try
 TestImage.Image = System.Drawing.Bitmap.FromFile("e:\Road.jpg")
Catch
 MsgBox("Please insert the flash drive in drive E!")
Finally
 MsgBox("Error handler complete")
End Try

The Finally statement indicates to the compiler that a final block of code should be executed
whether or not a run-time error is processed. To help you learn exactly how this feature works,
I’ve inserted a MsgBox function to display a test message after the Finally statement. Although
this simple use of the Finally statement is helpful for testing purposes, in a real program you’ll
probably want to use the Finally code block to update important variables or properties, dis-
play data, or perform other cleanup operations.

2. Remove the flash drive from drive E, and then click the Start Debugging button to run the
program.

3. Click the Check Drive button.

The error handler displays a dialog box asking you to insert the flash drive in drive E.

4. Click OK.

The program executes the Finally clause in the error handler, and the following message box
appears:

5. Click OK, insert the flash drive in drive E, and then click the Check Drive button again.

The file appears in the picture box as expected. In addition, the Finally clause is executed, and
the Error Handler Complete message box appears again. As I noted earlier, Finally statements
are executed at the end of a Try…Catch block whether or not there’s an error.

6. Click OK, and then click the Close button on the form to terminate the program.

 CHAPTER 13 Trapping errors by using structured error handling 387

More complex Try…Catch error handlers

As your programs become more sophisticated, you might find it useful to write more complex
Try…Catch error handlers that manage a variety of run-time errors and unusual error-handling situa-
tions. Try…Catch provides for this complexity by doing the following:

■■ Permitting multiple lines of code in each Try, Catch, or Finally code block.

■■ Using the Catch statement with particular Exception objects, which tests specific error
conditions.

■■ Allowing nested Try…Catch code blocks, which can be used to build sophisticated and robust
error handlers.

In addition, by using a special error-handling object named Exception, you can identify and pro-
cess specific run-time errors and exceptions in your program. You’ll investigate each of these error-
handling features in the following section.

the Exception object
The Microsoft .NET Framework includes the Exception object to help you learn about the errors that
occur in your programs. Exception provides you with information about the exception that occurred
so that you can respond to it programmatically. The most useful Exception property is the Message
property, which contains a short message about the error.

There are several different types of Exception objects. Table 13-2 provides a list of important
Exception objects and what they mean.

TABLE 13-2 Important exception objects

Exception Description

ArgumentException Occurs when an argument passed to a method is not
valid.

ArgumentOutOfRangeException Occurs when an argument is passed to a method that is
outside the allowable range.

ArithmeticException Occurs when there is an arithmetic-related error.

DataException Occurs when there is an error when accessing data by
using ADO.NET.

DirectoryNotFoundException Occurs when a folder can’t be found.

DivideByZeroException Occurs when an attempt is made to divide by zero.

EndOfStreamException Occurs when an attempt is made to read past the end of
a stream.

Exception Occurs for any exception that is thrown. Other exceptions
inherit from this object.

FileNotFoundException Occurs when a file can’t be found.

IndexOutOfRangeException Occurs when an index is used that is outside the allowable
range of an array.

388 part III Visual Basic programming techniques

Exception Description

IOException Occurs when there is an input/output error.

OutOfMemoryException Occurs when there isn’t enough memory.

OverflowException Occurs when an arithmetic-related operation results in an
overflow.

SecurityException Occurs when there is a security-related error.

SqlException Occurs when there is an error when accessing data in
Microsoft SQL Server.

UnauthorizedAccessException Occurs when the operation denies access.

So how do you know which exception types to use? That depends on your code. For example, in the
exercise that we are working on, you have been using the System.Drawing.Bitmap.FromFile method. If
you open the MSDN online documentation for FromFile, you will see an “Exceptions” section.

tip To quickly open up the MSDN documentation for FromFile, put your cursor in the
FromFile text in Visual Studio and then press the F1 key. From here, click the “Image.
FromFile Method (String)” topic.

The “Exceptions” section in the “Image.FromFile Method (String)” topic lists the following
exceptions:

■■ ArgumentException

■■ FileNotFoundException

■■ OutOfMemoryException

With this information in hand, you can write code to handle common exceptions that take place
when a programmer uses FromFile. As you write more code, you will discover additional Exception
objects, and you can also learn about them by using the MSDN documentation. Even though there
are many different Exception objects, you will use them in the same way described here and demon-
strated in the following exercise, which uses two of the Exception objects above in a Try…Catch error
handler to test for more than one run-time error condition.

test for multiple run-time error conditions

1. In the Button1_Click event handler, edit the Try…Catch error handler so that it looks like the
following code block. (The original FromFile statement is the same as the code you used in the
previous exercises, but the Catch statements are all new.)

Try
 TestImage.Image = System.Drawing.Bitmap.FromFile("e:\road.jpg")
Catch ex As System.IO.FileNotFoundException 'if File Not Found error
 MsgBox("Check pathname and flash drive")
Catch ex As OutOfMemoryException 'if Out Of Memory error
 MsgBox("Is this really a photograph?", , ex.Message)

 CHAPTER 13 Trapping errors by using structured error handling 389

Catch ex As Exception
 MsgBox("Problem loading file", , ex.Message)
End Try

This code has three Catch statements. If the FileNotFoundException occurs during the file open
procedure, the message Check Pathname And Disc Drive is displayed in a message box. If
the OutOfMemoryException occurs—probably the result of loading a file that doesn’t actu-
ally contain artwork—the message Is This Really A Photograph? is displayed. (I get this error
if I accidentally try to open a Microsoft Word document in a picture box object by using the
FromFile method.)

The final Catch statement handles all other run-time errors that could potentially occur during
a file-opening process—it’s a general catchall code block that prints a general error message
inside a message box and a specific error message from the Message property in the title bar
of the message box.

2. Click the Start Debugging button to run the program.

3. Remove the flash drive from the USB port (drive E).

4. Click the Check Drive button.

The error handler displays the error message Check Pathname And Flash Drive in a message
box. The first Catch statement works.

5. Click OK, and then click the Close button on the form to end the program.

6. Insert the flash drive again, and then use File Explorer or another tool to copy a second file to
the flash drive that isn’t an artwork file. For example, copy a Word document or a Microsoft
Excel spreadsheet to the USB device.

You won’t open this file in Word or Excel, but you will try to open it (unsuccessfully, we hope)
in your program’s picture box object.

7. In the Code Editor, change the name of the Road.jpg file in the FromFile program statement to
the name of the file (Word, Excel, or other) you copied to the flash drive in drive E.

Using a file with a different format gives you an opportunity to test a second type of run-time
error—an Out Of Memory exception, which occurs when Visual Basic attempts to load a file
that isn’t a photo or has too much information for a picture box.

8. Run the program again, and then click the Check Drive button.

The error handler displays the following error message:

390 part III Visual Basic programming techniques

Notice that I have used the Message property to display a short description of the problem
(Out Of Memory.) in the message box title bar. Using this property in your error handler can
give the user a clearer idea of what has happened.

9. Click OK, and then click the Close button on the form to stop the program.

10. Change the file name back to Road.jpg in the FromFile method. (You’ll use it in the next
exercise.)

The Catch statement is very powerful. By using Catch in combination with the Exception object and
Message property, you can write sophisticated error handlers that recognize and respond to several
types of exceptions.

raising your own errors
For testing purposes and other specialized uses, you can artificially generate your own run-time
errors in a program with a technique called throwing, or raising, exceptions. To accomplish this,
you use the Throw statement. For example, the following syntax uses the Throw statement to
produce an exception and then handles the exception by using a Catch statement:

Try
 Throw New Exception("There was a problem")
Catch ex As Exception
 MsgBox(ex.Message)
End Try

When you learn how to write your own procedures, you can generate your own errors by
using this technique and return them to the calling routine.

Specifying a retry period
Another strategy that you can use in an error handler is to try an operation a few times and then dis-
able it if the problem isn’t resolved. For example, in the following exercise, a Try…Catch block employs
a counter variable named Retries to track the number of times the message Please Insert The Flash
Drive In Drive E! is displayed, and after the second time, the error handler disables the Check Drive
button. The trick to this technique is declaring the Retries variable at the top of the form’s program
code so that it has scope throughout all the form’s event handlers. The Retries variable is then incre-
mented and tested in the Catch code block. The number of retries can be modified by simply chang-
ing the “2” in the statement, as shown here:

If Retries <= 2

 CHAPTER 13 Trapping errors by using structured error handling 391

Use a variable to track run-time errors

1. In the Code Editor, scroll to the top of the form’s program code, and directly below the
Public Class Form1 statement, type the following variable declaration:

Dim Retries As Short = 0

Retries is declared as a Short integer variable because it won’t contain very big numbers. It’s
assigned an initial value of 0 so that it resets properly each time the program runs.

2. In the CheckButton_Click event handler, edit the Try…Catch error handler so that it looks like
the following code block:

Try
 TestImage.Image = System.Drawing.Bitmap.FromFile("e:\Road.jpg")
Catch
 Retries += 1
 If Retries <= 2 Then
 MsgBox("Please insert the flash drive in drive E!")
 Else
 MsgBox("File Load feature disabled")
 CheckButton.Enabled = False
 End If
End Try

The Try block tests the same file-opening procedure, but this time, if an error occurs, the Catch
block increments the Retries variable and tests the variable to be sure that it’s less than or equal
to 2. The number 2 can be changed to allow any number of retries—currently it allows only two
run-time errors. After two errors, the Else clause is executed, and a message box appears indicat-
ing that the file-loading feature has been disabled. The Check Drive button is then disabled—
that is, dimmed and rendered unusable for the remainder of the program.

3. Click the Start Debugging button to run the program.

4. Remove the flash drive from drive E.

5. Click the Check Drive button.

The error handler displays the error message Please Insert The Flash Drive In Drive E! in a mes-
sage box, as shown here. Behind the scenes, the Retries variable is also incremented to 1.

6. Click OK, and then click the Check Drive button again.

The Retries variable is set to 2, and the message Please Insert The Flash Drive In Drive E!
appears again.

392 part III Visual Basic programming techniques

7. Click OK, and then click the Check Drive button a third time.

The Retries variable is incremented to 3, and the Else clause is executed. The message File Load
Feature Disabled appears, as shown here:

8. Click OK in the message box.

The Check Drive button is disabled on the form, as shown in the following illustration.
Admittedly, the dimmed state of the button is a little subtle, but you’ll see that the button
does not work when you try to click it.

The error handler has responded to the file load problem by allowing the user a few tries to
fix the exception, and then it has disabled the misbehaving feature. (That is, the user can no
longer click the button.) This disabling action stops future exceptions, although the program
now does not function exactly as it was originally designed.

9. Click the Close button on the form to stop the program.

Using nested Try…Catch blocks
You can also use nested Try…Catch code blocks in your error handlers. For example, the following
drive error handler uses a second Try…Catch block to retry the file open operation a single time if the
first attempt fails and generates a run-time error:

Try
 TestImage.Image = System.Drawing.Bitmap.FromFile("e:\road.jpg")
Catch
 MsgBox("Insert the flash drive in drive E, then click OK!")
 Try
 TestImage.Image = System.Drawing.Bitmap.FromFile("e:\road.jpg")
 Catch
 MsgBox("File Load feature disabled")
 CheckButton.Enabled = False
 End Try
End Try

 CHAPTER 13 Trapping errors by using structured error handling 393

If the user inserts the flash drive into drive E as a result of the message prompt, the second Try
block opens the file without error. However, if a file-related exception still appears, the second Catch
block displays a message saying that the file load feature is being disabled, and the button is disabled.

In general, nested Try…Catch error handlers work well as long as you don’t have too many tests or
retries to manage. If you do need to retry a problematic operation many times, use a variable to track
your retries, or develop a function containing an error handler that can be called repeatedly from
your event handlers. (For example, you might locate it in a code module.)

Comparing error handlers with defensive programming
techniques

Error handlers aren’t the only mechanism for protecting a program against run-time errors. For
example, the following program code uses the File.Exists method in the System.IO namespace of the
.NET Framework to check whether a file exists on the flash drive in drive E before it’s opened:

If File.Exists("e:\Road.jpg") Then
 TestImage.Image = System.Drawing.Bitmap.FromFile("e:\road.jpg")
Else
 MsgBox("Cannot find Road.jpg on drive E")
End If

This If…Then statement isn’t an actual error handler because it doesn’t prevent a run-time
error from halting a program. Instead, it’s a validation technique that some programmers call
defensive programming. It uses a handy method in the .NET Framework class library to verify the
intended file operation before it’s actually attempted in the program code. And in this particular case,
testing to see whether the file exists with the .NET Framework method is actually faster than wait-
ing for Visual Basic to throw an exception and recover from a run-time error using an error handler.
However, you might note that a few file-related errors could still potentially occur during the call to
the Bitmap.FromFile function, such as an error related to file access permission.

Note To get the preceding program logic to work, the following statement must be in-
cluded in the declarations section at the very top of the page or form’s program code to
make reference to the .NET Framework class library that’s being invoked:

Imports System.IO

When should you use defensive programming techniques, and when should you use structured
error handlers? The answer is that you should use a combination of defensive programming and
structured error-handling techniques in your code. Defensive programming logic is usually the most
efficient way to manage potential problems. As I mentioned earlier when discussing the If…Then code
block, the File.Exists method is actually faster than using a Try…Catch error handler, so it also makes
sense to use a defensive programming technique if performance issues are involved.

394 part III Visual Basic programming techniques

You should use defensive programming logic for errors that you expect to occur frequently in
your program. Use structured error handlers for errors that you don’t expect to occur very often.
Structured error handlers are essential if you have more than one condition to test and if you want to
provide the user with numerous options for responding to the exception. Structured error handlers
also allow you to gracefully handle exceptions that you aren’t even aware of.

The Exit Try statement

You’ve established a good foundation for error handling in this chapter. Now it is time to put them to
work in your own applications. But before you move on, here is one more syntax option for Try…Catch
code blocks that you might find useful: the Exit Try statement. Exit Try is a quick (although slightly
abrupt) technique for exiting a Try…Catch code block prematurely. In this way Exit Try is similar to
the Exit For statement that you learned about in Chapter 12, “Creative decision structures and loops,”
which allows you to leave a loop early.

Using the Exit Try syntax, you can jump completely out of the current Try or Catch code block. If
there’s a Finally code block, this code will be executed, but Exit Try lets you jump over any remaining
Try or Catch statements that you don’t want to execute.

The following sample routine shows how the Exit Try statement would work in the Windows
desktop app that we have been experimenting with in this chapter. It first checks to see whether the
Enabled property of the TestImage object is set to False, a flag that might indicate that the picture box
isn’t ready to receive input. If the picture box isn’t yet enabled, the Exit Try statement skips to the end
of the Catch code block, and the file load operation isn’t attempted.

Try
 If TestImage.Enabled = False Then Exit Try
 TestImage.Image = System.Drawing.Bitmap.FromFile("e:\road.jpg")
Catch
 Retries += 1
 If Retries <= 2 Then
 MsgBox("Please insert the flash drive in drive E!")
 Else
 MsgBox("File Load feature disabled")
 CheckButton.Enabled = False
 End If
End Try

The example builds on the last error handler that you experimented with in this chapter. If you’d
like to test the Exit Try statement, open the Code Editor in the Drive Handler project and enter the If
statement that contains the Exit Try statement. You’ll also need to use the Properties window to dis-
able the picture box object on the form (that is, to set its Enabled property to False) before you run
the app.

 CHAPTER 13 Trapping errors by using structured error handling 395

Summary

Congratulations! You’ve added the construction of error handlers to your set of fundamental pro-
gramming techniques in Visual Basic. You learned how to manage run-time errors (or exceptions)
using the Try…Catch error handler and how to use the Exception object and its Message property. In
addition, you’ve learned how to build nested Try…Catch statements and use error handlers in combi-
nation with defensive programming techniques.

The error handling techniques that you’ve learned will apply equally to Windows Forms (Windows
desktop) and Windows Store applications. The Try…Catch code block syntax is the same in both
Windows platforms. As you move between the two environments, you’ll simply find that the excep-
tion names are different from platform to platform. In addition, the controls and objects that you
use in your apps are slightly different, so the types of exceptions that occur can have different
characteristics.

In the next chapter, you’ll return to data management issues, and you will learn more about using
arrays and collections to handle different types of information, including collections provided by
the .NET Framework. You’ll also create a Windows Store app that tracks and sorts names by using a
generic collection class.

 397

C H A P T E R 1 4

Using arrays, collections, and
generics to manage data

After completing this chapter, you will be able to

■■ Manage data in arrays of variables.

■■ Reorder arrays using the Array class’s Sort and Reverse methods.

■■ Use the ProgressBar control in a Windows Forms app to graphically depict how long a task is
taking.

■■ Create your own collections to manage names, addresses, dates, and numeric values.

■■ Use a For Each…Next loop to cycle through collection members.

■■ Use generic collections in the .NET Framework to create strongly typed structures such as lists,
queues, and hash tables.

Managing information in a Microsoft Visual Basic application is a very important task. As your
programs become more substantial and information-rich, you’ll need additional tools to store

and process data. The most comprehensive approach to storing and retrieving large amounts of data
is using databases and XML files, which you’ll learn about later in the book. However, before you get
there, there are some fundamental data-management techniques to learn.

In this chapter, you’ll explore Visual Basic’s core features related to arrays and collections. You’ll
learn how arrays are created and used, and you’ll practice using arrays to store different types of
data. You’ll also learn how to redimension arrays and preserve the data in arrays when you decide
to change an array’s size. To demonstrate how large arrays can be processed, you’ll use the Sort and
Reverse methods in the Microsoft .NET Framework’s Array class.

Sometimes, processing large arrays can take a little time. To help you manage the user’s expecta-
tions in a Windows Forms app, you’ll learn to use the ProgressBar control to give users an indica-
tion of how long a task is taking. You’ll also learn how to create collections in a Windows Store app
to store information and how to use generic collections to manage lists containing strongly typed
values. Finally, you’ll learn how to use a For Each…Next loop to work with the item in a collection. The
techniques that you study will provide a solid introduction to LINQ and the data management con-
cepts that you’ll investigate later in the book.

398 part III Visual Basic programming techniques

Working with arrays of variables

In this section, you’ll learn about arrays, an essential tool for storing lists of data during program
execution. Arrays expand on the concept of variables by assigning a name to an entire set of values
that are stored in-memory while a program runs. The developers of C, Pascal, BASIC, and other popu-
lar programming languages incorporated arrays into the earliest versions of these products to refer to
a group of values by using one name and to reference the values individually or collectively.

Arrays can help you track related sets of values in ways that are impractical using traditional
variables. For example, imagine creating a nine-inning baseball scoreboard in a program. To save
and recall the scores for each inning of the game, you might be tempted to create two groups
of 9 variables (a total of 18 variables) in the program. You’d probably name them something like
Inning1HomeTeam, Inning1VisitingTeam, and so on, to keep them straight. Working with these vari-
ables individually would take considerable time and space in your program. But Visual Basic allows
you to organize groups of similar variables into an array that has one common name and an easy-to-
use index for referencing the items. For example, you can create a two-dimensional array (two units
high by nine units wide) named Scoreboard to contain the scores for the baseball game. Let’s review
this fundamental concept and see how arrays can be put to use in a Windows-based application.

Creating an array
You create, or declare, arrays in program code just as you declare simple variables. As usual, the place
in which you declare the array determines where it can be used, or its scope, as follows:

■■ If you declare an array locally in a routine, you can use it only in that routine.

■■ If you declare an array near the top of a class, you can use the array throughout the page or
form.

■■ If you declare an array publicly in a code module, you can use it anywhere in the project.

When you declare an array, you typically include the information shown in Table 14-1 in your dec-
laration statement.

TABLE 14-1 Syntax elements for an array declaration

Syntax elements in array declaration Description

Array name The name you’ll use to represent your array in the pro-
gram. In general, array names follow the same rules as
variable names. (See Chapter 11, “Mastering data types,
operators, and string processing,” for more information
about variables.)

Data type The type of data you’ll store in the array. In most cases,
all the variables in an array are the same type. You can
specify one of the fundamental data types, one of your
own custom types, or if you’re not yet sure which type
of data will be stored in the array or whether you’ll store
more than one type, you can specify the Object type.

 CHAPTER 14 Using arrays, collections, and generics to manage data 399

Syntax elements in array declaration Description

Number of dimensions The number of dimensions that your array will contain.
Most arrays are one-dimensional (a list of values) or
two-dimensional (a table of values), but you can specify
additional dimensions if you’re working with a com-
plex mathematical model, such as a three-dimensional
shape. The number of dimensions in an array is some-
times called the array’s rank.

Number of elements The number of elements that your array will contain.
The elements in your array correspond directly to the
array index, and each dimension includes its own num-
ber of elements. The first array index is always 0 (zero).

Note In Visual Basic 6 and earlier versions of Visual Basic, there was a technical difference
between fixed-size arrays, which could hold a set number of elements, and dynamic arrays,
which could resized during the execution of a program. However, in Visual Basic .NET, there
is just one type of array (the resizable kind). The only real distinction is the timing that you
choose to declare the number of elements. I’ll discuss this distinction in the following sections.

Declaring an array with set elements
The basic syntax for an array with the number of elements set in advance is as follows:

Dim ArrayName(Dim1Index, Dim2Index, ...) As DataType

The following arguments are important:

■■ Dim is the keyword that declares the array. Use Public or other access modifier keywords
instead if you place the array in a code module.

■■ ArrayName is the variable name of the array.

■■ Dim1Index is the upper bound of the first dimension of the array, which is the number of ele-
ments minus 1. (Specifying the number of elements is optional, but it is required if you want
to set the number of elements during the declaration.)

■■ Dim2Index is the upper bound of the second dimension of the array, which is the number of
elements minus 1. (Additional dimensions can be included if they’re separated by commas.)
Again, specifying the number of elements is optional.

■■ DataType is the corresponding data type that will be included in the array.

For example, to declare a one-dimensional string array named Employees that has room for 10
employee names (numbered 0 through 9), you can type the following in an event handler:

Dim Employees(9) As String

400 part III Visual Basic programming techniques

In a code module, the same array declaration looks like this when the Public keyword is used:

Public Employees(9) As String

You can also explicitly specify the lower bound of the array as zero by using the following code in
an event handler:

Dim Employees(0 To 9) As String

This “0 to 9” syntax is included to make your code more readable—newcomers to your program
will understand immediately that the Employees array has 10 elements numbered 0 through 9.
However, the lower bound of the array must always be zero. You cannot use this syntax to create a
different lower bound for the array.

Setting aside memory
When you create an array, Visual Basic sets aside room for it in memory. The following illustration
shows conceptually how the 10-element Employees array is organized. The elements are numbered 0
through 9 rather than 1 through 10 because array indexes always start with 0.

To declare a two-dimensional array named Scoreboard that has room for two rows and nine col-
umns of Short integer data, you can type the following statement in an event handler or at the top of
the page or form:

Dim Scoreboard(1, 8) As Short

Using the syntax that emphasizes the lower (zero) bound, you can also declare the array as follows:

Dim Scoreboard(0 To 1, 0 To 8) As Short

 CHAPTER 14 Using arrays, collections, and generics to manage data 401

After you declare such a two-dimensional array and Visual Basic sets aside room for it in memory,
you can use the array in your program as if it were a table of values, as shown in the following illustra-
tion. (In this case, the array elements are numbered 0 through 1 and 0 through 8.)

Working with array elements
To refer to an element of an array, you use the array name and an array index enclosed in parenthe-
ses. The index must be an integer or an expression that results in an integer. For example, the index
could be a number such as 5, an integer variable such as num, or an expression such as num-1. (The
counter variable of a For…Next loop is often used.) For example, the following statement assigns the
value “Leslie” to the element with an index of 5—the sixth element—in the Employees array example
in the previous section:

Employees(5) = "Leslie"

This statement produces the following result in our Employees array:

402 part III Visual Basic programming techniques

Similarly, the following statement assigns the number 4 to row 0, column 2 (the top of the third
inning) in the Scoreboard array example in the previous section:

Scoreboard(0, 2) = 4

This statement produces the following result in our Scoreboard array:

You can use these indexing techniques to assign any array element.

Declaring an array and assigning initial values
It is also common for programmers to declare an array, set the number of elements, and assign the
array initial values at the same time. This statement syntax is somewhat parallel to what you learned
about assigning an initial value to a variable at the moment of declaration, and it is useful when you
know in advance just how large an array needs to be and what its contents are.

To create an array in this way, you use what is known as an array literal. An array literal consists of a
list of comma-separated values that are enclosed in braces ({}). When using this syntax, you can either
supply the array type or let Visual Basic use type inference to determine what type the array should
be. For example, to declare a one-dimensional array named Musicians of type String and fill it with six
names, you would use the following syntax:

Dim Musicians() As String = {"Greg", "George", "Steve", "Eric", "Steve", "Mike"}

Note that the size of this array is determined automatically by Visual Basic when Musicians is
declared. In addition, if you don’t indicate an array data type, Visual Basic will use type inference to
determine the right array data type for you. Obviously if all the values are the same type, it should be
clear to the compiler what data type should be used for the array. But if there is a mixture of types,
such as an assortment of integer, single, and double-precision numbers, Microsoft Visual Studio will
pick a data type for the array that is large enough to accommodate all the values. In many cases, this
will be the data type Object because Object variables (and arrays) are specifically designed to hold any
type of data.

The following statement declares an array named Investments and uses an array literal to add four
values to the array when it is created. Because no type is specified, Visual Basic evaluates the array
elements and determines that in this case, the Object type is most appropriate.

Dim Investments() = {5000, 20350.50, 499.99, 10000}

 CHAPTER 14 Using arrays, collections, and generics to manage data 403

Note If the compiler’s Option Infer setting is set to On (or the Option Infer On statement is
used in Visual Basic code), the Double type will be specified when the preceding statement
is executed. See Chapter 2, “The Visual Studio Integrated Development Environment,” for
help adjusting this setting.

A multidimensional array can also be declared using array literals, although you need to list the
elements in the proper order (that is, row 0 first, then row 1, row 2, and so on). For example, the fol-
lowing statement declares a two-dimensional array named Box and assigns four values to the array:

Dim Box = {{10, 20}, {50, 60}}

This array has two rows and two columns. Array element (0, 0)—that is, row 0, column 0—now
contains a value of 10, and element (0, 1)—that is, row 0, column 1—now contains a value of 20. Also,
notice that there are three sets of braces used in the declaration; these braces clarify which elements
are being assigned and keep them in the proper order.

The following screen shot shows the Visual Studio Code Editor with the three examples of array lit-
eral declarations that I have shown in this section. Notice that the Code Editor is in debugging mode
(or break mode) and that the Watch window is visible and shows the contents of the Musicians array.
A For…Next loop is also being used to display the contents of the Musicians array in a XAML TextBox
object named ArrayContentTextBox.

404 part III Visual Basic programming techniques

Creating an array to hold temperatures
The following exercise uses a one-dimensional array named Temperatures to record the daily high
temperatures for a seven-day week. The Windows Store app demonstrates how you can use an array
to store and process a group of related values on a page. The Temperatures array variable is declared
at the top of the page, and then temperatures are assigned to the array by using an event handler
that uses a variable named count for the array index. The array contents are then displayed on the
page by using a For…Next loop and a text box object.

the GetUpperBound and GetLowerBound methods
To simplify working with the array, the Array Input program uses the GetUpperBound method sup-
plied by the .NET Framework to check for the upper bound, or top index value, of the array. With
GetUpperBound, you can process arrays without referring to the declaration statements that defined
exactly how many values the array would hold.

The closely related GetLowerBound function, which confirms the lower index value, or lower
bound, of an array, is also available to you. However, because all Visual Basic arrays have a lower
bound of zero (0), the function almost always returns a value of 0. The “almost” qualification allows for
the fact that the .NET Framework does technically support arrays that are not zero-based, although
they are not typically used in Visual Basic. Such arrays are created with the Array.CreateInstance
method, but the technique will not be demonstrated in this chapter.

The GetUpperBound and GetLowerBound methods have the syntax

ArrayName.GetUpperBound(dimension)
ArrayName.GetLowerBound(dimension)

where ArrayName is the name of an array that’s been declared in the project and dimension is the
dimension within the array that you want to determine a bounds for. (Yes, keep in mind that arrays
can and often do have multiple dimensions!) When you are specifying the dimension argument, use
an integer value and remember that the first dimension is 0, the second dimension is 1, and so on.

Let’s try it out.

Use a one-dimensional array

1. Start Visual Studio, and create a new Visual Basic/Windows Store app named My Array Input.

2. At the top of the page, create a TextBlock object containing the descriptive text “Enter 7 tem-
peratures (one at a time)”.

3. Below the TextBlock object, create a small TextBox object suitable for numeric input on the
page.

Users will enter one temperature at a time in this text box and then add it to the array.

 CHAPTER 14 Using arrays, collections, and generics to manage data 405

4. Below the temperature text box, create two Button objects.

The first button object will add temperatures to the array. The second button object will dis-
play the entire contents of the array.

5. Create a second (larger) TextBox object to the right of the objects you have created. Orient the
text box vertically (with more height than width) so that it has room for a dozen rows or so of
temperature data.

6. Set the following properties for the five XAML Toolbox controls on the page:

Object Property Setting

TextBlock Name Directions

Text “Enter 7 temperatures (one at a
time)”

FontSize 16

TextBox Name TempInput

Text “”

Button Name AddButton

Content “Add Temp to Array”

Button Name DisplayButton

Content “Display Array”

TextBox Name TempOutput

Text “”

Your page should now look like this:

406 part III Visual Basic programming techniques

7. Double-click the AddButton object (the first button on the page).

8. Visual Studio creates an event handler named AddButton_Click and opens the MainPage.xaml.
vb code-behind file in the Code Editor.

Now you’ll declare an array and a variable at the top of the page and then create the
AddButton_Click event handler.

9. Scroll to the top of the Code Editor, and move the insertion pointer below the Inherits Page
statement. Type the following two lines of code:

Dim Temperatures(0 To 6) As Single
Dim count As Short = 0

The first statement creates an array named Temperatures (of the type Single) that contains
seven elements numbered 0 through 6. Because the array has been declared at the top of
the page, it is available for use (that is, it maintains its value) in all the event handlers in the
page. A counter variable named count is also declared here and assigned a value of 0. (The 0
corresponds to the first element in the Temperatures array.) Counter variables are commonly
used to step through an array. As you’ll see below, another useful tactic for stepping through
an array is a For…Next loop.

Although this particular Visual Basic program is a Windows Store app, there is nothing unique
about declaring an array in this development platform. The process is identical in a Windows
Forms (Windows desktop) app or a Windows Phone app because arrays are a built-in feature
of the Visual Basic language. You would just declare your array at the top of the form in a
Windows Forms app, placing the declaration below the Public Class Form1 statement.

10. Scroll back down to the AddButton_Click event handler in the Code Editor, and then enter the
following routine there to fill the Temperatures array with data from the user:

Temperatures(count) = TempInput.Text
Directions.Text = "Enter " & _
 Temperatures.GetUpperBound(0) - count & " more temperatures"
If count = Temperatures.GetUpperBound(0) Then
 AddButton.IsEnabled = False
Else
 count = count + 1
End If

This event handler runs when the user clicks the AddButton object. It is designed to add
temperature values one at a time to the Temperatures array. The first line of code takes the
temperature that the user has entered into the TempInput text box and assigns it to the array
using the count variable as the array index. Because this variable is initialized with a value of
0 when the page is loaded, count corresponds to the first array index the first time the event
handler is called. Note that the user can enter a temperature in Fahrenheit or Celsius and that
the value can be an integer or a value with a decimal point, such as 74.5. (However, the code
assumes that the input is a numeric value; you would need to add additional program logic to

 CHAPTER 14 Using arrays, collections, and generics to manage data 407

verify that the input is of the proper type if you are concerned that a user might intentionally
try to crash the program.)

The second line of the event handler updates the text block object so that it displays the
remaining number of temperatures that should be entered. This information is determined
by evaluating the array with the GetUpperBound method, which returns the upper bound of
the array. (The 0 value in parentheses after this method indicates that you are inquiring about
the first dimension in the array.) The value returned by GetUpperBound will be 6 in this case,
because the array has a lower bound of 0 and an upper bound of 6. The number of remain-
ing temperature locations is calculated by subtracting the current array index (count) from the
upper bound of the array. The text block is then configured with this information.

Near the bottom of the routine, the count variable is incremented by one in the Else clause of
an If…Then…Else structure. This modification of the counter variable prepares the program to
reference the next array element when the event handler is called again. However, when the
array is full (when the count variable equals the upper bounds of the array), the AddButton
object is disabled on the page, prohibiting additional storage. The user’s only remaining
option will be to display the contents of the array by using the Display Array button.

Now you need to create the program logic for the Display Array button, named DisplayButton
in the project.

11. Display the MainPage.xaml page again in the Designer, and then double click the
DisplayButton object on the page.

12. Visual Studio creates an event handler named DisplayButton_Click and opens the page’s code-
behind file again.

13. Type the following statements in the DisplayButton_Click event handler:

Dim i As Short
TempOutput.Text = ""
For i = 0 To Temperatures.GetUpperBound(0)
 TempOutput.Text &= Temperatures(i) & vbCrLf
Next

This event handler clears the TempOutput text box and then uses a For…Next loop to cycle
through the elements in the array, adding each element in the array to the text box. The
shortcut concatenation (&=) operator is used to combine the list of array elements with
whatever is already in the text box. This means that you can click the button more than once,
and each time you will see a fresh series of array values in the text box. You can examine these
elements by using the direction keys, if some are not visible. As you have already seen in this
book, the vbCrLf constant creates new lines so that the elements in the array are appropriately
separated from one another.

A For…Next loop is a perfect tool to display the contents of an array when you know the num-
ber of elements in advance. This is because the loop’s ending point can be readily set to the
array’s upper bound, a value that programmers can determine by using the GetUpperBound
method.

408 part III Visual Basic programming techniques

14. Click the Save All button on the Standard toolbar to save the project. Specify the My
Documents\Visual Basic 2013 SBS\Chapter 14 folder as the location.

Now you’ll run the program.

15. Click the Start button to run the Windows Store app.

16. Type the number 71 in the temperature box on the page, and then click the Add Temp To
Array button.

Your screen will look like this:

17. Replace 71 in the temperature box with the number 72, and then click Add Temp To Array
again.

18. Continue inserting temperatures in the array, using the text block at the top of the page to
keep track of the remaining spaces in the Temperatures array.

For testing purposes, I recommend that you use a simple series of temperature values that you
can remember easily so that you can recall them when you display the array again (something
like the series 71, 72, 73, 74, 75, 76, and 77). Be sure to click the Add Temp To Array button
after each value.

When you’re finished with the sequence, you’ll notice that the Add Temp To Array button is
dimmed and no longer available. The array is full.

 CHAPTER 14 Using arrays, collections, and generics to manage data 409

19. Now click Display Array to display the contents of the Temperatures array.

Your screen will look similar to this:

If you see these results, it means that your app has correctly stored the temperature informa-
tion and that the For…Next loop is displaying it on the page appropriately. If you click Display
Array again, the array contents will be displayed in the text box again.

Although this example didn’t add more lines to the text box than could be displayed, you
might want to plan for that situation. If you like, you can also add the following XAML markup
to the TempOutput object in the XAML pane of the Designer, which will add a vertical scroll
bar to the text box when the program runs:

ScrollViewer.VerticalScrollBarVisibility="Visible"

20. Close the program.

It’s time to experiment with another fundamental array type.

Setting an array’s size at runtime

As you have learned, arrays are well suited for managing lists of numbers, especially if you manipulate
them with counter variables or a For…Next loop. But what if you’re not sure how much array space
you’ll need before you run your program? For example, what if you want to let the user choose how
many temperatures are entered into the Array Input program?

410 part III Visual Basic programming techniques

Visual Basic .NET arrays are designed to handle this type of computing scenario with ease. You
simply leave out the size of the array when the array is declared, and then you use the ReDim state-
ment to set the number of array elements when they are known at runtime. To create such an array,
you would follow these basic steps:

1. Specify the name and type of the array in the program at design time, omitting the number of
elements in the array. For example, to create an array named Temperatures, you type:

Dim Temperatures() As Single

2. Add code to determine the number of elements that should be in the array at run time. You
can prompt the user by using a text box, or you can calculate the storage needs of the pro-
gram by using properties or other logic. For example, the following statements in a Windows
Forms app get the array size from the user and assign it to the Days variable of type Short:

Dim days As Short
days = InputBox("How many days?", "Create Array")

This logic shows off the simple but effective InputBox function, which is available only to
Windows Forms apps. (In a Windows Store app, you would typically use a text box or App Bar
feature to request the integer value.)

3. Use the integer variable in a ReDim statement to dimension the array, subtracting 1 because
arrays in Visual Basic are zero-based. For example, the following statement sets the size of the
Temperatures array at run time by using the days variable:

ReDim Temperatures(days - 1)

Important With ReDim, you should not try to change the number of dimensions in
an array that you’ve previously declared.

4. Use the GetUpperBound method to determine the upper bound in a For…Next loop, and pro-
cess the array elements as needed. For example, you could do this:

For i = 0 to Temperatures.GetUpperBound(0)
 Temperatures(i) = InputBox(prompt, title)
Next

In the following exercise, you’ll use the preceding steps to revise the Array Input program so that it
can process any number of temperatures by using an array. The new program will be named Variable
Elements Array, and you can load it into Visual Studio and examine it when you want to.

 CHAPTER 14 Using arrays, collections, and generics to manage data 411

Use ReDim to change the size of an array

1. With the Array Input project still open, display the Code Editor and scroll to the top of the
page where you originally declared the Temperatures array.

2. Remove 0 To 6 from the Temperatures array declaration so that the array is now resizable.

The statement looks like the following:

Dim Temperatures() As Single

3. Display the page in the Designer.

4. Change the Text property of the Directions text block to “Use Create Array text box and but-
ton to set number of array elements”.

5. Click the AddButton object (the button containing the text Add Temp To Array), and in the
Properties window, remove the check mark from the IsEnabled check box.

You’ll find this check box under the Common category if you fully expand it. By disabling this
button when the program first starts, you will force the user to dimension the Temperatures
array first. (After that step is done, the program will then reenable the button.)

6. Click the DisplayButton object (the button containing the text Display Array), and in the
Properties window, remove the check mark from the IsEnabled check box.

This button should also be disabled when the program first starts.

7. Create a new (small) text box object and button object on the page below the other objects in
the program.

8. Name the text box ArrayElements, and remove the text from the text box.

You’ll use this text box to enter the number of elements that the array can hold. Because
this text box is the first object on the page that you want the user to manipulate, you’ll set
its TabIndex property to 0 in the XAML markup so that the object gets the focus when the
program runs. This technique, introduced in the book for the first time, is something that you
can use whenever you want to draw the user’s attention to an object on the page. And if you
like, you can set the TabIndex property for other items so that they receive the focus next if
the user presses the Tab key.

9. In the XAML markup for the new ArrayElements text box, insert the following markup:

TabIndex="0"

412 part III Visual Basic programming techniques

10. Name the new button object that you added to the page CreateArrayButton, and change its
Content property to Create Array.

Your updated page will look like this:

Now you’ll add an event handler to redimension the Temperatures array.

11. Double-click the CreateArrayButton object in the Designer.

12. Visual Studio creates an event handler named CreateArrayButton_Click and opens the page’s
code-behind file.

13. Type the following statements in the CreateArrayButton_Click event handler:

Dim days As Short = 0
days = ArrayElements.Text
If days > 0 Then ReDim Temperatures(days - 1)
count = 0
TempOutput.Text = ""
Directions.Text = "Enter " & days & " temperatures (one at a time)"
TempInput.Focus(FocusState.Programmatic)
AddButton.IsEnabled = True
DisplayButton.IsEnabled = True

 CHAPTER 14 Using arrays, collections, and generics to manage data 413

A new variable named days is declared and loaded with the number of array elements from
the user’s input in the ArrayElements text box. Then an If…Then decision structure is used to
verify that the number of days is greater than zero. (Dimensioning an array with a number less
than zero or equal to zero generates an error.) Because array index 0 is actually used to store
the temperature for the first day, the days variable is decremented by 1 when dimensioning
the array.

The count variable is then reset and the TempOutput text box is cleared. These actions are
performed only to handle situations in which more than one array is created and filled with
data in the program. An updated message is also printed in the Directions text box with the
number of temperatures that need to be entered.

The routine then uses two new program statements, which are relatively straightforward. First,
the input focus on the page is changed to the TempInput text box using the Focus method
and the FocusState.Programmatic value. Use this technique with any XAML control on the
page if you want to change the focus (that is, the insertion point or selection) to a specific
item.

Next the AddButton and DisplayButton objects are enabled for input using the IsEnabled
method. This is useful because, when the program starts, both buttons are in a disabled state.
In addition, the AddButton object can be disabled by the AddButton_Click event handler.

Keep in mind that after the array is filled with data, the CreateArrayButton_Click event handler
can redimension the array and prepare it for another round of temperatures.

Finally, it is important to note that the AddButton_Click and DisplayArray_Click event han-
dlers that you built for the Fixed Array Temps program will run unmodified in this updated
program. You have simply added a new text box and button to redimension the array. The
features that add information to the array and change it work fine as they are.

14. Save your changes to disk.

The revised project is named Variable Elements Array in the My Documents\Visual Basic 2013
SBS\Chapter 14 folder.

15. Click the Start Debugging button to run the program.

The program runs, and this time the AddButton and DisplayButton objects are disabled.

16. Type the number 5 in the second text box to indicate that you plan to enter temperatures for
five days.

17. Click the Create Array button.

18. Enter five temperatures, one by one, into the top text box. Click Add Temp To Array once for
each new temperature.

This time you might try values with decimal places, such as 70.5, 71, 72.5, 73, and 73.5.

414 part III Visual Basic programming techniques

19. When you’ve finished entering temperatures, click Display Array.

The program displays the five temperatures on the page. Your screen looks similar to the fol-
lowing illustration:

20. Continue experimenting with the Variable Elements Array program.

If you like, you can redimension the array again by putting a new number in the Create Array
text box and clicking Create Array.

21. When you’re finished, close the program.

You may discard your changes if you like, because I have created the Variable Elements Array
project for you on disk.

Alright—you’ve practiced fundamental array operations in Visual Basic. Now we’ll move on to
some more sophisticated practices, including using ReDim Preserve and methods in the Array class of
the .NET Framework.

Preserving array contents by using ReDim Preserve

In the previous exercise, you used the ReDim statement to specify the size of an array at run time.
However, one potential shortcoming associated with the ReDim statement is that if you redimension
an array that already has data in it, all the existing data in the array is lost. After the ReDim statement
is executed, the contents of the array are set to their default value, such as zero or null. Depending on
your outlook, this can be considered a useful feature for emptying the contents of arrays, or it can be
an irksome feature that requires a workaround.

 CHAPTER 14 Using arrays, collections, and generics to manage data 415

Fortunately, Visual Basic provides the Preserve keyword, which you use to retain the data in an
array as much as possible when you change its dimensions. (However, if you use ReDim to create a
smaller array, you will lose the data that no longer fits in the resized array.) The syntax for the Preserve
keyword is as follows:

ReDim Preserve ArrayName(Dim1Elements, Dim2Elements, ...)

In such a ReDim statement, the array must continue to have the same number of dimensions and
contain the same type of data. In addition, there’s a caveat that you can resize only the last array dimen-
sion. For example, if your array has two or more dimensions, you can change the size of only the last
dimension and still preserve the contents of the array. (Single-dimension arrays automatically pass this
test, so you can freely expand the size of one-dimensional arrays by using the Preserve keyword.)

The following examples show how you can use Preserve to increase the size of the last dimension
in an array without erasing any existing data contained in the array.

If you originally declared a string array named Philosophers by using the syntax:

Dim Philosophers() As String

you can redimension the array and add data to it by using code similar to the following:

ReDim Philosophers(200)
Philosophers(200) = "David Probst"

You can expand the size of the Philosophers array to 301 elements (0–300) and preserve the exist-
ing contents, by using the following syntax:

ReDim Preserve Philosophers(300)

Using ReDim for three-dimensional arrays
A more complex example involving a three-dimensional array uses a similar syntax. Imagine that you
want to use a three-dimensional, single-precision, floating-point array named MyCube in your pro-
gram. You can declare the MyCube array by using the following syntax:

Dim MyCube(,,) As Single

You can then redimension the array and add data to it by using the following code:

ReDim MyCube(25, 25, 25)
MyCube(10, 1, 1) = 150.46

after which you can expand the size of the third dimension in the array (while preserving the array’s
contents) by using the following syntax:

ReDim Preserve MyCube(25, 25, 50)

However, in this example, only the third dimension can be expanded—the first and second dimen-
sions cannot be changed if you redimension the array by using the Preserve keyword. Attempting to

416 part III Visual Basic programming techniques

change the size of the first or second dimension in this example produces a run-time error when the
ReDim Preserve statement is executed.

Experiment a little with ReDim Preserve, and see how you can use it to make your own arrays flex-
ible and robust.

Processing large arrays by using methods in the Array class

In previous sections, you reviewed the essential concepts about arrays and how they are used to
store information in a Visual Basic program. In this section, you’ll learn about powerful methods
in the Array class of the .NET Framework, which allow you to quickly sort, search, and reverse the
elements in an array. The sample program I’ve created demonstrates how these features work with
larger arrays. You’ll also learn how to use the ProgressBar control, a handy tool in the Windows Forms
Toolbox designed to provide visual feedback in Windows desktop applications.

the Array class
When you create arrays in Visual Basic, you are using a base class that is defined by Visual Basic for
implementing arrays within user-created programs. This Array class also provides a collection of
methods that you can use to manipulate arrays while they are active in programs. The most use-
ful methods include Array.Sort, Array.Find, Array.Reverse, Array.Copy, and Array.Clear. You can
locate other interesting methods by experimenting with the Array class in the Code Editor (by using
Microsoft IntelliSense) and by checking the MSDN resources online.

The Array class methods function much like the .NET Framework methods you have already used
in this book; that is, they are called by name and (in this case) require a valid array name as an argu-
ment. They are also part of a namespace that is included automatically in Visual Basic programs.

For example, to sort an array of temperatures (such as the Temperatures array that you created in
the previous exercise), use the following syntax:

Array.Sort(Temperatures)

You would make such a call after the Temperatures array had been declared and filled with data in
the program. When Visual Basic executes the Array.Sort method, it uses a sorting routine to reor-
ganize the array in alphanumeric order. After the sort is complete, the original array is ordered in
ascending order, with the smallest value in array location 0 and the largest value in the last array loca-
tion. With the preceding Temperatures example, the sort would produce an array of daily tempera-
tures organized from coolest to hottest.

In the following exercise, you’ll see how the Array.Sort and Array.Reverse methods can be used
to quickly reorder a large array containing six-digit numbers randomly selected between 0 and
1,000,000. You’ll also experiment with the ProgressBar control, which provides useful visual feed-
back for the user during long sorts or other time-consuming operations. This ProgressBar control is
a component in the Windows Forms Toolbox designed for Windows desktop applications. (You can

 CHAPTER 14 Using arrays, collections, and generics to manage data 417

add something similar to your Windows Store apps if you use the XAML ProgressBar or ProgressRing
controls, located in the XAML Toolbox for Windows Store apps.)

Use Array methods to sort an array of 3,000 elements

1. On the File menu, click Open Project, and then open the Array Class Sorts project, a Windows
desktop app located in the My Documents\Visual Basic 2013 SBS\Chapter 14 folder.

2. Display the form if it is not already visible.

The program’s user interface looks like this:

This form contains three command buttons and a sample text box for displaying array data.
It also contains a progress bar object that will provide the user feedback during longer array
operations. Visual feedback in a progress bar is especially useful when computations take lon-
ger than a few seconds to complete. This program begins to show such a delay when an array
of 3,000 array elements or more is sorted.

3. Click the progress bar on the form.

The ProgressBar object is selected on the form and is listed in the Properties window. I created
the progress bar object by using the ProgressBar control on the Common Controls tab in the
Windows Forms Toolbox. A progress bar is designed to display the progress of a computation
by displaying an appropriate number of colored rectangles arranged in a horizontal progress
bar. When the computation is complete, the bar is filled with rectangles. (A smoothing effect
is applied so that the progress bar is gradually filled with a solid band of color—an especially
attractive effect.) You’ve probably seen the progress bar many times while you downloaded
files or installed programs within Windows. Now you can create one in your own programs!

The important properties that make a progress bar work are the Minimum, Maximum, and
Value properties, and these are typically manipulated using program code. (The other prog-
ress bar properties, which you can examine in the Properties window, control how the progress
bar looks and functions.) You can examine how the Minimum and Maximum properties are set
by looking at this program’s Form1_Load event handler.

418 part III Visual Basic programming techniques

4. Double-click the form to display the Form1_Load event handler.

You see the following code:

For a progress bar to display an accurate indication of how long a computing task will take to
complete, you need to set relative measurements for the beginning and the end of the bar.
This is accomplished with the Minimum and Maximum properties, which are set to match the
first and the last elements in the array that we are building.

As I have noted, the first array element is always zero, but the last array element depends on
the size of the array, so I have used the GetUpperBound method to return the top index value
of the array and set the progress bar Maximum property accordingly. The array that we are
manipulating in this exercise is RandArray, a Long integer array declared initially to hold 500
elements (0 to 499).

5. Click the Start Debugging button to run the program.

The program runs, and the Array Class Sorts form opens on the screen. In its Form1_Load
event handler, the program declared an array named RandArray and dimensioned it with 500
elements. A progress bar object was calibrated to track a calculation of 500 units (the array
size), and the number 500 appears to the right of the progress bar (the work of a label object
named BarMax and the GetUpperBound method).

 CHAPTER 14 Using arrays, collections, and generics to manage data 419

6. Click the Fill Array button.

The program loads RandArray with 500 random numbers (derived by the Rnd function, a
member of the VBMath class), and displays the numbers in the text box. As the program
processes the array and fills the text box object with data, the progress bar slowly fills with the
color green. Your screen looks like this when the process is finished:

The code that produced this result is the FillButton_Click event handler, which contains the
following program statements:

'Fill the array with random numbers and display in text box
Private Sub FillButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles FillButton.Click
 Dim i As Integer
 For i = 0 To RandArray.GetUpperBound(0)
 RandArray(i) = Int(Rnd() * 1000000)
 Results.Text = Results.Text & RandArray(i) & vbCrLf
 ProgressBar.Value = i 'move progress bar
 Next i
End Sub

To get random numbers that are integers, I used the Int and Rnd functions together, and I
multiplied the random number produced by Rnd by 1,000,000 to get whole numbers that
are six digits or less. (The Rnd function is an alternative to the random number generator
first described in Chapter 3, “Creating your first Windows Store application.”) Assigning these
numbers to the array is facilitated by using a For…Next loop with an array index that matches
the loop counter (i).

Filling the array is an extremely fast operation; the slowdown (and the need for the prog-
ress bar) is caused by the assignment of array elements to the text box object one at a time.
This involves updating a user interface component on the form 500 times, and the process
takes a few seconds to complete. (In production code, it would be more typical to use the
StringBuilder class in the .NET Framework to assemble strings in this manner. However, the
example is instructional, and the delay provides a way for me to show off the ProgressBar
control.) Because the progress bar object has been calibrated to use the number of array

420 part III Visual Basic programming techniques

elements as its maximum, assigning the loop counter (i) to the progress bar’s Value property
allows the bar to display exactly how much of the calculation has been completed.

7. Click the Sort Array button.

The program follows a similar process to sort RandArray, this time using the Array.Sort
method to reorder the array in ascending order. (The 500 elements are listed from lowest to
highest.) Your screen looks like this:

The code that produced this result is the SortButton_Click event handler, which contains the
following program statements:

'Sort the array using the Array.Sort method and display
Private Sub SortButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles SortButton.Click
 Dim i As Integer
 Results.Text = ""
 Array.Sort(RandArray)
 For i = 0 To RandArray.GetUpperBound(0)
 Results.Text = Results.Text & RandArray(i) & vbCrLf
 ProgressBar.Value = i 'move progress bar
 Next i
End Sub

This event handler clears the text box object when the user clicks the Sort Array button, and
it then sorts the array by using the Array.Sort method described earlier. The sorting process is
very quick. Again, the only slowdown is rebuilding the text box object one line at a time in the
For…Next loop, a process that is reported by the ProgressBar object and its Value property.
See how simple it is to use the Array.Sort method?

8. Click the Reverse button.

The program uses the Array.Reverse method to manipulate RandArray, reordering the array
in backward or reverse order; that is, the first element becomes last and the last element
becomes first.

 CHAPTER 14 Using arrays, collections, and generics to manage data 421

Note This method does not always produce a sorted list; the array elements are in
descending order only because RandArray had been sorted previously in ascending
order by the Array.Sort method. (To examine the list more closely, use the scroll bars
or the arrow keys.)

Your screen looks like this:

The code that produced this result is the ReverseButton_Click event handler, which contains
the following program statements:

'Reverse the order of array elements using Array.Reverse
Private Sub ReverseButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles ReverseButton.Click
 Dim i As Integer
 Results.Text = ""
 Array.Reverse(RandArray)
 For i = 0 To RandArray.GetUpperBound(0)
 Results.Text = Results.Text & RandArray(i) & vbCrLf
 ProgressBar.Value = i 'move progress bar
 Next i
End Sub

This event handler is identical to the SortButton_Click event handler, with the following
exception:

Array.Sort(RandArray)

has become:

Array.Reverse(RandArray)

9. Click the Stop Debugging button to end the program.

422 part III Visual Basic programming techniques

10. Scroll to the top of the Code Editor, and locate the program statement that declares the
RandArray array:

Dim RandArray(0 To 499) As Long

11. Replace 499 in the array declaration statement with 2999.

The statement now looks like this:

Dim RandArray(0 To 2999) As Long

12. Run the program again to see how declaring and filling an array with 3,000 elements affects
program performance.

Because processing 3,000 elements is much more work, Visual Basic takes a little while to
update the text box object again and again as you fill, sort, and reverse RandArray. However,
the progress bar keeps you posted, and you can see that with just a small change, you can
adapt what you’ve learned in this chapter to different situations. (The secret was using the
GetUpperBound method to report the size of the array to the program’s event handlers, rather
than hard-coding the upper bound at 499.)

Get your sort on
You can further experiment with this program by adding a Randomize statement to the Form1_Load
event handler (to make the results truly random each time that you run the program) or by trying
additional array sizes and array types. (For example, try an array size of 100, 800, 2,000, or 5,000
elements.)

If you try larger numbers, you’ll eventually exceed the amount of data that the text box object can
display, but it takes a while before you exceed the maximum array size allowed by Visual Basic.

If you want to focus on array operations without displaying the results, place a comment character
(‘) before each line of code that manipulates a text box object to comment out the text box (but not
the progress bar) portions of the program. You’ll be amazed at how fast array operations run when
the results do not need to be displayed on the form. (An array of 100,000 elements loads in just a few
seconds.)

Working with collections

In this section, you’ll learn about collections, a powerful mechanism for controlling data and objects
that is closely related to the concept of arrays. Collections are part of the .NET Framework base class
libraries, and the .NET Framework also provides a number of collections and collection-related tools
that you can use to enhance your applications. You can use the Visual Studio Object Browser to search
your system for collections, and this is one of the important ways to learn about operating system
features and how you can access them.

 CHAPTER 14 Using arrays, collections, and generics to manage data 423

In the .NET Framework, the Collections namespace is a component within the System namespace.
Collections contains classes that you can use to work with lists of objects, as well as complex data
structures. Collections have a lot in common with arrays conceptually, but you do not need to redi-
mension a collection when you want to add additional items to it; you simply use the Add method (or
one of the methods equivalent to Add).

Collections can be used to store simple lists of data, such as names, addresses, or dates. For some
collections, you can assign a key to an item that you put into the collection so that you can quickly
retrieve the object by using the key. Each collection in a program has its own name so that you can
reference it as a distinct unit in the program code.

Table 14-2 shows some of the classes in the Collections namespace that can help you create and
maintain lists and other structures in Visual Basic code. You can start using these classes when you
understand the basic syntax of collections and how they are manipulated in Visual Basic.

TABLE 14-2 A few useful classes for maintaining lists in the System.Collections namespace

Class Description

ArrayList Simple list that functions like a dynamic array.

BitArray Compact array of bit values, which are represented as Boolean values.

Dictionary A list of key/value pairs that are organized based on the key.

Hashtable List of key/value pairs that are organized based on the hash code of the key.

List A basic list of values that can be accessed by an index.

Queue List of values that is organized first in, first out.

SortedList List of values sorted by one or more indices.

Stack List of values that is organized last in, first out.

Creating collections and generic lists
Within the .NET Framework are many collections that you can access and manipulate in your pro-
grams. However, you can also create your own collections to track information and work with it in a
systematic way. Although collections are sometimes created to hold objects, such as user interface
controls, you can also use collections to store names, dates, and numeric values while a program is
running. In this way, collections complement and expand upon the capabilities provided by arrays.

In the .NET Framework, some of the most useful collections are referred to as generic collections.
Generic collections are defined in template form with the data type listed as an argument. This means
that generic collections are data type specific, so they enforce type safety better than less structured
collections of type Object. Therefore, when you retrieve an element from a generic collection that has
not been specifically defined using the Object type, you do not have to determine its data type or
convert it—its type is already authenticated. In addition, Microsoft claims that generic collections are
faster in memory than other collections, so there is a speed benefit to using them.

The term generic might need some additional explanation. In essence, the term means that you
declare a collection with a general-purpose template that identifies the structure of the collection.

424 part III Visual Basic programming techniques

The particular data type of the collection is included as an argument, and all of the standard data
types in Visual Basic can be used. A common analogy that Microsoft offers for a generic collection
declaration is a screwdriver set that contains a basic screwdriver tool with an assortment of removable
heads used to customize the screwdriver. In this analogy, the basic screwdriver tool is the template
that has many standard features and techniques associated with operating a screwdriver. However,
within the tool set are also removable heads for different types of screws (slotted, crossed, starred,
and so on). These removable heads are the various data type arguments that allow the generic
screwdriver tool to be customized to fit a particular application. As a programmer, you simply use the
tool in the way that you would normally use (or call) it. That is, the generic tool is easily customized to
different situations.

This concept of generic templates, or coding techniques, is an important one in Visual Studio.
Beyond collections, generics, or generic coding strategies, have been applied to how new classes,
structures, interfaces, procedures, and delegates are defined and used. It is therefore important to
understand the concept and begin to work with it as a Visual Basic programmer. By defining com-
mon features and functionality and then applying them to specific types and situations, you will save
development time and reduce errors.

Declaring generic collections
The .NET Framework provides a number of generic collection classes in the System.Collections.Generic
and System.Collections.ObjectModel namespaces. You can use these classes to declare generic collec-
tions that are powerful and very easy to use.

For example, to declare a generic list of items named MyFavoriteCollection in the String data type,
you would use the following syntax:

Dim MyFavoriteCollection As New Generic.List(Of String)

A list is a basic collection of items, much like an array. In the Visual Studio documentation, you
will sometimes see such a structure referred to as a List (Of T) where the letter T is a placeholder (or
template) for an argument that specified the data type of the collection.

You could then add items to this list by using syntax like the following:

MyFavoriteCollection.Add("Rocking Chair")

Note that the MyFavoriteCollection list above will accept values only of type String. Other values,
unless they can be represented in String format, will produce a run-time error when assigned to the
collection. However, unlike a String array, which you experimented with earlier in the chapter, you do
not need to know how many elements the list will contain when you declare it.

To create a generic list of Integer values, you would type:

Dim MyFavoriteIntegers As New Generic.List(Of Integers)

 CHAPTER 14 Using arrays, collections, and generics to manage data 425

To create a generic queue (a first in, first out list of values), you would type a declaration in the fol-
lowing format. (In this case, note that I am indicating that the queue will hold Date values.)

Dim KeyGameDates As New Generic.Queue(Of Date)

To add items to this queue, you would use the Enqueue method. This sample syntax shows how
you could add a value to the queue in Date format, which I am specifying using a literal date string.
(The context of this example is that I am maintaining a sporting events calendar by adding specific
dates to the KeyGameDates queue.)

KeyGameDates.Enqueue(#1/5/2014#)

The date in my North American cultural context is January 5, 2014. A literal date string like this
is enclosed in pound (#) symbols and should be formatted according to the requirements of your
culture and time zone.

To remove a date from this KeyGameDates queue, you would use the Dequeue method, in a man-
ner similar to the following:

OutputTextBox.Text = KeyGameDates.Dequeue()

This particular statement copies the date value in the structure that is “next out” to the
OutputTextBox object on a page. It is not necessary to use an index to extract data from a queue.

Sample app with generic list and background image
The following exercise shows you how to create a generic list that will hold the names of historic
French men and French women. The generic list will be declared in the String type. The program is a
Windows Store app written in Visual Basic that contains five XAML Toolbox controls: A TextBlock con-
trol that displays operating instructions; a TextBox control that accepts user input; two Button controls
that load and display the list, respectively; and a TextBox control that displays the list contents.

The app displays the background image of a French castle (Chateau Fontainebleau, near Paris)
by setting the page’s Background and ImageBrush properties to a .jpg file that I preloaded into the
project’s Assets folder. The XAML markup that produces the photographic effect is in the MainPage.
xaml file. It looks like this:

<Grid.Background>
 <ImageBrush ImageSource="ms-appx:/Assets/French_Castle.JPG"/>
</Grid.Background>

Background images are a hallmark of Windows Store apps, and you can use this technique to make
your programs look very professional. Just be sure to preload the image into the Assets folder by
using Solution Explorer.

426 part III Visual Basic programming techniques

Follow these steps to load and run the Historical Names Collection program.

track names using a generic list

1. Click the Close Project command on the File menu.

2. Open the existing Windows Store app named Historical Names Collection in the My
Documents\VB 2013 SBS\Chapter 14\Historical Names Collection folder.

3. Display the program user interface (MainPage.xaml) in the Designer.

You’ll see a page that looks like this:

 CHAPTER 14 Using arrays, collections, and generics to manage data 427

The following property settings have been made in the project:

Object Property Setting

Grid Background/ImageBrush ImageSource=”ms-appx:/Assets/
French_Castle.JPG”

TextBlock Text “How many famous French people
can you name? (Format: Last
name, First name)”

TextBox Name NameInput

Text “”

Button Name AddButton

Content “Add Name”

Button Name ShowButton

Content “List Names”

TextBox Name OutputTextBox

Text “”

ScrollViewer.
VerticalScrollBarVisibility

Visible

4. Open the MainPage.xaml.vb code-behind file in the Code Editor.

The two event handlers in the project are visible in the Code Editor. At the top of the
page, near the Inherits Page statement, you’ll see the following comment and generic list
declaration:

'declare new generic collection of type String to hold names
Dim FrenchNames As New Generic.List(Of String)

The Dim statement creates a new generic collection and indicates that the list structure will
contain entries of type String. Because the declaration has been placed in the general declara-
tion area for the page, the list has scope throughout all the page’s event handlers.

5. Scroll down in the Code Editor to the AddButton_Click event handler.

You’ll see the following code:

'add the name from the NameInput text box to the collection
FrenchNames.Add(NameInput.Text)
'clear the new name from the text box and keep cursor there
NameInput.Text = ""
NameInput.Focus(Windows.UI.Xaml.FocusState.Programmatic)

428 part III Visual Basic programming techniques

This event handler runs when the AddButton object is clicked on the page. It adds the name
specified in the first text box to the list. The Add method is the simple technique to accomplish
the task. Then I do a little housekeeping—I wipe the NameInput text box clean and prepare
for entering a new name by keeping the cursor in the NameInput text box. This is accom-
plished using the Focus method, introduced earlier in the chapter.

6. Scroll down in the Code Editor to the ShowButton_Click event handler.

You’ll see the following code:

'determine how many names are in the collection and display a message
If FrenchNames.Count >= 2 Then
 OutputTextBox.Text = "There are " & FrenchNames.Count & " names: " & vbCrLf
 'sort names in alphabetical order
 FrenchNames.Sort()
ElseIf FrenchNames.Count = 1 Then
 OutputTextBox.Text = "There is 1 name:" & vbCrLf
End If
'then loop through collection, trim trailing spaces, and display
For Each Name As String In FrenchNames
 OutputTextBox.Text = OutputTextBox.Text & Name.TrimEnd & vbCrLf
Next

This event handler uses several methods of the generic list collection, including Count, Sort,
and TrimEnd. The routine begins by using the Count property in an If…Then decision structure
to see whether the FrenchNames list has at least two items in it. If so, a special message is
printed containing the exact number of items, and then the list is sorted in alphabetical order
using the Sort method.

If the Count method reveals that there is only one item in the list, a special message is printed
indicating that this is the case. (Notice how the message uses the singular, and not the plural,
tense.)

The last three lines of code in the routine are a For Each…Next loop, which has been used to
display the French names. A For Each…Next loop is conceptually similar to a For…Next loop.
The For Each…Next structure has been specifically designed to work with collections, and in
this case, the Name variable is declared in the opening line of the loop. If the user has inad-
vertently added a space to the end of a name, that is trimmed by the second line. The results
are displayed in the OutputTextBox text box, and the vbCrLf string constant is used to place
each name on its own line.

 CHAPTER 14 Using arrays, collections, and generics to manage data 429

run the Historical Names Collection program

Note The complete Historical Names Collection program is located in the My Documents\
VB 2013 SBS\Chapter 14\Historical Names Collection folder.

1. Click the Start Debugging button to run the program.

The program displays its default user interface and background image. The cursor blinks in the
top text box, ready to receive a name.

2. Type Montesquieu in the first text box.

Your screen will look like this:

3. Click the Add Name button.

Visual Basic adds the Enlightenment philosopher to the list and removes the name from the
input box.

430 part III Visual Basic programming techniques

4. Click the List Names button.

You’ll see the following output:

5. Now type the following name in the text box: King Henri IV.

6. Click Add Name.

 CHAPTER 14 Using arrays, collections, and generics to manage data 431

7. Click List Names, and you’ll see that the list has expanded. (The If…Then…ElseIf structure also
displays a new header.)

Now you’ll add a series of names to the list. After each name, be sure to click Add Name,
because the program is designed to enter one name at a time. Feel free to use the following
French names, or some of your own.

8. Add the following names, clicking Add Name after each: Bonaparte, Napoleon; Ajenstat,
François; Pitie, Jean-Christophe; Duby, Georges; Jeanne d’Arc; King Francis I.

432 part III Visual Basic programming techniques

9. Click List Names.

The collection has grown, and now the list of names takes up much of the second text box.
Notice that the program has sorted the list of names alphabetically, as well. This is the Sort
method at work. Your program will look like this:

Feel free to experiment a little more with the program, adding additional names and listing
them.

10. When you’re finished, close the Windows Store app, and then save your changes and exit
Visual Studio.

Congratulations—you’ve learned the basics about arrays and collections, and you’ve also learned
to use generic structures in the .NET Framework, as well as For Each…Next loops to process infor-
mation. These skills will be useful whenever you work with collections of data. As you become
more familiar with classic computer science data structures and their uses (abstractions such as
stacks, queues, dictionaries, hash tables, linked lists, and other structures), you’ll find that the .NET
Framework provides powerful tools to help you manage data in very innovative ways. You’re off to a
great start.

 CHAPTER 14 Using arrays, collections, and generics to manage data 433

Summary

In this chapter, you learned how to use arrays, collections, and generic lists to manage information in
a Visual Basic program. Although you began the chapter by reviewing fundamental techniques such
as declaring and using one-dimensional arrays, you quickly moved to using the features of the .NET
Framework to manage information, including methods in the Array class and generic templates in the
System.Collections.Generic namespace.

The sample programs in this chapter demonstrated how to use arrays and collections in both
Windows Forms and Windows Store applications. In a few circumstances, the techniques were differ-
ent, because classes and methods in the .NET Framework sometimes differ in the two programming
platforms. Fortunately, the fundamental techniques associated with arrays, collections, and generics
are the same in all recent versions of the Visual Basic language.

In the next chapter, you’ll continue working on fundamental data management techniques in
Visual Basic, focusing on the Language Integrated Query (LINQ) tool in Visual Studio 2013.

 435

C H A P T E R 1 5

Innovative data management with
LINQ

After completing this chapter, you will be able to

■■ Understand basic LINQ query syntax and fundamental data-extraction techniques.

■■ Use LINQ to retrieve data from arrays and collections.

■■ Use LINQ to retrieve data from XML documents.

In Microsoft Visual Studio, an important technology used for managing and retrieving data is known
as Language Integrated Query (LINQ) (pronounced link). LINQ allows you to retrieve data in the

same way from almost any data source, whether it is stored in arrays, collections, lists, databases,
or Extensible Markup Language (XML) documents. If you’ve had any exposure to SQL statements
that fetch information from structured tables in a database, you’ll find that LINQ is similar in many
respects.

In this chapter, you’ll learn how to use LINQ to extract data from arrays and other structured lists
and how to use the selected information efficiently in a program. You’ll learn how to write LINQ
query expressions in Visual Basic code and how to use essential LINQ keywords, including From,
Where, and Select. After you learn the fundamentals of managing array and collection data with LINQ,
you’ll learn how to open XML documents in a program and how to use the data in XML documents as
a source for LINQ queries.

LINQ tools and techniques

In the last chapter, you learned how to fill arrays and collections with data. The truth is, programmers
spend a lot of time thinking about data and how best to make it available and move it from place to
place in a program. The fundamental design concept behind LINQ is that it simplifies data retrieval for
Visual Studio programmers from the many data containers that exist in a developer’s world, including
arrays, lists, collections, relational databases, XML documents, and other sources.

Broadly speaking, LINQ allows Visual Studio programmers to perform complex queries to retrieve
data from a variety of data containers so that the information can be integrated into a Windows
development project. Although this comprehensive definition of LINQ’s capabilities might sound
rather complicated, LINQ is really just a tool to select, or extract, information from one or more data

436 part III Visual Basic programming techniques

sources. Like Structured Query Language (SQL), LINQ was designed to help developers ask questions
about valuable data collections that are typically too large or cumbersome to inspect manually (that
is, item by item). For example, how many ski instructors at Alpine Ski House have worked at the ski
school for 10 years or more? Or, how many books were published by Lucerne Publishing that earned
more than $100,000 in gross sales over the past 12 months?

The questioning character of these data inquiries is where the term query comes from in LINQ. But
it is not necessary to have extremely large data collections on hand to begin working with LINQ in
your programs. In fact, most programmers don’t realize how simple it is to get started with LINQ. As
soon as you understand the fundamentals of basic LINQ query syntax, you can retrieve or filter data
from common data sources, such as arrays or structured XML documents. In the following sections,
you’ll learn how to create basic LINQ expressions and how to get started with LINQ data selection in a
Windows Store app.

Fundamental query syntax
Because the LINQ keywords that build a LINQ query are part of Visual Studio and the Visual Basic
language, it is very easy to begin working with LINQ in code modules and event handlers. Each time
that you create a LINQ expression query, you’ll usually include the following keywords:

■■ Dim When you build a LINQ query, you first need a storage variable to hold information
related to elements in the query. Although the Dim keyword is not technically part of the
LINQ syntax, it is often used to declare the variable that holds information returned by LINQ.
In the following syntax, you’ll see that no specific variable type is required with Dim, because
LINQ uses something called an anonymous type to infer the data type automatically. An
anonymous type is an object data type created automatically by Visual Basic and not given a
name for the program to use. Just like an anonymous donor, who gives a gift but is not named
in public records, an anonymous type provides an object that can be used in a program with-
out the syntax that defines a type.

The following line of code declares a variable named queryData to hold the results of a LINQ
query. It also declares an iteration variable named person to represent each element of the
data source individually. (Declaring the person variable is somewhat similar to declaring a
counter variable for a For...Next loop.) The Musicians data source specified here will be dis-
cussed in the next section.

Dim queryData = From person In Musicians

■■ From In the preceding statement, you might also have noticed the From keyword. In a LINQ
query, the From keyword is required to identify where the data you plan to use will come
from. You can include more than one data source in a LINQ query, and this capability accounts
for some of the power and flexibility of LINQ. In the following statement (which is simply
copied from the preceding—you will include this statement only once in your code), the string
array Musicians is specified as the data source for the query:

Dim queryData = From person In Musicians

 CHAPTER 15 Innovative data management with LINQ 437

■■ Where The optional Where clause filters the result returned by the LINQ query. You can
include one or more conditions, or none at all. Typically, the iteration variable is used in a
Where clause. For example, the following statement would filter the LINQ query so that only
array elements that match the text “Robert” will be returned. Note that this statement uses the
person iteration variable defined in the preceding Dim statement.

Where person = "Robert"

■■ Select The Select clause is also optional; it allows you to return only selected fields or por-
tions of the data source, to further refine your results. This is most effective when the data
source that you are using has numerous fields or when you specify more than one data source
and want to limit the results returned by the query.

There are many more options available for the Select clause, but the basic use of Select is quite
straightforward. In the following example, a new LINQ query named queryData is declared
that searches two string arrays (WeekendInstructors and WeekdayInstructors) to see whether
there is any overlap between the two arrays. The iteration variables person and teacher
represent each array element during the query; Visual Basic compares the arrays element by
element, and if there is a match (if person is equal to teacher), that item is selected and stored
with other matches in the queryData variable.

Dim queryData = From person In WeekendInstructors, teacher In WeekdayInstructors
 Where person = teacher
 Select person

tip When you work in the Code Editor, you’ll discover a time-saving feature associated
with LINQ. Because LINQ is fully integrated into Visual Studio and the Visual Basic language,
the IDE supplies IntelliSense to help you build your LINQ code block as soon as you specify
the data source that you will be using with the From clause.

Extracting information from arrays

Now let’s take a look at some program code to see how LINQ works in a Visual Basic event handler.
The first data source you’ll use with LINQ is an array of type Double. You’ll also learn how to use a
For Each...Next loop to display the results of a LINQ query in a program. The sample project that you
will be working with is Linq Queries, a Windows Store app that uses three arrays, a generic collection,
and a XAML document as data sources.

This application is based around activities at a fictitious ski school named Alpine Ski House, a busi-
ness that offers downhill ski and snowboarding lessons during the winter months. The program is
partially complete but requires that you complete the LINQ queries to extract information related to
the business and its employees and students.

438 part III Visual Basic programming techniques

Build a query to extract numeric data from an array

1. Start Visual Studio, and open the Linq Queries program, a Windows Store app located in the
My Documents\Visual Basic 2013 SBS\Chapter 15 folder.

The ski school application already contains an array of type Double named WeekRevenue,
which stores a week’s worth of sales data for the company. In addition, there are two arrays
of type String (WeekdayInstructors and WeekendInstructors), which contain the names of ski
school instructors who work during the week and on the weekend.

There is also an XML document file associated with the project that has been loaded into the
Assets folder. This file contains the names of students in the school who are competing in the
ski and snowboard racing program. The format of this document is typical of an XML file used
for data in a Visual Basic program; it contains first name, last name, age, and gender fields for
24 students.

The basic user interface for the Alpine Ski House app looks like this in the IDE. (Depending
on how you have used the sample file in the past, the Add Name button may be active or
dimmed; it does not matter which state the button is in.)

2. Because this program is all about data, begin by opening the MainPage.xaml.vb file, and
examine the array and collection data sources provided at the top of the code-behind file in
the Code Editor.

 CHAPTER 15 Innovative data management with LINQ 439

You’ll see the following comments and declarations:

'declare array of type Double to hold a week's worth of ski school revenue
Dim WeekRevenue() As Double = {842.55, 340.05, 725.25, 680.43, 1120.38, 2675.99, 2175.64}
'declare two string arrays with instructor names
Dim WeekdayInstructors() As String = {"Bart", "Ken", "Maria", "Eve", "Claude", "Nikki"}
Dim WeekendInstructors() As String = {"Eve", "Allen", "Juan", "Larry", "Kim", "Al"}
'declare a generic collection list to hold student names input by user
Dim StudentNames As New Generic.List(Of String)

As the comments explain, these four Dim statements declare one array of type Double for
sales revenue, two arrays of type String for instructor names, and a generic collection for
student names that will be input by the user and stored in a list. These data sources will all be
used as information providers for the LINQ queries that you will write in this program, and a
fifth data source will be added (the XML document) when you complete that exercise. Note
that the data samples are rather limited and for demonstration purposes only; a full-featured
program would likely have much more substantial arrays, collections, and document files to
store the records of a typical business.

Start your work with LINQ now by building your first expression, a retrieval query that
runs when the user clicks Run Query on the page and which extracts information from the
WeekRevenue array, based on a specific criteria.

Because this program is already partially complete, I have already created the RunQuery_Click
event handler for you, a procedure that runs when the user clicks the Run Query button on
the page.

3. In the Code Editor, scroll down in the MainPage.xaml.vb code-behind file to find the
RunQuery_Click event handler.

4. Type the following code in the Code Editor, between Private Sub and End Sub. Lines two and
three comprise a complete LINQ query.

OutputTextBox.Text = "Days with revenue greater than $500 this week" & vbCrLf & vbCrLf
Dim queryData = From dayrevenue In WeekRevenue
 Where dayrevenue > 500

For Each scanResult In queryData
 OutputTextBox.Text = OutputTextBox.Text & scanResult & vbCrLf
Next

Important By convention, I’ve placed a blank line after the LINQ query (that is,
before the For Each loop) to clarify for the compiler that the query is complete. You
should always include such a blank line in your LINQ code blocks.

440 part III Visual Basic programming techniques

The first line in this routine displays a message in OutputTextBox (the large text box on the
page) describing what this particular LINQ query is doing. I will always begin queries in this
chapter by setting up this simple text box banner, just to make it clear what you are seeing.

The next two statements define the LINQ query that analyzes the WeekRevenue array. The
Dim keyword here creates a variable (queryData) to hold the results of the LINQ query.
WeekRevenue is an array of type Double with entries that have been assigned when the array
was initially dimensioned. The dayrevenue range variable is an iterative variable that repre-
sents each item in the WeekRevenue array as it is processed by the LINQ query.

The Where clause filters the results of the query, passing along only array items that are
greater than 500. Keep in mind that additional conditions could be added to further refine the
data returned by this query. This is the place in the query where you can be very specific with
the range and type of information that you want to extract.

The final three lines of the event handler form a For Each...Next loop that steps through
the queryData variable item by item and displays a separate line in the text box for each
value returned. Only the items that are larger than 500 will appear in this particular query.
(The information will allow the manager of the business to identify the days with the most-
impressive sales figures.) Note that if no value exists in the data set that matches the criteria,
the For Each...Next loop will not execute.

You’ll run the program now to see how this LINQ query operates.

5. Click the Start Debugging button.

The application launches and displays a page containing a winter photo, a descriptive label,
two buttons, and two text boxes.

6. Click Run Query.

Visual Basic loads the RunQuery_Click event handler and executes the LINQ expression to
find array items that match the criteria you specified. Six matching items were found, and the
For Each...Next loop displays each sales figure in the text box. Your screen should look like this:

 CHAPTER 15 Innovative data management with LINQ 441

Everything looks good—your LINQ expression worked, and the financial figures were
extracted as expected. It looks like they had a good week at the ski school!

7. Close the program, and return to the Visual Studio IDE.

You’re off to a good start. You’ve learned a very fundamental use of LINQ: to search for numeric
items that match a specific range or criteria within a single array or data collection. Now let’s move on
to something more interesting related to the WeekRevenue array. Let’s try to narrow down the results
that came back.

Build a query with a complex Where clause

1. In the Code Editor, scroll down to the RunQuery_Click event handler, and modify the Where
clause in the LINQ query so that it looks like this. (The changes you need to make are format-
ted in bold.)

Where dayrevenue > 500 And dayrevenue < 1000

What’s new is that I’ve added an And operator to the query, to join together two expressions in
the existing Where clause. And in fact, with a little practice using Visual Studio’s IntelliSense fea-
ture, you can find many other operators to expand your Where clauses and add additional com-
plexity. In this case, what I am asking LINQ to do is evaluate the daily sales revenue figures item
by item and retrieve only the items that have a value of greater than 500 but less than 1000.

442 part III Visual Basic programming techniques

2. Now modify the OutputTextBox.Text property containing our “documentation” banner in the
event handler, so that it also reflects the change you made in the query. (Again, the change
you should make is indicated in bold type.)

OutputTextBox.Text = "Days with revenue between $500 and $1000 this week" & vbCrLf &
vbCrLf

Now run the program again to see how LINQ works with the enhanced Where clause.

3. Click the Start Debugging button.

The application launches and displays the opening page for the Alpine Ski House business.

4. Click Run Query.

Visual Basic runs the RunQuery_Click event handler again, but this time only values between
500 and 1000 are returned. You’ll see the following results:

As you can see, a more detailed Where clause allowed us to filter the results further, providing
more meaning and pinpointing important trends in the data.

5. Close the program, and return to the Visual Studio IDE.

Even these first steps with LINQ make it clear that there are numerous ways to extract infor-
mation from a data source; it all depends on what you want to extract and the ways that you
want to gather and combine information.

 CHAPTER 15 Innovative data management with LINQ 443

Now you’ll see how LINQ works with queries designed for data that is in String format. This task
offers us an opportunity to work with array data containing employee names. In addition, you’ll have
a chance to revisit some of the useful string-processing methods that you learned about in Chapter
11, “Mastering data types, operators, and string processing,” such as ToUpper, Contains, and TrimEnd.

Use LINQ with string-processing methods to extract string data

1. In the Code Editor, display the RunQuery_Click event handler again within the Linq Queries
program.

2. Now modify the LINQ query so that it extracts information from the WeekendInstructors array.
This array of type String contains the first names of six ski instructors in the Alpine Ski House
school. As you have already seen in the code-behind file, this array contains the following
information:

Dim WeekendInstructors() As String = {"Eve", "Allen", "Juan", "Larry", "Kim", "Al"}

Now you’ll modify the RunQuery_Click event handler so that it retrieves instructors whose
names include the letters Al.

3. Change the event handler so that it looks like the following. (The elements that you need to
modify are formatted again in bold.)

OutputTextBox.Text = "Names that include 'Al'" & vbCrLf & vbCrLf
Dim queryData = From person In WeekendInstructors
 Where person.Contains("Al")

For Each scanResult In queryData
 OutputTextBox.Text = OutputTextBox.Text & scanResult & vbCrLf
Next

As usual, the routine begins by setting the OutputTextBox.Text property to the purpose of the
LINQ query. This serves as a reminder about what you are doing when you test the program.

In the second line, the From statement has been changed to query a new data source, the
WeekendInstructors string array. The iteration variable has been changed to person in the
From statement, and the lines that follow also use this variable to process information as it
moves through the query. Remember that person is a placeholder variable akin to the counter
variables you see in For…Next loops.

This time the Where clause has been modified to use the Contains method to filter the
data, which is provided by the String class. Contains determines whether the specified
string (“Al”) occurs in the iteration variable (person), which stands for each element of the
WeekendInstructors array as the query proceeds. If LINQ determines that “Al” is a part of an
array element, the item is displayed in the OutputTextBox object.

Run the program now to see how LINQ works with the Contains method.

444 part III Visual Basic programming techniques

4. Click the Start Debugging button.

The application launches and displays the opening page for the Alpine Ski House business.

5. Click Run Query.

Visual Basic runs the RunQuery_Click event handler and extracts two names from the
WeekendInstructors array based on the “Al” criteria given. You’ll see these results:

Again we have a successful result. Both Allen and Al are indeed names that contain the string
“Al”. But wait a minute. This particular LINQ expression worked well because the capitaliza-
tion pattern “Al” exactly matched two specific letter combinations in the array. But keep in
mind that Visual Basic and the .NET Framework are sometimes case sensitive when it comes
to comparing and sorting alphanumeric values. This means that you need to exercise some
caution when extracting textual information with LINQ—you never know when some other
capitalization pattern within the data source might be overlooked because a name included
less-familiar capitalization schemes such as “AL”, “al”, or “aL”.

So, is there a way to search more inclusively for strings by using techniques that you have
already learned in this book?

 CHAPTER 15 Innovative data management with LINQ 445

The answer to this question is “yes.” Recall that in Chapter 11 you were exposed to a variety of
string-processing methods and techniques that are provided by the System.String namespace
for just this reason. And fortunately, in LINQ, you can construct Where clauses that will
combine several of these String methods together. Let’s see how the ToUpper, Contains, and
TrimEnd methods can be used to solve this problem and build a very interesting LINQ query.

6. Modify the RunQuery_Click event handler so that it appears like this (changed elements
appear in bold):

OutputTextBox.Text = "Names that contain " & InputTextBox.Text & vbCrLf & vbCrLf
Dim queryData = From person In WeekendInstructors
 Where person.ToUpper.Contains(InputTextBox.Text.ToUpper.TrimEnd)

For Each person In queryData
 OutputTextBox.Text = OutputTextBox.Text & person & vbCrLf
Next

The main actor in this routine is the InputTextBox object (the first text box on the page), which
will serve as a “Find” or “Search” text box in the program. Whatever text pattern the user
enters into this text box, the LINQ query will attempt to locate within the WeekendInstructors
array. If the user enters no search string at all in InputTextBox, all of the array elements will be
extracted and displayed.

The important string-processing function within the routine is handled by the following
statement:

Where person.ToUpper.Contains(InputTextBox.Text.ToUpper.TrimEnd)

Here the contents of the iteration variable person are converted to uppercase, and then
that new string value is compared to the contents of InputTextBox, which the user has just
entered. To make matters even more subtle, notice that I have also converted the contents of
InputTextBox to uppercase and also removed any white space from the end of that value (this
final adjustment facilitated by the TrimEnd method). The final trim is more important than you
might think, because sometimes in user input or string operations extra blank spaces or car-
riage returns creep in and must be banished. (Note that you can also trim the beginning and
the ending of a string by using the Trim method.)

The end result is that both the array items and the search string are temporarily converted to
uppercase before the LINQ query is evaluated. (So when the name “Allen” in the array is evalu-
ated, it temporarily becomes “ALLEN” for the comparison.) Just know that the change is not
made to the actual array elements, but only to a copy of the elements that is being used by
the ToUpper method.

Run the program now to see how the new text box feature and LINQ query works.

7. Click the Start Debugging button.

The application launches and displays its opening page.

446 part III Visual Basic programming techniques

8. Click Run Query.

Visual Basic runs the RunQuery_Click event handler. Because you didn’t specify a search string
in the InputBox text box, all of the array elements are extracted by the query. You’ll see these
results:

9. This is how the LINQ query was designed, so it is the expected (although somewhat unusual)
functionality. Now try some specific search strings.

10. Type “l” (a lowercase L) in the text box, and then click Run Query.

Visual Basic searches for names in the array that contain the letter L (uppercase or lowercase).
Your screen will look like this:

 CHAPTER 15 Innovative data management with LINQ 447

OK—that seems right, because both uppercase and lowercase letters seem to match the
specified filter.

11. Now continue searching for letter patterns that you think might exist (or do not exist) in the
WeekendInstructors array. Use patterns such as “e”, “Al”, “an”, “Kim”, “u”, and so on.

One by one, the program completes its LINQ queries with the filter values you specify. I find
this interactive quality of LINQ very useful—you can use LINQ to create your own search fea-
tures, assessing large or small data sources. This functionality is also impressive if you consider
how much data that LINQ could search through if the array or data source were much larger.
This is one fast query tool.

12. When you’re finished, close the Linq Queries program and return to the IDE.

Now you’ll practice using LINQ to extract information from two arrays at once. In this scenario,
you’ll compare the WeekdayInstructors array to the WeekendInstructors array and determine whether
any of the ski school instructors are working in both groups.

448 part III Visual Basic programming techniques

Use LINQ to locate overlapping array elements

1. Display the Code Editor, and then modify the RunQuery_Click event handler so that it looks
like this (changed elements appear in bold):

OutputTextBox.Text = "Instructors that work weekdays and weekends" & vbCrLf & vbCrLf
Dim queryData = From person In WeekendInstructors, teacher In WeekdayInstructors
 Where person = teacher
 Select person

For Each scanResult In queryData
 OutputTextBox.Text = OutputTextBox.Text & scanResult & vbCrLf
Next

This event handler modifies the text box to indicate the purpose of the LINQ query (to
find overlapping array elements) and then adds a second array to the LINQ code block.
Notice how the From clause now identifies two arrays and the iterative variables that
will be used as placeholders during the query: person will be a placeholder for array ele-
ments in WeekendInstructors, and teacher will be a placeholder for array elements in
WeekdayInstructors.

The Where clause filters the results so that only employees who appear in both of the arrays
are returned by the LINQ query. (That is, where pairs of records from the two arrays share a
common value.) However, the Select statement, used here for the first time, returns only the
person array element. It is not desirable in this case to display the matching names twice in the
OutputTextBox object—once is enough.

Run the program now to see how this LINQ query works.

2. Click the Start Debugging button.

The application launches and displays its opening page.

3. Click Run Query.

4. Visual Basic runs the LINQ program code and returns the instructor that works both weekends
and weekdays for the ski and snowboard school. You’ll see this result:

 CHAPTER 15 Innovative data management with LINQ 449

The query helped Alpine Ski House determine something that might not have been obvious at
first: there is some overlap in their teaching shifts, and the instructor Eve is the only one who
currently works both weekends and weekdays. The results would be even more impressive had
the arrays contained hundreds or even thousands of elements.

5. Close the program, and display the IDE once more.

Using these techniques and ones that you just learned in the previous exercises, it is easy to see
how you could refine this query by using a text box to allow for user-directed searches that compare
several different arrays or data sources, and how you might use string-processing methods to search
for different name or character patterns within the arrays. When you understand the meaning and
flow of LINQ syntax and the basic LINQ elements, you can very quickly write your own sophisticated
expressions.

450 part III Visual Basic programming techniques

LINQ debugging strategies
The Visual Studio IDE provides several tools that help you track down errors in your Visual Basic
programs. As you get deeper into the topic of LINQ and managing information from different
sources in your applications, the Visual Studio debugging tools will become especially useful.
For example, you can use a DataTip or a Watch window to inspect the entire contents of a data
source while your program is in break mode. If you place a Stop statement in a For...Next loop
that processes an array or collection in some way, you can enter break mode and use the Step
Into button on the Debug toolbar to watch the data container’s contents change as you move
through the loop.

Likewise, complex LINQ queries can be demystified and debugged if you place a Stop
statement after the final Select statement in a query and use break mode to step through the
remaining lines of the event handler. This can be especially useful in For Each...Next loops that
process query variables, like the variables you used in the last exercise. The Locals window is
also very useful when you evaluate and debug LINQ queries.

Finally, as you begin working with XML documents in Visual Basic applications, try using an
XML visualizer to examine XML document structure and element formatting while you work
on your program. A visualizer is represented by a small magnifying glass icon that appears in
the Code Editor for certain program elements during break mode. If you see this tool next to
a variable that contains XML data in your code, click the icon and you’ll see a dialog box with
helpful information about the document’s contents.

For more information about fundamental debugging strategies and tools, see Chapter 9,
“Debugging Applications” in my companion book Start Here! Learn Microsoft Visual Basic 2012
(Microsoft Press, 2012).

Using LINQ with collections

As you learned in Chapter 14, “Using arrays, collections, and generics to manage data,” collections
also provide a helpful method for storing information in a Visual Basic program, and in many ways,
collections really surpass the capabilities of arrays, in that they offer more built-in features and type-
checking, and they can be configured to represent helpful data structures such as lists, queues, stacks,
hash tables, and other entities.

Now that you understand the basic syntax of LINQ for using arrays, it will be simple for you to use
collections as a data source. In the following exercise, you will use a generic collection of the list type
to hold the names of new ski school students entering the Alpine Ski House program. We’ll use the
collection-management features developed in Chapter 14 to add names to a list collection by using
the InputTextBox object on the page and the keyboard. The list of names that you create can be any
size, but the query you construct is designed to process items of type String, and I am recommending

 CHAPTER 15 Innovative data management with LINQ 451

that you enter your data in the Lastname, Firstname format. The LINQ query searches the entire list
you enter and retrieves items that include the name “Smith”.

Note For more information about generic collections and using the list collection type in
a program, see “Creating collections and generic lists” in Chapter 14. I recommend that you
use a generic collection because it is more strongly typed and is therefore safer and easier
to use.

Create a LINQ query that retrieves data from a generic collection

1. Display the Code Editor, and scroll to the top of the page to examine the declarations section
of the MainPage.xaml.vb file, where the data sources in the program have been declared.

2. Locate the StudentNames variable, which is declared with the following Dim statement:

'declare a generic collection list to hold student names input by user
Dim StudentNames As New Generic.List(Of String)

StudentNames is a generic collection of the list type, designed to hold string values. It is cur-
rently empty, but the program will fill it with data using the AddButton_Click event handler,
which runs when the user clicks the Add button on the page. You saw this routine in Chapter
14 when you were first working with collections in a Windows Store app. However, the pur-
pose of this exercise is to show you how to extract data from a collection using LINQ. You’ll do
that in the following step.

3. Scroll down to the RunQuery_Click event handler, and modify it so that it contains the follow-
ing lines code. (The updated elements appear in bold.)

OutputTextBox.Text = "New ski school students named Smith" & vbCrLf & vbCrLf
Dim queryData = From person In StudentNames
 Where person.ToUpper.Contains("SMITH")

For Each scanResult In queryData
 OutputTextBox.Text = OutputTextBox.Text & scanResult & vbCrLf
Next

The new event handler begins by modifying the OutputTextBox object so that it explains what
the LINQ query does. In this case, the query has been designed to search for names in the list
that match “SMITH.” The ToUpper method is used to convert collection names to uppercase so
that any pattern of uppercase and lowercase spelling of “Smith” will be a match.

That’s all there is to the LINQ code in this simple example. Now you just need to make two
property setting changes in the user interface. First, you’ll enable the AddName button so that
users can click it to enter names in the StudentNames list.

452 part III Visual Basic programming techniques

4. Display MainPage.xaml in the Designer, and then click the AddName button.

5. In the Properties window, expand the Common category, and add a check mark to the
IsEnabled check box.

The IsEnabled property determines whether an object on the page is available for use or
not. (Disabled objects appear dimmed and cannot have the focus.) To minimize confusion, I
disabled this button earlier so that it would not be a distraction as you were completing the
chapter’s first exercises. But now that you want to use the text box and button for input, it’s
time to enable it and make it ready for use.

Next, you’ll move the focus to the InputTextBox text box object when the program starts. This
is an optional step, but establishing the focus is a helpful usability feature. Because this is the
first user interface element that the user will interact with now, you might as well make it easy
for them.

6. In the XAML pane of the Code Editor, locate the line of markup that defines the RunQuery
button.

7. Select and move the markup element TabIndex=”0” from its current location to the line of
markup that defines the InputTextBox text box.

When you set the TabIndex property to “0” in the markup for an object, that object becomes
the first object to receive the focus when the page loads. By moving the TabIndex=”0” prop-
erty setting now, you are making the first text box the object of attention when the program
starts. (By the way, you can set the TabIndex property for addition items by following the
pattern TabIndex=”1”, TabIndex=”2”, and so on. These property settings control the order in
which objects get the focus when the user presses the Tab key.)

OK, perfect. Now run the program to see how the LINQ query extracts information from the
StudentNames collection.

8. Click the Start Debugging button.

The application launches and displays its opening page. The cursor blinks in the InputBox text
box, because it has been assigned the focus.

9. Type Smith, Denise in the text box, and then click Add Name.

10. Type Smith Jr., Ronaldo in the text box, and then click Add Name.

11. Type Spencer, Phil in the text box, and then click Add Name.

12. Type Krebs, Peter J. in the text box, and then click Add Name.

13. Type Smith-Bates, Lorrin G. in the text box, and then click Add Name.

Now you’ll execute the LINQ query and see what names it returns.

 CHAPTER 15 Innovative data management with LINQ 453

14. Click Run Query.

Visual Basic processes the query expression and returns the names that include the
alphanumeric pattern “SMITH.” You’ll see this result:

The query is working as expected and returns several variations of the name “Smith.”

Because the StudentNames list is expandable, you can continue adding names to the collec-
tion, and you can run the LINQ query as many times as you would like. You might want to try
different capitalization schemes, adding variations of the name “Smith” to the collection, such
as “SMIth,” “smith,” “sMiTh,” and so on.

15. When you’re finished testing, close the program and display the IDE again.

Great work. We’ll learn one more data retrieval technique in this chapter.

454 part III Visual Basic programming techniques

Using LINQ with XML documents

Arrays and collections are important sources of data for LINQ queries, but they represent only the
beginning of what you can do with LINQ. Additional sources of data supported by LINQ include
relational databases, Excel worksheets, products and search results from third-party providers such as
Amazon and Google, and the topic of this section—XML documents.

An XML document is a structured text file that conforms to the specifications for XML. You can add
an XML document to your program by including it in your project’s Assets folder, or you can access
such documents at runtime by locating them on the local system or in the cloud. As already discussed
in this book, XAML files also conform to the general rules for XML documents, and they are in essence
a special type of XML document designed to instantiate .NET objects in a Windows application.

Other than the initial declaration line, XML documents do not have a set list of predefined ele-
ments that they need to contain. Instead, they allow you to create your own names for elements in a
document. The elements just need to conform to basic syntax rules for tagging and to fit together in
a hierarchy under a single top-level element. In a Visual Basic application, you can use any hierarchical
data structures that exist in XML documents, so it is beneficial to create and maintain them.

XML documents have several advantages over proprietary data formats, such as that used by
Microsoft Access (.mdb format). First, XML is easily readable by humans, so special database tools
are not required to open and understand XML data files. Second, XML is based on an open, pub-
lic standard, and it has been adopted by Microsoft and other software publishers for information
exchange and use on the web. Third, XML files are easily included in Visual Studio programming
projects. Essentially, XML files are simply text files, so if you need an efficient, flexible data source in
your project that can easily be updated and installed with your application, XML documents can be a
good choice.

The XML document that you will use in this chapter is named SkiTeam2014.xml. The file is meant to
represent information about a group of students in the Alpine Ski House business who are participat-
ing in the ski school’s racing program. The file includes fields named FirstName, LastName, Gender,
and Age. (This is the type of information that a ski school coordinator might use to register skiers for
an age-based or gender-based competition.) Although the XML document contains only the infor-
mation for 24 athletes now, it is the kind of file that could be expanded to contain hundreds or even
thousands of records. This is just the type of information that a programmer might want to include in
a programming project and that you can use to practice building LINQ queries.

You can find the SkiTeam2014.xml file in the My Documents\Visual Basic 2013 SBS\Chapter 15
folder on your hard disk. SkiTeam2014.xml is simply a text file, and you can edit the file in a text editor
(such as Notepad or WordPad) or in the Visual Studio IDE, which is designed to open and edit XML
documents. If you open SkiTeam2014.xml in Internet Explorer, the various document elements will
appear in different colors, and the document’s logical structure will be navigable via a collapsible/
expandable tree.

The following illustration shows SkiTeam2014.xml in Visual Studio, which I loaded by opening the
Assets folder in Solution Explorer and then double-clicking the SkiTeam2014.xml file.

 CHAPTER 15 Innovative data management with LINQ 455

If you want to integrate an XML document into a Visual Basic project before the project is com-
piled, you need to include the document in the project’s Assets folder. The procedure to add an XML
document to the folder is the same as the process for adding electronic artwork, audio files, or video
files to the Assets folder. You right-click the Assets folder in Solution Explorer, click Add | Existing Item,
and then locate the XML document in the Add Existing Item dialog box. Because I have already com-
pleted this step for you, what remains is to write a LINQ query to extract information from the XML
document. What you will create is a complex query that retrieves the first name and last name fields
for every male student in the ski race program who is between the ages of 17 and 19, inclusive.

Create a LINQ query that retrieves data from an XML document

1. In the Code Editor, scroll to the RunQuery_Click event handler in the Linq Queries program.

2. Modify the procedure so that it contains the following code.

(There are a lot of changes here. You might simply want to delete what is currently in the
event handler and then retype everything below. Or you can just modify the statements in
bold.)

OutputTextBox.Text = "Male ski racers between 17 and 19, inclusive" & vbCrLf & vbCrLf

Dim SkiRacingTeam = XElement.Load("Assets/SkiTeam2014.xml")
Dim queryData = From skier In SkiRacingTeam.Descendants("Skier")
 Where (skier.Attribute("Gender").Value = "M") _

456 part III Visual Basic programming techniques

 And (skier.Attribute("Age").Value >= 17) And (skier.Attribute("Age").Value <= 19)
 Select FName = skier.Attribute("FirstName").Value,
 LName = skier.Attribute("LastName").Value

For Each scanResult In queryData
 OutputTextBox.Text &= scanResult.FName & " " & scanResult.LName & vbCrLf
Next

This code begins by setting the OutputBox.Text property to a descriptive label; in this case,
you’ll be retrieving male ski racers in the school who are between the ages 17 and 19, and this
includes the boundary values of 17 and 19.

The second line of code is unique in this chapter—it is a Dim statement that uses the
XElement.Load method to load the SkiTeam2014.xml document into the SkiRacingTeam vari-
able. Notice how this statement relies on the fact that you have already inserted the XML
document into the Assets folder in your project; the path name makes use of the Assets folder
in its syntax.

The routine then declares a variable named queryData to hold the results of the LINQ query.
The From clause indicates that the XML document stored in the SkiRacingTeam variable will
be used as the source for the data and that the descendants of the top-level Skier element will
all be included. (If you examine SkiTeam2014.xml again, you will see that it begins with the
top-level element Skier.) A local iterative variable named skier is also used to represent each
element in the XML document as the data is processed.

A long Where clause then filters the data such that only the ski racers who are male and
between the ages of 17 and 19 (inclusive) appear in the final list. Notice how I use parentheses
to separate the different components in the Where clauses, and how I use the And keyword to
combine the three conditions of the Where clause. (The parentheses are simply used for clarity
here.)

Visual Studio allows you to write fairly complex Where clauses with a variety of logical opera-
tors, including And, Or, AndAlso, OrElse, Is, and IsNot. You can also add in sophisticated clauses
like Order By, Distinct, and Aggregate to further filter the results of a query.

For skier records that do match the gender and age filters, the FirstName and LastName
elements for each ski racer are returned and displayed in the text box on the page. Note the
particular syntax of the Attribute and Value properties; these allow XML data elements within
the XML document hierarchy to be returned. The process is just a little more complicated than
the array and collection processing work accomplished earlier in the chapter, because there is
more structure in these XML documents than there was in the arrays and collection you used.

Finally, the items retrieved by the LINQ query are processed by a For Each...Next loop, which
uses the scanResult variable to iterate over the results returned by the queryData variable, dis-
playing a line in the text box for each male ski racer who is between 17 and 19. But…are there
really any students in the XML document that fit this profile?

Run the program now to see what records (if any) are retrieved.

 CHAPTER 15 Innovative data management with LINQ 457

3. Click the Start Debugging button.

The application launches and displays the familiar Alpine Ski House banner with its lively win-
ter sports photograph.

4. Click Run Query.

Visual Basic loads the RunQuery_Click event handler and executes the LINQ expression to
extract male ski racers aged 17 to 19 from the SkiTeam2014.xml file. And what do you know,
three matching names are found in the file, and they are displayed by the For Each...Next loop
in the text box. Your screen should look like this:

As we saw, the XML document was pretty complex with its various fields and tags. However,
the query had no problem immediately extracting just the data that we wanted to see. Such
information would be useful for a race coordinator preparing heat sheets for weekend races.
But the big picture is that LINQ queries and complex Where clauses can be extremely power-
ful when analyzing data. Imagine how powerful such a tool would be if there were hundreds
or thousands of records in a business like Alpine Ski House?

5. Close the program, and return to the Visual Studio IDE.

6. Click the Save All button to save your changes to the project, and then exit Visual Studio.

You’re finished working in Visual Basic for now. But excellent work with LINQ! You’ve learned valu-
able data management skills that you can expand in the future as needed. Indeed, you’ll find that

458 part III Visual Basic programming techniques

there is much more to learn about LINQ, and you can find this information in advanced Visual Basic
and Visual Studio programming books, as well as specialized database books and forums on the Web.
These fundamental steps are really just the beginning!

Summary

This chapter taught fundamental LINQ programming skills, including the syntax of LINQ expression
queries, essential LINQ clauses such as From, Where, and Select, and how to work with three major
data sources for LINQ queries: arrays, collections, and XML documents. You also learned how to
integrate LINQ queries into a Windows Store app that managed different types of information for a
fictitious ski and snowboarding school named Alpine Ski House.

As part of your work with LINQ, you retrieved weekly sales figures based on specific criteria, fil-
tered employee records, combined string arrays and looked for overlapping elements, and extracted
records from an XML document that matched a specific criteria. Working with data sources and tools
is a fundamental task in computer programming, and as you continue working with Visual Basic, you’ll
have many opportunities to learn about connecting to data sources and processing data efficiently.
You’ll continue that work in this book in Part IV, “Database and web programming.”

In the next chapter, you’ll explore essential Visual Basic programming techniques related to object-
oriented programming. Specifically, you’ll learn how to inherit forms and classes and how to create
your own classes with custom properties and methods.

 459

C H A P T E R 1 6

Object-oriented programming
techniques

After completing this chapter, you will be able to

■■ Use the Inheritance Picker to incorporate existing user interface elements into your projects.

■■ Create your own base classes with custom properties and methods.

■■ Derive new classes from base classes by using the Inherits statement.

■■ Experiment with advanced concepts such as polymorphism and method overriding.

This book has explored fundamental Visual Basic programming skills, including designing the
user interface, mastering language elements, working with data, and learning essential .NET

Framework classes, objects, and methods. In this chapter, you’ll pick up a core skill that is essential for
engaging advanced topics. The skill is creating and deriving new classes, a technique associated with
object-oriented programming (OOP).

Object-oriented programming can be defined as a method of creating software in which all
activity is centered around the manipulation of objects that are organized into a hierarchy. In this
paradigm, a programmer uses classes to create objects and define their essential structure, like a
contractor uses a blueprint to create buildings. In OOP, objects interact with one another by reading
and setting properties, calling methods, and responding to events. Visual Basic 2013 is a fully object-
oriented programming language, with features comparable to leading OOP languages such as C++,
Java, and Python.

In this chapter, you’ll learn the fundamental OOP concepts related to creating base classes with
properties and methods and deriving new classes from base classes using the Inherits statement.
You’ll also get an introduction to important OOP concepts such as polymorphism and method over-
riding through step-by-step examples. Although this chapter will just touch on the advanced features
of OOP in Visual Studio, what you learn will help you create and use your own classes, a fundamental
skill that will make Visual Basic programming faster and more flexible for you. You will also develop
skills that you will use later in this book, such as when you read and write records in XML data sources.

460 part III Visual Basic programming techniques

Inheriting a form by using the Inheritance Picker

In OOP syntax, inheritance means having one class receive the objects, properties, methods, and
other attributes of another class. Visual Studio goes through this process routinely when it creates a
new user interface for a project in the IDE. For example, you might have noticed that in the Windows
Forms/Windows desktop platform, the first form that is created in a project (Form1) relies on the
System.Windows.Forms.Form class for its definition and default values. In fact, this class is identified
in the Properties window when you select the default form in the Designer, as shown in the following
screen illustration:

Although you might not have realized it, you’ve been using inheritance all along as a Visual Basic
programmer. Inheritance is a key mechanism within the Visual Basic language, within the Windows
operating system, and within the objects and methods of the Microsoft .NET Framework.

You’ll also see program code related to inheritance in each Windows Store application that is
created by Visual Studio. For example, consider this Blank Page template, which creates a new class
named MainPage to hold objects in the user interface of a Visual Basic application:

Near the top of this class definition is the relevant statement, Inherits Page, which instructs Visual
Studio to derive the MainPage class from the Page base class. That is, the MainPage class inherits (or
derives) its events, properties, and methods from the general definition of Page. Although there is
some variation, the core concepts relating to creating and inheriting classes remains the same within
the Visual Basic language.

Although this chapter is largely concerned with creating and using classes in a Windows Store app,
the first exercise that I have prepared for you demonstrates something unique about the Visual Studio
IDE when it is configured to edit a Windows Forms app. In this mode, you have access to a useful tool
called the Inheritance Picker, which demonstrates in the clearest terms how inheritance works in a
Visual Basic project. In addition, you can see up-close an important goal of object-oriented program-
ming—to reuse and extend the functionality of existing objects and code.

 CHAPTER 16 Object-oriented programming techniques 461

Complete the following steps to build a Windows Forms dialog box and then inherit it in a project
using the Inheritance Picker.

Inherit a simple dialog box

1. Start Visual Studio, and create a new Visual Basic Windows Forms Application project named
My Form Inheritance.

2. Display the form in the project, and then use the Button control to add two button objects at
the bottom of the form, positioned side by side.

3. Change the Text properties of the Button1 and Button2 buttons to “OK” and “Cancel,”
respectively.

4. Double-click OK to display the Button1_Click event procedure in the Code Editor.

5. Type the following program statement:

MsgBox("You clicked OK")

6. Display the form again, double-click the Cancel button, and then type the following program
statement in the Button2_Click event procedure:

MsgBox("You clicked Cancel")

7. Display the form again, and set the Text property of the form to “Dialog Box.”

You now have a simple form that can be used as the basis of a dialog box in a program. With
some customization, you can use this basic form to process several tasks—you just need to
add the controls that are specific to your individual application.

8. Click the Save All button to save your project, and then specify the My Documents\Visual Basic
2013 SBS\Chapter 16 folder as the location.

Now you’ll practice inheriting the form. The first step in this process is building, or compiling,
the project (creating an .exe or .dll file) because you can’t open a form in the Windows Forms
Designer if Visual Studio cannot create an instance of it. Note that each time the base form in
a project is recompiled, changes made to the base form are passed to the derived (inherited)
form.

9. Click the Build My Form Inheritance command on the Build menu.

Visual Basic compiles your project and creates an .exe file.

10. Click the Add New Item command on the Project menu, and then click the Windows Forms
category on the left side of the dialog box and the Inherited Form template in the middle of
the dialog box.

462 part III Visual Basic programming techniques

The Add New Item dialog box looks as shown in the following screen shot:

Note Most versions of Visual Basic Express do not include the Inherited Form
template. If you are using Visual Basic Express and are looking for justification to
upgrade to Visual Studio Professional, this lacuna might provide some. (In general,
Professional and the other full versions of Visual Studio provide a number of addi-
tional templates that are useful.) At this point, you might want to simply review the
sample project that I have included in the book’s sample files and examine the code.

As usual, Visual Studio lists all the possible templates you could include in your projects,
not just those related to inheritance. The Inherited Form template gives you access to the
Inheritance Picker dialog box when a Windows Forms app is loaded.

You can also use the Name text box at the bottom of the dialog box to assign a name to your
inherited form, although it is not necessary for this example. This name will appear in Solution
Explorer and in the file name of the form on disk.

 CHAPTER 16 Object-oriented programming techniques 463

11. Click Add to accept the default settings for the new, inherited form.

Visual Studio displays the Inheritance Picker dialog box, as shown here:

This dialog box lists all the inheritable forms in the current project. If you want to browse for
another compiled form, click the Browse button and locate the .dll file on your system.

Note If you want to inherit a form that isn’t a component of the current project,
the form must be compiled as a .dll file.

12. Click Form1 in the Inheritance Picker dialog box, and then click OK.

Visual Studio creates the Form2.vb entry in Solution Explorer and displays the inherited form
in the Designer. Notice in the following screen shot that the form looks identical to the Form1
window you created earlier except that the two buttons contain tiny icons, which indicate that
the objects come from an inherited source.

It can be difficult to tell an inherited form from a base form (the tiny inheritance icons aren’t
that obvious), but you can also use Solution Explorer and the IDE tabs to distinguish between
the forms.

464 part III Visual Basic programming techniques

Now you’ll add a few new elements to the inherited form.

Customize the inherited form

1. Use the Button control to add a third button object near the middle of Form2 (the inherited
form).

2. Set the Text property for the button object to “Click Me!”

3. Double-click the Click Me! button.

4. In the Button3_Click event procedure, type the following program statement:

MsgBox("This is the inherited form!")

5. Display Form2 again, and then try double-clicking the OK and Cancel buttons on the form.

Notice that you can’t display or edit the event procedures or properties for these inherited
objects without taking additional steps that are beyond the scope of this chapter. (Tiny “lock”
icons indicate that the inherited objects are read-only.) However, you can add new objects to
the form or customize it in other ways.

6. Enlarge the form.

This works just fine. In addition to modifying the size, you can change the location and other
display or operational characteristics of the form. Notice that if you use the Properties window
to customize a form, the Object list box in the Properties window displays the form from
which the current form is derived. Here’s what the Properties window looks like in your project
when Form2 is selected:

 CHAPTER 16 Object-oriented programming techniques 465

Now set the startup object in your project to Form2.

7. Click the My Form Inheritance Properties command on the Project menu.

The Project properties window appears.

8. On the Application tab, click the Startup Form list box, click Form2, and then close the Project
properties window by clicking the Close button on the tab.

There is no Save button in the Project Designer because Visual Studio saves your changes as
you make them in the dialog box. Now run the new project.

9. Click the Start Debugging button.

The inherited form opens, as shown here. (My version is shown slightly enlarged after follow-
ing step 6 earlier in this exercise.)

10. Click OK.

The inherited form runs the event handler that it inherited from Form1, and the event handler
displays the following message:

466 part III Visual Basic programming techniques

11. Click OK, and then click the Click Me! button.

Form2 displays the inherited form message, as shown here:

What this demonstrates is that Form2 (the inherited form) has its own characteristics (a new
Click Me! button and an enlarged size). Form2 also uses two buttons (OK and Cancel) that
were inherited from Form1 and contain the code from Form1, as well as the exact visual repre-
sentation of the buttons.

This means that you can redeploy the user interface and code features that you have previ-
ously created without cumbersome cutting and pasting. That is, you’ve encountered one of
the main benefits of OOP—reusing and extending the functionality of existing objects (in this
case, a form and its objects and properties). Further, you’ve learned to use the Visual Studio
Inheritance Picker dialog box, which offers a handy way to select objects that you want to
reuse in a Windows Forms app. However, as I noted earlier, this is currently available in the IDE
only when a Windows Forms app is loaded. But not to worry; all of these procedures can all be
accomplished with program code.

12. Click OK to close the message box, and then click Close on the form to end the program.

The program stops, and the IDE returns.

13. Save your changes, and then click Close Project on the File menu to unload the project.

It’s time to work with OOP techniques in a Windows Store app.

Creating your own base classes

The Inheritance Picker managed the inheritance process in the previous exercise by creating a new
class in your Windows Forms project named Form2. To build the Form2 class, the Inheritance Picker
established a link between the Form1 class in the My Form Inheritance project and the new form.
Here’s what the new Form2 class looks like in the Code Editor:

 CHAPTER 16 Object-oriented programming techniques 467

The Button3_Click event procedure that you added is also a member of the new class. But recall for
a moment that the Form1 class itself relied on the System.Windows.Forms.Form class for its funda-
mental behavior and characteristics. So the last exercise demonstrates that one derived class (Form2)
can inherit its functionality from another derived class (Form1), which in turn inherited its core func-
tionality from the base class (Form), which is a member of the System.Windows.Forms namespace in
the Microsoft .NET Framework.

As you learned at the beginning of this chapter, Visual Studio provides the Inherits statement,
which causes the current class to inherit the properties, methods, and variables of another class. To
use the Inherits statement to inherit a form or a page, you must place the Inherits statement at the
top of the form or page as the first statement in the class. Although you might choose to use the
Inheritance Picker for this sort of work with forms in a Windows Forms app (which exists primarily to
insert the Inherits statement in the derived class), it is required that you use Inherits in other contexts,
including inheriting objects in Windows Store apps. You’ll see an example of the Inherits statement a
little later in this chapter.

Recognizing that classes are such a fundamental building block in Visual Basic programs, you
might very well ask how new classes are created and how these new classes might be inherited down
the road by subsequently derived classes. I devote the following sections to these possibilities, begin-
ning with the syntax for creating classes in Visual Basic 2013.

adding a new class to your project
Simply stated, a class in Visual Basic is a representation or blueprint that defines the structure of one
or more objects. Creating a class allows you to define your own objects in a program—objects that
have properties, methods, fields, and events, just like the objects that the Toolbox controls create in
Visual Studio. To add a new class to your project, you click the Add Class command on the Project
menu, and then you define the class by using Visual Basic program code.

In the following exercise, you’ll build on the Alpine Ski House application that you started work-
ing with in Chapter 15, “Innovative data management with LINQ.” You’ll modify an existing Windows
Store app named Skier Class that prompts the user for information about new ski racing students,
including their first name, last name, age, and gender. You’ll store this information in the properties of
a new class named Skier, and you’ll create a method in the class to determine which ski racing group
the new student should belong to. This project will teach you how to create a new class and also how
to use the new class in an event handler in your program.

468 part III Visual Basic programming techniques

Open and modify the Skier Class project

1. In Visual Studio, open an existing Windows Store Application project named Skier Class.

I have partially created this demonstration program for you so that you do not need to spend
time creating the various text block and text box objects on the page required for adding data
to the new Skier class. This will allow you to focus on your OOP skills.

2. Display the MainPage.xaml page in the IDE.

The user interface of the project looks like this:

This is the basic user interface for a page that defines a new student record for a business
application. The page isn’t connected to a database, so only one record can be stored at a
time.

Now you’ll add a class to the project to store the information in the record.

 CHAPTER 16 Object-oriented programming techniques 469

3. Click the Add Class command on the Project menu.

Visual Studio displays the Add New Item dialog box, with the Class template selected, as
shown here:

The Add New Item dialog box gives you the opportunity to name your class. Because you can
store more than one class in a new class file, you might want to specify a name that is some-
what general. (There is not a one-to-one correspondence between class files and classes.) In
this case, you are using a name (Skier) that just happens to be the name of the new file and
the name of the new class.

470 part III Visual Basic programming techniques

4. Type Skier.vb in the Name box, and then click Add.

Visual Studio opens a blank class module in the Code Editor and lists a file named Skier.vb in
Solution Explorer for your project, as shown here:

Now you’ll type the definition of your class in the class module and learn a few Visual Basic state-
ments related to object-oriented programming. You’ll follow three steps: create properties, create a
method, and create an object based on the new class.

Step 1: Create properties

Below the variable declarations, type the following program statements:

'Declare properties of Skier class using auto-implemented properties
Public Property FirstName() As String
Public Property LastName() As String
Public Property Age() As Short
Public Property Gender() As String

These statements create properties for your new class using types that fit the data that you
are collecting for ski school students. The properties are declared using the Public keyword,
because these values will be returned to the program through the class’s property settings.

Some time ago in Visual Basic programming (Visual Basic versions 2008 and earlier), property
definitions like this also required a Get block and a Set block to be defined next with pro-
gram code. Now that syntax is optional and typically added only when you need to perform
some additional operation related to defining a property value. In this case, the internal logic
related to the properties can be auto-implemented, and you don’t need to add anything else.

Now you’ll create a new method named Group, which will determine the ski racing group that
the ski school student will be assigned to.

 CHAPTER 16 Object-oriented programming techniques 471

Step 2: Create a method

1. Below the Gender property, type the following function definition:

Public Function Group() As String
 'Create a method for the Skier class named Group
 Dim notice As String = "" 'declare local string variable to hold result
 Select Case Age 'use Select Case and Age property to group by age
 Case Is <= 12
 notice = "not assigned (too young for team)"
 Case 13 To 16
 If Gender.ToUpper = "M" Then 'use Gender property to group by sex
 notice = "Blue Storm"
 ElseIf Gender.ToUpper = "F" Then
 notice = "Pink Storm"
 End If
 Case 17 To 19
 If Gender.ToUpper = "M" Then
 notice = "Blue Lasers"
 ElseIf Gender.ToUpper = "F" Then
 notice = "Pink Lasers"
 End If
 Case Is >= 20
 notice = "Not assigned (too old for team)"
 End Select

 Return notice 'method returns message in notice variable
End Function

To create a method in the class that performs a specific action, you add a function or a Sub
procedure to your class. You can create methods that require (or do not require) arguments to
accomplish their work. In this case, I have created a function named Group that will return a
short message of type String indicating which ski racing group the new ski school student will
be placed in. The following paragraphs describe the function, which uses a Select Case deci-
sion structure to determine where the students will be assigned.

The function places each student in a group based on age and gender. Because the ski racing
program contains an element of danger and is designed for teenage athletes, only ski school
students between the ages of 13 and 19, inclusive, are allowed into the program. As a result,
the Select Case structure needs to determine which of four groups the eligible students fall in,
displaying an appropriate message for students who don’t fit the program. (Students between
the ages of 1 and 12 are too young to be assigned to a team, and students aged 20 and over
are too old to be assigned to a team.) Within the Select Case clauses is additional program
logic to determine whether the student applicant is a boy or a girl. This gender determina-
tion is based on the letters “M” (for male) and “F” (for female), which the user enters into the
Gender text box on the page. I also use the ToUpper method from the String class to provide
some string conversion if the user enters the letter “m” or “f” on the page. (However, I do
assume that the user enters the “m” or “f” letters in the Gender text box; additional input
masking could be done here to force an entry in the proper format.)

472 part III Visual Basic programming techniques

The four potential groups are Blue Storm (for boys between the ages of 13 and 16), Pink Storm
(for girls between the ages of 13 and 16), Blue Lasers (for boys between the ages of 17 and
19), and Pink Lasers (for girls between the ages of 17 and 19). The created text for each sub-
group is held temporarily in the notice string variable. However, at the end of the function, this
value is returned to the program via the Return keyword.

Note that this function uses the Age and Gender properties, which are maintained by the Skier
class. For the function to work as designed, these properties should be filled with the appro-
priate data for the ski school student before the Group method is called. I wrote the method
in this way to demonstrate that objects can and often do use their own properties and
methods to accomplish their work. However, you need to design your methods so that there is
sufficient error handling and type checking when you deal with user input. In the next step, I
show you one way that you might do this before the Group method is actually used.

Your class definition is finished, and in the Code Editor, the Skier class now looks like the
following:

2. Click Save All to save your changes, and return to MainPage.xaml.vb, where you can use the
new class in an event handler.

 CHAPTER 16 Object-oriented programming techniques 473

Step 3: Create an object based on the new class

1. In the Code Editor, scroll down in the MainPage.xaml.vb code-behind file to find the
EnterButton_Click event handler.

Because this program is already partially complete, I have already created the
EnterButton_Click event handler for you, a procedure that runs when the user clicks the Enter
Record button on the page.

2. Type the following code in the Code Editor, between Private Sub and End Sub:

'Declare new SkiRacer object of type Skier
Dim SkiRacer As New Skier
'Set properties of SkiRacer object using text boxes for input
SkiRacer.FirstName = FirstName.Text
SkiRacer.LastName = LastName.Text
If (Age.Text <> Nothing) Then SkiRacer.Age = Age.Text
SkiRacer.Gender = Gender.Text
'Display the race group skier is in using call to Group method of SkiRacer object
GroupBox.Text = SkiRacer.LastName & " in group: " & SkiRacer.Group()

This routine stores the values entered by the user in an object named SkiRacer that’s declared
as type Skier. The New keyword indicates that you want to immediately create a new instance
of the SkiRacer class. You’ve declared variables often in this book—now you get to declare one
based on a class you created yourself!

The routine then begins setting properties in the new object by using values that the user has
entered in text boxes on the page. The FirstName property of the SkiRacer object is assigned
a string value from the FirstName text box on the page, and the LastName property of the
SkiRacer object is assigned a string value from the LastName text box. The Age property is
then assigned after a little type checking—a value is assigned as long as the user has entered
some value into the Age text box on the page. (There is still more error-handling that could
be done, because if the user intentionally enters a text value here rather than a number, the
assignment will generate an exception.)

After the Gender property of the SkiRacer object is set from the Gender text box, the Group
method of the SkiRacer object is called. The result is displayed along with some formatting
information in the GroupBox text box on the page.

As you can see, this part of the program is quite straightforward. After you define a class in a
class module, it’s a simple matter to use it in an event handler.

3. Click the Save All button to save your changes.

4. Click the Start Debugging button to run the program.

The user interface for the Alpine Ski House new skier page appears, ready for your input.

5. Type Dan in the First Name text box, and type Jump in the Last Name text box.

6. Type 17 in the Age text box, and type M in the Gender text box.

474 part III Visual Basic programming techniques

7. Click Enter Record.

Visual Basic processes the information using the new SkiRacer object and assigns Dan Jump to
the Blue Lasers ski racing group. Your page looks similar to this:

The class is working perfectly, and the skier has been assigned to the expected group. Now
modify the data to see how the Select Case statement handles the other group assignments.

8. Change the Age text box to 15, and then click Enter Record.

The program revises the group assignment. Accounting for Dan Jump’s modified age of 15,
the Skier class assigns him to the Blue Storm ski racing team.

9. Type Anne in the First Name text box, and type Weiler in the Last Name text box.

10. Type 19 in the Age text box, and type F in the Gender text box.

11. Click Enter Record.

The program changes each of the property settings in the SkiRacer object and then assigns
Anne Weiler to the Pink Lasers ski racing team. Your page looks like this:

 CHAPTER 16 Object-oriented programming techniques 475

12. Change the Age text box to 13, and then click Enter Record.

The program revises the group assignment for Anne Weiler to the Pink Storm racing team.

The Select Case structure is still working properly. Now try some input conditions in which no
ski racing team should be assigned by the Group method of the Skier class.

13. Change the Age text box to 8, and then click Enter Record.

The program displays the message Weiler In Group: Not Assigned (Too Young For Team). This
is the expected result, because 8 years old is currently too young for the teenage ski racing
program at Alpine Ski House school.

14. Remove the number entirely from the Age text box, and then click Enter Record.

The program detects that there is no value in the Age text box and does not assign a value to
the Age property in the SkiRacer class. When the Group method runs, the Select Case state-
ment assigns no value to the Banner variable, and the Group text box on the page displays
Weiler In Group: Not Assigned (Too Young For Team). This is also the expected result; an
incomplete student record results in no group assignment.

Now make one final test.

15. Type Dylan in the First Name text box, and type Miller in the Last Name text box.

476 part III Visual Basic programming techniques

16. Type 35 in the Age text box, and type m in the Gender text box. (Take care to type a lower-
case m.)

17. Click Enter Record.

The Select Case structure evaluates the record for Dylan Miller and determines that he is too
old to be placed on a racing team in this program. You’ll see the following output:

18. Continue experimenting with different data scenarios in the Skier Class program. When you’re
finished experimenting with the new class, close the program and return to the Visual Studio IDE.

The development environment returns. Great work!

Inheriting a base class

Just as pages in the user interface can inherit their attributes from the Page class, you can also inherit
classes that you (or another programmer) have created in a project. The mechanism for inheriting a
base (parent) class is to use the Inherits statement. You can then add additional properties or methods
to the derived (child) class to distinguish it from the base class. If this sounds a bit abstract, let’s try an
example based on the previous exercise.

 CHAPTER 16 Object-oriented programming techniques 477

In the following task, you’ll modify the My Skier Class project so that it stores information about ski
students and their administrative status in the Alpine Ski House ski school. First, you’ll add a second
user-defined class, named Student, to the Skier class module. This new class will inherit the FirstName,
LastName, Age, and Gender properties, and the Group method, from the Skier class. However, it will
also add two new properties named Balance and Certificate, to maintain additional information about
students in the ski school.

Use the Inherits keyword

1. Click the Skier.vb class tab at the top of the Code Editor to display the Skier class.

2. Scroll to the bottom of the Code Editor so that the insertion point is below the End Class
statement.

As I mentioned earlier, you can include more than one class in a class module, as long as each
class is delimited by Public Class and End Class statements. You’ll create a second class named
Student in this class module, and you’ll use the Inherits keyword to incorporate the method
and properties you defined in the Skier class.

3. Type the following class definition in the Code Editor:

Public Class Student
 Inherits Skier
 Public Property Balance As Double
 Public Property Certificate As Boolean
End Class

The Inherits statement links the Skier class to this new class, incorporating all of its variables,
properties, and methods. If the Skier class were located in a separate module or project,
you could identify its location by using a namespace designation, just as you identify classes
when you use the Imports statement at the top of a program file that uses classes in the .NET
Framework class libraries. Basically, I’ve defined the Student class as a special type of Skier
class—in addition to the FirstName, LastName, Age, and Gender properties, the Student class
has a Balance property that records the amount of money the student currently owes for
instruction (if any) and a Certificate property that records whether or not the student has
received an end-of-season ski school participant certificate.

The new Balance property is declared with the Double type, which is suitable for financial
balances. The new Certificate property is declared with the Boolean type, a True or False value
indicating whether or not the certificate has been issued.

Now you’ll use the new class in the EnterButton_Click event handler.

478 part III Visual Basic programming techniques

4. Display the EnterButton_Click event handler in MainPage.xaml.vb.

Rather than create a new variable to hold the Student class, I’ll just modify the program so that
the SkiRacer variable is now derived from the Student class rather than from the Skier class.
This way I can use the existing code and simply add a few lines to fill the new Balance and
Certificate properties with data.

5. Modify the EnterButton_Click event handler as follows. (The statements in bold are the ones
that you need to change.)

'Declare new SkiRacer object of type Student
Dim SkiRacer As New Student
'Set properties of SkiRacer object using text boxes for input
SkiRacer.FirstName = FirstName.Text
SkiRacer.LastName = LastName.Text
If (Age.Text <> Nothing) Then SkiRacer.Age = Age.Text
SkiRacer.Gender = Gender.Text

SkiRacer.Balance = 121.95
SkiRacer.Certificate = False

'Display balance skier owes school using Balance property and ToString(currency)
GroupBox.Text = SkiRacer.LastName & " owes " & SkiRacer.Balance.ToString("C")

In this example, I’ve removed the use of the Group method and I have modified the infor-
mation that is displayed in the GroupBox text box so that the current balance (if any) that
is owed by the student in the ski school is displayed. I display the Balance property of the
SkiRacer object using the ToString method, which can be used to display currency formatting
appropriate for the culture defined for your system. (The “C” character requests the currency
formatting.)

Although I have assigned a value of False to the Certificate property, I am not using that
value specifically in the program code. However, it would be a simple matter to create an
If…Then…Else structure that displays an appropriate message for the user based on the value
maintained by the Certificate property.

Now you’ll run the program.

6. Click the Start Debugging button to run the program.

The familiar Skier Entry Page for Alpine Ski House opens on the screen, ready for your input.

7. Type Modesto in the First Name text box, and type Estrada in the Last Name text box.

8. Type 18 in the Age text box, and type M in the Gender text box.

9. Click Enter Record.

Visual Basic processes the information using the enhanced SkiRacer object and assigns the
values you entered along with the new Balance and Certificate properties. Your page looks
similar to this:

 CHAPTER 16 Object-oriented programming techniques 479

The value of 121.95 assigned to the Balance property now appears in the Group text box on
the page, formatted for currency in a United States cultural context. (On my computer, the
amount appears as $121.95.) The new Student class is working as expected.

10. Continue to experiment with a few more values if you like, and when you’re finished, close the
Windows Store app.

11. When the IDE returns, consider modifying the EnterButton_Click event handler a little on your
own to experiment with the SkiRacer class and its various properties and methods.

For example, consider adding additional methods and properties to the new class and then
using these members in the MainPage.xaml.vb code-behind file.

12. When you’re finished experimenting, save your changes and close the Skier Class project.

You now have the ability to create your own base classes and to derive new classes from existing
classes using the Inherits statement.

480 part III Visual Basic programming techniques

Polymorphism

In addition to creating base classes and inheriting classes, there are a few more concepts related
to object-oriented programming that you should learn about as you move into intermediate and
advanced Visual Basic programming topics. You’ll see them in professional-level books about Visual
Studio programming, and they build on the concepts that you’ve just experimented with. In this sec-
tion, you’ll learn about polymorphism and overriding methods and procedures, two mechanisms that
extend the power of inheritance.

Polymorphism describes a method of programming in which you treat an object in one class as
if it were from a parent class or another class in the inheritance hierarchy. The term comes originally
from the natural sciences, in which closely related variations among different organisms or species are
understood to be related and thus polymorphic. One example is the variation among blood types in
humans, which has persisted over thousands of years and yet has not led to an appreciable advan-
tage or disadvantage among peoples in terms of natural selection. The difference in eye color among
humans is also an example of polymorphism.

In object-oriented programming, polymorphism is a type of inheritance that allows you to create
more elegant and maintainable code. Polymorphism creates closer relationships among objects, ide-
ally reducing programming errors and allowing you to write fewer lines of code overall, because many
of the objects rely on one another for their attributes and functionality.

Microsoft sometimes describes polymorphism by using the following creative illustration: Imagine
that there are two classes in a Visual Basic program named Flea and Tyrannosaur. And imagine further
that through an Inherits statement the Flea and Tyrannosaur classes gain many of their essential attri-
butes from Animal, a base class containing common animal behaviors and characteristics.

Now, here’s the polymorphism part. Imagine that to perform the act of chewing, the Flea and
Tyrannosaur classes override (that is, replace and enhance) the Animal class’s Bite method so that each
creature can bite with its own unique characteristics. The flea and tyrannosaur actually do have some
things in common, but they chew in unique ways. To accomplish their work they replace the Animal
class’s Bite method with an enhanced definition of Bite. In Visual Basic terms, the replacement is facili-
tated by a process called method overriding.

In fact, to continue the example, polymorphism occurs whenever a replacement Bite method is
defined in any class derived from Animal. With polymorphism, the caller doesn’t have to know what
class an object actually belongs to before calling the property or method. It just needs to verify the
hierarchical relationship between the objects.

Syntax for overriding methods and properties
As you learned earlier in this chapter, a derived class inherits properties and methods from a base
class. This is true whether the base class is one that you have just created or whether the base class
is a well-known entity in the .NET Framework. But, if you decide that an inherited method or prop-
erty needs to function differently in the derived class, Visual Basic allows you to override the original
method or property.

 CHAPTER 16 Object-oriented programming techniques 481

Although the process might sound complicated, overriding methods and properties can be
accomplished using just a few Visual Basic keywords in the definition for the base class and in the call
to the base class’s methods and properties. The following keywords facilitate overloading and poly-
morphism in Visual Basic:

■■ Overridable A keyword that allows a method or property in a class to be overridden by a
derived class.

■■ Overrides A keyword that, when used in a derived class, overrides a method or property
defined as Overridable in the base class.

■■ NotOverridable A keyword that stops a method or property from being overridden in an
inherited class. (Public methods are NotOverridable by default.)

■■ MustOverride A keyword that forces a derived class to override the method or property.

You’ll see the Overridable and Overrides keywords used in the exercise below.

referring to the base class with MyBase
There is one final thing. When you are creating a new class that is derived from an existing class, it is
useful to reference the base class in a programmatic way. To assist with this type of reference, Visual
Studio provides the MyBase keyword, which refers (or points to) the base class of the current instance
of a class. You can also use the Me keyword to explicitly refer to members of the local (derived) class.

MyBase is typically used to access base class members that are overridden or shadowed (partially
hidden from view) in a derived class. You can also use the syntax MyBase.New to explicitly call a base
class constructor from a derived class constructor. (A constructor is simply a procedure named New
that Visual Basic calls when a new instance of a class or structure is created. Constructors do basic
initialization work and get an object ready for use.)

experimenting with polymorphism
The following step-by-step example demonstrates how polymorphism and method overriding
work in a Visual Basic program. In this example, you’ll build a Windows Store app that calculates the
amount of discount that ski school students receive when they register online for classes. The typical
discount is 8.5% for new students that register online and 14% for continuing students. Currently, the
Alpine Ski House ski school also allows continuing students who register online to combine the two
discounts.

In the Polymorphism project that follows, the first discount rate will be computed using a new class
named BaseDiscount. The BaseDiscount class contains the method FindDiscount, which computes the
total dollar amount of the discount when the cost of ski school tuition is passed to it as an argument.
The BaseDiscount class is quite simple, as inheritable objects should typically be in programs. The class
is used to create a new object in the TestButton_Click event handler named WebDeal2014. This object
is passed to a Sub procedure named ViewSavings, which actually calls the FindDiscount method and
displays the applicable discount in a text box object on the page.

482 part III Visual Basic programming techniques

What makes this a polymorphism demonstration is the second class that is defined in the program,
named DeepDiscount. This class is derived from the BaseDiscount class, but it uses the Overrides key-
word to create a replacement method named FindDiscount, which will change the functionality of the
base class and compute the discount pricing that occurs when students both register online and are
returning for additional instruction in the program.

To make typing in the program code relatively simple for you in this exercise, I will direct you to
declare the program’s constants, classes, Sub procedure, and TestButton_Click event handler all in the
same MainPage.xaml.vb file. I have also included plenty of comments in the code so that you can see
what is taking place.

Calculate discount rates using method overriding

1. On the File menu, click New Project.

2. Choose Visual Basic/Windows Store under Templates, and then verify that the Blank App
(XAML) template is selected.

3. Type My Polymorphism in the Name text box, and then click OK to open and configure the
new project.

Visual Studio creates the new Windows Store project with the appropriate support files.

4. Right-click the MainPage.xaml file in Solution Explorer, and then select View Designer.

A blank page opens in the Designer.

5. Change the magnification percentage in the Designer’s Zoom box to 100%.

6. Click the XAML TextBlock control in the Toolbox, and then create a text label near the top of
the page to display a title for the program.

7. Set the Text property of the text block object to “Ski School Tuition Discounts”, and change
the FontSize property to 48.

8. Position the text block object so that it is in the upper-left corner of the page.

9. Create a Button control on the page and a large, rectangular TextBox control next to it.

10. Change the Name property of the button object to “TestButton”, and change the Content
property to “Show Discounts”.

11. Change the Name property of the text box object to “Output”, and delete the contents of the
Text property so that the text box object appears empty.

Now you’ll add a background image to the Grid object on the page. (You’ll use another ski
photo from my collection.) Insert the image by setting the grid’s Background property, as
shown in Steps 12-14.

 CHAPTER 16 Object-oriented programming techniques 483

12. In Solution Explorer, add an existing image to the Assets folder named Mountain.jpg.

You’ll find this photo file in the My Documents\Visual Basic 2013 SBS\Chapter 16 folder.

13. Now display the XAML tab of the Code Editor, and add the following XAML markup just below
the <Grid> tag in the MainPage.xaml file.

14. Type the following markup to load the image onto the page:

<Grid>
 <Grid.Background>
 <ImageBrush ImageSource="ms-appx:/Assets/Mountain.jpg" Stretch="UniformToFill"/>
 </Grid.Background>

The first <Grid> tag might need to be modified slightly so that it looks like what I have shown.
As you learned in the past few chapters, this technique allows you to display an attractive
graphical image as the backdrop of your page, which is a compelling effect.

Now you’ll add program code defining constants, two new classes, a Sub procedure, and an
event handler for the button object on the page. Rather than create the classes and procedure
in a separate file or module, you’ll simply enter all of the program code at the bottom of the
MainPage.xaml.vb file.

15. Below the lines that define the OnNavigatedTo procedure (that is, beneath that procedure’s
End Sub statement), type the following lines of Visual Basic code:

' Declare a constant for 8.5% base discount for ski school
Public Const webRateDiscount As Double = 0.085
' Declare a constant for 14% returning student discount
Public Const returnStudentDiscount As Double = 0.14

Public Class BaseDiscount
 'Declare new BaseDiscount class that contains FindDiscount method.
 'Using Overridable keyword during method declaration allows for method overriding
 Overridable Function FindDiscount(ByVal CashValue As Double) As Double
 Return CashValue * webRateDiscount 'determine basic discount for student
 End Function
End Class

Public Class DeepDiscount
 ' Declare new DeepDiscount class which modifies a method in the BaseDiscount class
 Inherits BaseDiscount 'Inherits keyword must be first statement in class
 Private initialDiscount As Double 'declare local variable to hold calculation

 'This modified FindDiscount method will override the same method in the base class
 'when the Overrides keyword is used
 Overrides Function FindDiscount(ByVal CashValue As Double) As Double
 'Use of the MyBase keyword here refers to the base class of current instance.
 'That calculation is the first, but then second discount is added to it
 initialDiscount = MyBase.FindDiscount(CashValue)
 'Goal is to return the total "deep discount" (or multiple discount value)
 Return (returnStudentDiscount * CashValue) + initialDiscount
 End Function
End Class

484 part III Visual Basic programming techniques

'The ViewSavings procedure calculates the amount of money saved on ski school
'tuition and displays the value in the Output text box on the page.
'The procedure takes two arguments, an object of the BaseDiscount type and
'a tuition value that should be discounted.

Sub ViewSavings(ByVal Item As BaseDiscount, ByVal SaleAmount As Double)
 'Note the polymorphism support: Although the first argument calls for an object
 'of type BaseDiscount, an object of type DeepDiscount also works.
 Dim taxAmount As Double
 taxAmount = Item.FindDiscount(SaleAmount)
 Output.Text = Output.Text & "On " & SaleAmount.ToString("C") & _
 " tuition, the amount saved was " & taxAmount.ToString("C") & vbCrLf
End Sub

Private Sub TestButton_Click(sender As Object, e As RoutedEventArgs) Handles
TestButton.Click
 'Declare objects related to new classes
 Dim WebDeal2014 As New BaseDiscount
 Dim ReturnStdBargain2014 As New DeepDiscount

 'Call ViewSavings procedure to determine discount on $150 ski school tuition.
 'The first call uses the regular Web registration discount rate
 ViewSavings(WebDeal2014, 150)
 'The second call adds the web discount to the returning student discount
 ViewSavings(ReturnStdBargain2014, 150)
End Sub

16. Click the Save All button to save your changes, and specify the My Documents\Visual Basic
2013 SBS\Chapter 16 folder as the location.

Now you’ll run the Windows Store app.

17. Click Start Debugging.

The program loads and displays its basic user interface, featuring a snowy mountain scene, a
text block object, a text box, and a button.

18. Click Show Discounts.

Visual Basic declares two variables based on the BaseDiscount and DeepDiscount classes,
named WebDeal2014 and ReturnStdBargain2014, respectively. These variables are passed to
the ViewSavings procedure and used to calculate the student tuition discounts for a $150 class
session. The two discounts are displayed in the text box. For students who register online for
a $150 ski school class, the discount is $12.75. For students who register online for a class and
are also returning students in the program, the combined discount is $33.75.

 CHAPTER 16 Object-oriented programming techniques 485

Your screen will look like this:

19. Close the program, and quit Visual Studio.

You’re finished writing code in this chapter.

Using inheritance and method overriding, you have created a program that defines its own classes
and modifies them to perform useful work. This functionality has been achieved through some fairly
simple keywords, including Overridable, Overrides, Inherits, and MyBase.

The underlying concepts of object-oriented programming are more complex, but with the neces-
sary practice, they will help you write impressive real-world applications. Professional programmers
use polymorphism in a variety of contexts to create elegant and highly maintainable code.

486 part III Visual Basic programming techniques

Summary

This chapter introduced object-oriented programming terminology and fundamental techniques. We
covered creating base classes with custom properties and methods, deriving new classes from base
classes, and experimenting with advanced concepts such as polymorphism and method overriding.
There is more to learn about OOP and its usefulness in Visual Basic applications. You will continue
working with custom classes and their uses in Chapter 18, “Data access for Windows Store apps.”

In the Part IV, “Database and web programming,” you will continue your introduction to Visual
Studio development skills with a discussion of database programming and creating web applications
using ASP.NET. In Chapter 17, “Database controls for Windows desktop apps,” you’ll survey the useful
wizards and controls that allow a Windows Forms app to connect to an Access database.

 487

PART IV

Database and web
programming

CHAPTER 17 Database controls for Windows desktop apps . . .489

CHAPTER 18 Data access for Windows Store apps515

CHAPTER 19 Visual Studio web development with ASP.NET. . .543

 489

C H A P T E R 1 7

Database controls for Windows
desktop apps

After completing this chapter, you will be able to

■■ Use the Data Source Configuration Wizard to establish a connection to a database and build a
dataset.

■■ Use the Dataset Designer and the Data Sources window to examine dataset members and cre-
ate bound objects on forms.

■■ Bind Windows Forms controls to an Access database and create datacentric applications by
using dataset and data navigator objects.

■■ Write SQL statements to filter and sort dataset information with the Visual Studio Query
Builder tool.

As a programmer with some experience in software development, you already know that working
with data is a core activity in information management. In Part III, “Visual Basic programming

techniques,” you spent considerable time working with data-processing concepts, including manag-
ing data types, processing strings, using arrays and collections, and writing LINQ expression queries.
In Part IV, “Database and web programming,” you'll work specifically with data sources in Windows
Forms and Windows Store apps, and you'll learn how to expand your coding skills to the web platform
with ASP.NET.

In this chapter, you'll learn how to bind controls to a database in a Windows Forms (Windows
desktop) application. You'll use the Data Source Configuration Wizard to establish a connection to a
Microsoft Access database on your system, and you'll create a dataset that represents a subset of use-
ful fields and records from a database table. You'll use the Dataset Designer and Data Sources window
to examine dataset members and create bound objects on your forms. You’ll also use the TextBox
and MaskedTextBox controls to present database information to your user, and you’ll learn to write
Structured Query Language (SQL) SELECT statements that filter datasets (and therefore what your
user sees and uses) in interesting ways.

This chapter deals specifically with data access in Windows Forms applications and introduces
ADO.NET, the most popular data model for database programming in Visual Studio 2013. In
Chapter 18, “Data access for Windows Store apps,” you’ll learn how to use XML documents as data
sources in Windows Store programs created in Visual Basic 2013. I designed these chapters to be

490 part IV Database and Web programming

read sequentially; Chapter 18 extends the discussion about using data sources that I begin in this
chapter and moves the conversation to a new platform.

Database programming with ADO.NET

A database is an organized collection of information stored in one or more files. You can create
powerful databases by using any of a variety of database products, including Access, Microsoft SQL
Server, and Oracle. You can also store and transmit database information by using Extensible Markup
Language (XML), a file format designed for exchanging structured data over the Internet and in other
settings.

Creating and maintaining databases has become an essential task for all major corporations,
government institutions, nonprofit agencies, and most small businesses. Rich data resources—for
example, customer addresses, manufacturing inventories, account balances, employee records, donor
lists, and order histories—have become the lifeblood of the business world.

You can use Microsoft Visual Studio 2013 to create new databases, but Visual Studio 2013 is
primarily designed for displaying, analyzing, and manipulating the information in existing databases
or XML files. ADO.NET, first introduced in Microsoft Visual Studio .NET 2002, is still the standard data
model for database programming in Visual Studio 2013. ADO.NET has been improved over the years
to work with a large number of data access scenarios, and it has been carefully optimized for Internet
use. For example, it uses the same basic method for accessing local, client-server, and Internet-based
data sources, and XML is tightly integrated into ADO.NET.

Fortunately, most of the database applications that programmers created using earlier versions of
Microsoft Visual Basic and ADO.NET still function very well, and the basic techniques for accessing a
database are mostly the same in Visual Basic 2013. However, there is a supplementary model for data-
base management in Visual Studio called the Entity Framework, first shipped with Visual Studio 2010.
The Entity Framework does not replace ADO.NET but offers a data model for working with informa-
tion that is some ways richer and more flexible than ADO.NET. That is, the Entity Framework is not a
radically new way of accessing information but is really an extension of ADO.NET and its functionality.
For this reason, it is very important to learn the ADO.NET object model, both for its current practical-
ity and its future potential.

Database terminology
An underlying theme in the preceding section is that database programmers are often faced with
new technologies to decode and master, a reorientation often initiated by the terms new paradigm or
new database model. Although continually learning new techniques can be a source of frustration, the
rapid pace of change can be explained partially by the relative newness of distributed and multiple-
tier database application programming in Windows, as well as technical innovations, security needs,
and web programming challenges that are beyond the control of the Visual Studio development
team.

 CHAPTER 17 Database controls for Windows desktop apps 491

In this chapter, we’ll be starting at the beginning, and with database programming more than
almost any other subject, you really need to be exposed to topics step by step. Let’s start by under-
standing some basic database terminology. I expect that you’ll know some of this information, but it
is included so that we have some agreement from the start about key terms.

A field (also called a column) is a category of information stored in a database. Typical fields in a
faculty member database might contain ID numbers, the names of faculty members, email addresses,
business phone numbers, and department names. All the information about a particular faculty mem-
ber is called a record (also called a row). When a database is created, information is entered in a table
of fields and records.

Records correspond to rows in the table, and fields correspond to columns, as shown in the follow-
ing faculty database (Faculty.accdb) in Access 2010:

A relational database can consist of multiple linked tables. In general, most of the databases that
you connect to from Visual Studio will probably be relational databases that contain multiple tables of
data organized around a particular theme.

In ADO.NET, various objects are used to retrieve and modify information in a database. First, a
connection is made, which specifies connection information about the database and creates some-
thing for other controls and components to bind to. Next, the Data Sources Configuration Wizard
creates a dataset, which is a representation of one or more database tables that you plan to work with
in your program. (You don’t manipulate the actual data, but rather a copy of it.) The Data Sources
Configuration Wizard also adds an XML schema file to your project and associates a table adapter and

492 part IV Database and Web programming

data navigator with the dataset to handle retrieving data from the database, posting changes, and
moving from one record to the next in the dataset. You can then bind information in the dataset to
controls on a form by using the Data Sources window or DataBindings property settings.

Although in this chapter we will be experimenting with this process in a Windows Forms appli-
cation, you can also bind dataset information to Windows Presentation Foundation (WPF) client
applications, Windows Store applications, web applications (via ASP.NET), and Windows Phone
applications. However, in some platforms (such as the Windows Store environment), the Data Sources
Configuration Wizard cannot be used to establish a dataset connection.

Working with an access database
In the following sections, you’ll learn how to use the ADO.NET data access technology in Visual Basic
2013. You’ll get started by using the Data Source Configuration Wizard to establish a connection
to a database named Faculty.accdb that I created in Microsoft Access. Wizards can sometimes get a
bad rap for being rather simplistic (and as I’ve noted, they don’t work in all platforms), but if you are
writing a Windows Forms app, you’ll find that the Visual Studio Data Source Configuration tool is a
very helpful way to get started with database connections. What the wizard does well in this case is
help you create a connection string, which is a mechanism for locating and opening a data source in a
Visual Studio application.

The Faculty.accdb database contains various tables of academic information that would be useful
for an administrator or teacher who is organizing faculty schedules or workloads, or important con-
tact information for the employees at a college or school. You’ll learn how to create a dataset based
on a table of information in the Faculty database, and you’ll display this information on a Windows
form. When you’ve finished, you’ll be able to put these skills to work in your own database projects.

Note Although the sample in this chapter uses an Access database, you don't have to
have Access installed. However, a few Microsoft connectivity components might be re-
quired on your computer to work with Access files, depending on how your system has
been configured. If you try to complete the exercises below and receive an error message
indicating that Microsoft.Jet.OLEDB is not registered on your computer or that the Access
database format is not recognized, you should complete step 1 in the following exercise to
install the necessary connectivity components before you work with ADO.NET. Also, if you
want to open the file in Access and work with it, you'll need to have Access 2007 or later
installed on your system.

establish a connection by using the Data Source Configuration Wizard

1. Make sure that you have Access 2007 or later installed. If you don’t have Access 2007 installed,
download and install the 2007 Office System Driver: Data Connectivity Components from
http://microsoft.com.

http://microsoft.com

 CHAPTER 17 Database controls for Windows desktop apps 493

2. Start Visual Studio, and then create a new Visual Basic Windows Forms Application project
named My ADO Faculty Form.

A new project opens in the Integrated Development Environment (IDE).

3. On the Project menu, click the Add New Data Source command.

The Data Source Configuration Wizard starts in the development environment, as shown in
the following screen shot:

The Data Source Connection Wizard is a feature within the Visual Studio IDE that automati-
cally prepares your Visual Basic program to receive database information. The wizard prompts
you for the type of database that you will be connecting to (a local or remote database, web
service, custom data object that you have created, or Microsoft SharePoint site), establishes a
connection to the data, and then creates a dataset or data entity within the program to hold
specific database tables and fields. The result is that the wizard opens the Data Sources win-
dow and fills it with a visual representation of each database object that you can use in your
program.

4. Click the Database icon (if it is not already selected) in the Data Source Configuration Wizard,
and then click Next.

The wizard displays a screen prompting you to choose a database model for your application
and the connection that your program will make to the database information.

494 part IV Database and Web programming

5. Click Dataset, and then click Next to select the dataset model.

The wizard now displays a screen that helps you establish a connection to your database by
building a connection string. A connection string contains the information that Visual Studio
needs to locate and open a database. This includes the file or network-based location of the
database and also potentially sensitive data such as a user name and password. For this rea-
son, the connection string is treated carefully within the Data Source Connection Wizard, and
you should take care to protect it from unauthorized access as you copy your source files from
place to place.

6. Click the New Connection button.

The first time that you click the New Connection button, the Choose Data Source dialog box
opens, prompting you to select the database format that you plan to use. If you see the Add
Connection dialog box instead of the Choose Data Source dialog box, it simply means that
your copy of Visual Studio has already been configured to favor a particular database format.
No problem; simply click the Change button in the Add Connection dialog box, and you’ll see
the same thing that first-time wizard users see, except that the title bar reads Change Data
Source. In this example, I’ll assume that you haven’t selected a data source format; in that
case, your screen looks like the following screen shot:

The Change/Choose Data Source dialog box is the place where you select your preferred
database format, which Visual Studio uses as the default format. In this chapter, you’ll select
the Access format, but note that you can change the database format to one of the other
choices at any time. (Periodically, the list of available data sources changes.) You can also
establish more than one database connection—each to a different type of database—within a
single project.

7. Click Microsoft Access Database File, and then click Continue (or OK).

The Add Connection dialog box opens, as shown in the following screen shot:

 CHAPTER 17 Database controls for Windows desktop apps 495

Now you’ll specify the location and connection settings for your database so that Visual
Studio can build a valid connection string.

8. Click Browse.

The Select Microsoft Access Database File dialog box opens, which functions like an Open
dialog box.

9. Browse to the My Documents\Visual Basic 2013 SBS\Chapter 17 folder, click the Faculty.accdb
database, and then click Open.

You have selected the Access database that I built to demonstrate how database fields and
records are displayed within a Visual Basic program. The Add Connection dialog box opens
again with the path name recorded. I don’t restrict access to this file in any way, so a user
name and password are not necessary with Faculty.accdb. However, if your database requires
a user name, a password, or both, you can specify it now in the User Name and Password
boxes. These values are then included in the connection string.

10. Click the Test Connection button.

Visual Studio attempts to open the specified database file with the connection string that
the wizard has built for you. If the database is in a recognized format and the user name and
password entries (if any) are correct, you see the message shown here:

496 part IV Database and Web programming

Note If you get a message that says Unrecognized Database Format, you might
not have Access 2007 or later installed. If you don't have Access 2007 or later in-
stalled, you might need to download and install the 2007 Office System Driver: Data
Connectivity Components, or a later tool, from Microsoft.com. (See step 1 of this
procedure.) Close Visual Studio, install the required driver, restart Visual Studio, and
then complete these steps again.

11. Click OK to close the message box, and then click OK to close the Add Connection dialog box.

Visual Studio displays the Data Source Configuration Wizard again.

12. Click the plus sign (+) next to the Connection String item in the dialog box to display your
completed connection string.

Your wizard page looks similar to the following:

The connection string identifies a provider (also called a managed provider) named Microsoft.
ACE.OLEDB.12.0, which is an underlying database component that understands how to con-
nect to a database and extract data from it. The two most popular providers offered by Visual
Studio are Microsoft OLE DB and SQL Server, but third-party providers are available for many
of the other popular database formats.

13. Click the Next button.

The wizard displays an alert message indicating that a new local database (or local data file)
has been selected that is not in the current project, and you are asked whether the database

 CHAPTER 17 Database controls for Windows desktop apps 497

should be copied to your project folders. (This message appears only the first time that you
make a connection to a local database file. If you are repeating this exercise, you probably
won’t see the message.)

In a commercial application that uses a database, you might want to control how this works
a little more carefully. (To learn more about your options, you would click the Help button or
press F1.)

14. Click No to avoid making an extra copy of the database at this time.

You are not commercially distributing this project; it is only a sample program, and an extra
copy is not needed.

The Data Source Configuration Wizard now asks you the following question: Do You Want
To Save The Connection String To The Application Configuration File? Saving the connec-
tion string is the default selection, and in this example, the recommended string name is
FacultyConnectionString. You usually want to save this string within your application’s default
configuration file, because if the location of your database changes, you can edit the string in
your configuration file (which is listed in Solution Explorer), as opposed to tracking down the
connection string within your program code and recompiling the application.

15. Click Next to save the default connection string.

You are now prompted to select the subset of database objects that you want to use for this
particular project, as shown in the following dialog box:

498 part IV Database and Web programming

Note Visual Studio allows you to use just part of a database or to combine different
databases—a useful feature when you're working to build datacentric applications.

The items you select in this dialog box are referred to within the project as database objects.
Database objects can include tables of fields and records, database views, stored procedures,
functions, and other items unique to your database. In this way, database programming in
Visual Studio fits nicely into the object-oriented programming paradigm you’ve already been
exposed to in this book.

The collective term for all the database objects that you select is a dataset. In this project,
the dataset is assigned the default name FacultyDataSet, which you can adjust in the DataSet
Name box.

Important The dataset you create now only represents the data in your database—
if you add, delete, or modify database records in the dataset, you don't actually
modify the underlying database tables until you issue a command that writes your
changes back to the original database. Database programmers call this kind of ar-
rangement a disconnected data source.

16. Click the arrow next to the Tables node to expand the list of the tables included in the
Faculty.accdb database.

In this case, there is only one table listed, named Faculty, which we’ll use in our sample
program.

17. Click the arrow next to the Faculty node, and then select the check boxes for the Last Name
and Business Phone fields.

You’ll add these two fields to the FacultyDataSet dataset. The wizard page looks like the fol-
lowing screen shot:

 CHAPTER 17 Database controls for Windows desktop apps 499

18. Click the Finish button to complete and close the Data Source Configuration Wizard.

Visual Studio finishes the tasks of adding a database connection to your project and configur-
ing the dataset with the selected database objects.

19. Click the Save All button on the Standard toolbar to save your changes. Specify the My
Documents\Visual Basic 2013 SBS\Chapter 17 folder as the location.

20. If Solution Explorer is not currently visible, open it now to display the major files and compo-
nents contained in the ADO Faculty Form project.

Solution Explorer looks like this:

In addition to the standard Solution Explorer entries for a project, you see a new file named
FacultyDataSet.xsd. This file is an XML schema that describes the tables, fields, data types,

500 part IV Database and Web programming

and other elements in the dataset that you have just created. The presence of the schema file
means that you have added a typed dataset to your project. (Typed datasets have a schema
file associated with them, but untyped datasets don’t.)

Typed datasets are advantageous because they enable the Microsoft IntelliSense feature of
the Visual Studio Code Editor, and they give you specific information about the fields and
tables you’re using.

21. Right-click the FacultyDataSet.xsd schema file in Solution Explorer, and then click View
Designer.

You see a visual representation of the tables, fields, and data adapter commands related to
your new dataset in a visual tool called the Dataset Designer. The Dataset Designer contains
tools for creating components that communicate between your database and your applica-
tion—what database programmers call data access layer components. You can create and
modify table adapters, table adapter queries, data tables, data columns, and data relation-
ships with the Dataset Designer. You can also use the Dataset Designer to review and set
important properties related to objects in a dataset, such as the length of database fields and
the data types associated with fields.

22. Click the Last Name field, and then press F4 to highlight the Properties window.

23. Click the MaxLength property. Your screen looks similar to the following screen shot:

 CHAPTER 17 Database controls for Windows desktop apps 501

Here the Dataset Designer is shown with an active dataset named FacultyDataSet, and the
Properties window shows that the MaxLength property is set to allow for a maximum of 50
characters in the Last Name field. Although this length seems sufficient to display the longest
conceivable last names in a database, you can adjust this property (and others too) if you find
that the underlying database settings are inadequate for your application.

Setting the Dataset Designer aside for a moment, let’s continue building the sample database
application in the Data Sources window.

the Data Sources window
The Data Sources window is a useful and timesaving feature of the Visual Studio 2013 IDE. Its purpose
is to display a visual representation of the datasets that have been configured for use within your
project and to help you bind these datasets to controls in the user interface. Remember that a dataset
is just a temporary representation of database information in your program and that each dataset
contains only a subset of the tables and fields within your entire database file—that is, only the items
that you selected while using the Data Source Configuration Wizard. The dataset is displayed in a
hierarchical (tree) view in the Data Sources window, with a root node for each of the objects that you
selected in the wizard. Each time you run the wizard to create a new dataset, a new dataset tree is
added to the Data Sources window, giving you potential access to a wide range of data sources and
views within a single program.

If you have been following the instructions for selecting fields in the Faculty table of the Faculty
database, you have something interesting to display in the Data Sources window now. To prepare for the
following exercises and display the Data Sources window, display the form again (click the Form1.vb [Design]
tab), point to the Other Windows submenu on the View menu, and then click the Data Sources com-
mand. When the Data Sources window is open, expand the Faculty table so that you can see the two
fields that we selected. Your Data Sources window should look like this now:

Across the top of the window are four helpful tools that allow you to work with datasets. From left
to right, these toolbar buttons allow you to add a new data source to your project, edit the selected
dataset in the Dataset Designer, add or remove dataset fields with the wizard, and refresh the dataset.

The easiest way to display the information in a dataset on a form (and therefore for your users) is
to drag objects from the Data Sources window to the Windows Forms Designer. (This is the Designer

502 part IV Database and Web programming

you used in earlier chapters, but I am calling it the Windows Forms Designer here to distinguish it
from the Dataset Designer.)

In the remainder of this chapter, you’ll experiment with dragging individual fields of data to the
Windows Forms Designer to bind controls to select fields in the Faculty database. Give it a try now.

Use the Data Sources window to create database objects on a form

1. In the Data Sources window, click the arrow next to the Faculty node to display the available
fields in FacultyDataSet (if you have not already done so).

Your Data Sources window looks like the previous screen shot. In Visual Studio, you can
display individual fields or an entire table of data by simply dragging the desired database
objects onto your form.

2. Click the Last Name field, which contains the name of each instructor in the Faculty database.
An arrow appears to the right of the Last Name field in the Data Sources window. If the arrow
does not appear, make sure that the Form1.vb [Design] tab is active in the Designer window,
and then click Last Name again.

3. Click the Last Name arrow.

Clicking this arrow displays a list of options related to how a database field is displayed on the
form when you drag it, as shown in the following screen shot:

Although I haven’t discussed it yet, most of the controls on the Common Controls tab of the
Toolbox have the built-in ability to display database information. In Visual Studio terminology,
these controls are called bound controls when they are connected to data-ready fields in a
dataset. Binding data to controls is an important topic in all Windows programming platforms.
You’ll learn how to bind XAML controls to XML data in a Windows Store app in Chapter 18.

The list of controls you see now is a group of common options for displaying string infor-
mation from a database, but you can add additional controls to the list (or remove items)
by clicking the Customize command. In this case, you’ll simply use the TextBox control, the
default bound control for string data.

 CHAPTER 17 Database controls for Windows desktop apps 503

4. Click TextBox in the list.

The list collapses, and Visual Studio registers your selection.

5. Now drag the Last Name field to the middle of the form in the Windows Forms Designer.

As you drag the field over the form, a plus sign (+) below the pointer indicates that adding
this database object to a form is a valid operation. When you release the mouse button, Visual
Studio creates a data-ready text box object and places a professional-looking navigation bar
at the top of the form. The form looks something like this (your Data Sources window might
be in a different location):

Visual Studio has actually created two objects for this Last Name field: a descriptive label
object containing the name of the field and a bound text box object that will display the
contents of the field when you run the program. Below the form in the component tray, Visual
Studio has also created several objects to manage internal aspects of the data access process,
including the following:

• FacultyDataSet The dataset that you created with the Data Source Configuration Wizard
to represent fields in the Faculty database.

• FacultyBindingSource An intermediary component that acts as a conduit between the
Faculty table and bound objects on the form.

504 part IV Database and Web programming

• FacultyTableAdapter and TableAdapterManager Intermediary components that move
data between FacultyDataSet and tables in the underlying Faculty database.

• FacultyBindingNavigator A component that provides navigation services and properties
related to the navigation toolbar and the Faculty table.

Now you’ll run the program to see how all these objects work.

6. Click the Start Debugging button on the Standard toolbar.

The ADO Faculty Form program runs in the IDE. The text box object is loaded with the first
Last Name record in the database (Abercrombie), and a navigation toolbar with several but-
tons and controls appears at the top of the form, as shown in the following screen shot:

The navigation toolbar is a helpful feature in the Visual Studio database programming tools.
From left to right, it contains Move First and Move Previous buttons; a current position indica-
tor; and Move Next, Move Last, Add New, Delete, and Save Data buttons. You can change or
delete these toolbar buttons by setting the Items property for the binding navigator object in
the Properties window, which displays a visual tool called the Items Collection Editor. You can
also enable or disable individual toolbar buttons.

7. Click the Move Next button to scroll to the second faculty name in the dataset.

The Pais record appears.

8. Continue scrolling through the dataset one record at a time. As you scroll through the list of
names, notice that the position indicator keeps track of where you are in the list of records.

9. Click the Move First and Move Last buttons to move to the first and last records of the data-
set, respectively.

10. Delete the last record from the dataset (Skinner) by clicking the Delete button when the
record is visible.

The record is deleted from the dataset, and the position indicator shows that there are now 19
records remaining. (Lan has become the last and current record.) Your form looks like this:

 CHAPTER 17 Database controls for Windows desktop apps 505

As I mentioned earlier, the dataset represents only the subset of tables from the Faculty data-
base that have been used in this project—the dataset is a disconnected image of the data-
base, not the database itself. Accordingly, the record that you deleted has been deleted only
from the dataset that is loaded in memory while the program is running. However, to verify
that the program is actually working with disconnected data and is not modifying the original
database, you’ll stop and restart the program now.

11. Click the Close button on the form to end the program.

The program terminates, and the IDE returns.

12. Click Start Debugging to run the program again.

When the program restarts and the form loads, the navigation toolbar shows that the dataset
contains 20 records, as it did originally. That is, it works as expected.

13. Click the Move Last button to view the last record in the dataset.

The record for Skinner appears again. This final faculty name was deleted only from memory
and has reappeared because the underlying database still contains the name.

14. Click the Close button again to close the program.

Well done. Without writing any program code, you have built a simple database application that
displays specific information from a database. Setting up the dataset has taken many steps, but the
dataset is now ready to be used in many ways in the program.

Although I selected only one table and one field from the Faculty database to reduce screen clut-
ter and focus our attention, you will probably want to select a much wider range of objects from your
databases when you build datasets using the Data Source Configuration Wizard. As you can see, it is
not necessary to create bound objects for each dataset item on a form—you can decide which data-
base records you want to use and display.

506 part IV Database and Web programming

Using toolbox controls to display database information

As I mentioned earlier, Visual Studio can use a variety of the controls in the Visual Studio Toolbox
to display database information. You can bind controls to datasets by dragging fields from the Data
Sources window (the easiest method), and you can create controls separately on your forms and bind
them to dataset objects at a later time. This second option is an important feature, because occasion-
ally you will be adding data sources to a project after the basic user interface has been created.

The procedure I’ll demonstrate in this section handles that situation, while giving you additional
practice with binding data objects to controls within a Visual Basic application. You’ll create a masked
text box object on your form, configure the object to format database information in a useful way,
and then bind the Business Phone field in FacultyDataSet to the object.

Bind a masked text box control to a dataset object

1. Display the form in the Windows Forms Designer.

2. Using the Properties window, change the Text property of the form to Faculty Contacts.

3. Open the Toolbox, click the MaskedTextBox control on the Common Controls tab, and then
create a masked text box object on the form below the Last Name label and text box.

As you might recall from Chapter 12, “Creative decision structures and loops,” the
MaskedTextBox control is similar to the TextBox control, but it gives you more ability to
regulate or limit the information entered by the user into a program. The input format for the
MaskedTextBox control is adjusted by setting the Mask property.

In this exercise, you’ll use Mask to prepare the masked text box object to display formatted
phone numbers from the Business Phone field. (By default, phone numbers in the Faculty
database are stored without the spacing, parentheses, or dashes of North American phone
numbers, but you want to see this formatting in your program.)

4. Click the smart tag in the upper-right corner of the masked text box object, and then click the
Set Mask command.

Visual Studio displays the Input Mask dialog box, which lists a number of predefined format-
ting masks. Visual Studio uses these masks to format output in the masked text box object, as
well as input received from users.

5. Click the Phone Number input mask, and then click OK.

The masked text box object now appears with input formatting guidelines for the country and
language settings stored within Windows. (These settings might vary from country to country,
but for me, it looks like a North American telephone number with area code.)

6. Change the Name property of the masked text box object to BizPhoneMasked.

 CHAPTER 17 Database controls for Windows desktop apps 507

7. Add a Label control to the left of the new masked text box object, and set its Text property to
Phone: (including the colon).

The first descriptive label was added automatically by the Data Sources window, but we need
to add this one manually.

8. Adjust the spacing between the two labels and text boxes so that they are aligned consis-
tently. When you’re finished, your form looks similar to the following:

Now you’ll bind the Business Phone field in FacultyDataSet to the new masked text box object.
The process is easy—you simply drag the Business Phone field from the Data Sources window
onto the object that you want to bind to the data—in this case, the BizPhoneMasked object.

9. Display the Data Sources window if it is not visible, and then drag the Business Phone field
onto the BizPhoneMasked object.

When you drag a dataset object onto an object that already exists on the form (what we
might call the target object), a new bound object is not created. Instead, the DataBindings
properties for the target object are set to match the dragged dataset object in the Data
Sources window.

After this dragging operation, the masked text box object is bound to the Business Phone
field, and the masked text box object’s Text property contains a small database icon in the
Properties window (a sign that the object is bound to a dataset).

10. Verify that the BizPhoneMasked object is selected on the form, and then press F4 to highlight
the Properties window.

11. Scroll to the DataBindings category within the Properties window, and then click the arrow to
expand it.

Visual Studio displays the properties typically associated with data access for a masked text
box object. Your Properties window looks similar to the following:

508 part IV Database and Web programming

The noteworthy bound property here is the Text property, which has been set to
FacultyBindingSource – Business Phone as a result of the dragging operation. (Note that the
tiny database icon does not appear here; it appears only in the Text property at the bottom of
the alphabetical list of properties.) In addition, if you click the arrow in the Text property now,
you’ll see a representation of the masked text box object. (This useful visual display allows you to
quickly change the data source that the control is bound to, but don’t adjust that setting now.)

12. Click the form to close any open Properties window panels.

13. Click the Start Debugging button to run the program.

Visual Studio runs the program in the IDE. After a moment, the two database fields are loaded
into the text box and masked text box objects, as shown in the following screen shot:

Importantly, the masked text box object correctly formats the phone number information so
that it is in the expected format for North American phone numbers.

14. Click the Move Next button a few times.

Another important feature is also demonstrated here: The two dataset fields scroll together,
and the displayed faculty names match the corresponding business phone numbers recorded
in the Faculty database. This synchronization is handled by the FacultyBindingNavigator
object, which keeps track of the current record for each bound object on the form.

 CHAPTER 17 Database controls for Windows desktop apps 509

15. Click the Close button to stop the program, and then click the Save All button to save your
changes.

You’ve learned to display multiple database fields on a form, use the navigation toolbar to browse
through a dataset, and format database information with a mask. Very well done!

However, before you leave this chapter, take a moment to filter your dataset by using a few SQL
statements.

SQL statements and filtering data

You have used the Data Source Configuration Wizard to extract just the table and fields you wanted
from the Faculty database by creating a custom dataset named FacultyDataSet. In addition to this
filtering, you can further organize and fine-tune the data displayed by bound controls by using SQL
statements and the Visual Studio Query Builder. This section introduces these tools.

For Visual Basic users who are familiar with Access or SQL Server, filtering data with SQL statements
is nothing new. But the rest of us need to learn that SQL statements are commands that extract, or
filter, information from one or more structured tables in a database. The reason for this filtering is
simple: Just as web users are routinely confronted with a bewildering amount of data on the Internet
(and use clever search keywords in their browsers to locate just the information they need), data-
base programmers are routinely confronted with tables containing tens of thousands of records that
need refinement and organization to accomplish a particular task. The SQL SELECT statement is one
traditional mechanism for organizing database information. By chaining together a group of these
statements, programmers can create complex search directives, or queries, that extract only the data
that is needed from a database.

Realizing the industry-wide acceptance of SQL, Visual Studio offers several mechanisms for using SQL
statements. You have already been introduced to a close cousin of SQL, Language-Integrated Query (LINQ),
which allows Visual Basic programmers to write SQL-styled queries directly within Visual Basic code. Chapter
15, “Innovative data management with LINQ,” introduced that tool and explored how to extract infor-
mation from arrays, collections, and generic lists.

In the following exercise, I’ll demonstrate a second mechanism related to SQL, a powerful fea-
ture in the IDE called Query Builder. Query Builder is a visual tool that helps programmers construct
database queries based on SQL syntax. In the following example, you’ll use Query Builder to further
organize your FacultyDataSet dataset by sorting it alphabetically.

Create SQL statements with Query Builder

1. On the form, click the Last_NameTextBox object (the first bound object that you created to
display the last names of faculty members in the Faculty database).

2. Click the smart tag in the upper-right corner of the Last_NameTextBox object, and then click
the Add Query command.

510 part IV Database and Web programming

The Add Query command is available when a bound object, such as Last_NameTextBox, is
selected in the Designer. The Search Criteria Builder dialog box opens, as shown in the follow-
ing screen shot:

This dialog box helps you organize and view your queries, which are created by the Query
Builder and consist of SQL statements. (However, a full discussion of SQL syntax is beyond
the scope of this book.) The table that your query will filter and organize by default
(FacultyDataSet.Faculty) is selected in the Select Data Source Table box, near the top of the
dialog box. You’ll recognize the object hierarchy format used by the table name, which is read
as “the Faculty table within the FacultyDataSet dataset.” If you had other tables to choose
among, they would be in the list box displayed when you click the Select Data Source Table
arrow.

3. Type SortLastNames in the New Query Name box.

This text box assigns a name to your query and forms the basis of toolbar buttons added to
the form. (For easy access, the default arrangement is that new queries are assigned to toolbar
buttons within the application you are building.)

 CHAPTER 17 Database controls for Windows desktop apps 511

4. Click the Query Builder button in the dialog box to open the Query Builder tool.

The Query Builder allows you to create SQL statements by typing them directly into a large
SQL statement text box or by clicking list boxes and other visual tools.

5. In the Last Name row representing the Last Name field in your dataset, click the cell under
Sort Type, and then click the arrow to display the Sort Type list box.

Your screen looks like this:

6. In the Sort Type list box, click Ascending.

You’ll sort records in the Last Name field in ascending order.

512 part IV Database and Web programming

7. Click the SQL statement text box below the grid pane to update the Query Builder window.

A new clause (ORDER BY [Last Name]) is added to the SQL statement box, and your screen
looks like this:

This is the strength of the Query Builder tool—it automatically builds the SQL statements for
you in the SQL statement box.

8. Click OK to complete your query.

Visual Studio closes the Query Builder and displays your new query in the Search Criteria
Builder dialog box. The name of the query (SortLastNames) is listed, as well as the SQL state-
ments that make up the sort.

 CHAPTER 17 Database controls for Windows desktop apps 513

9. Click OK to close the Search Criteria Builder dialog box, and then configure the
Last_NameTextBox object to list names in ascending alphabetical order.

The process has also created a SortLastNamesToolStrip object in the component tray below
the form. The Designer and component tray now look like this:

10. Click the Save All button to save your changes.

11. Click the Start Debugging button to run the program.

Visual Studio loads the form and displays the first record for two dataset objects.

12. Click the SortLastNames button on the new toolbar.

Your new SQL statement sorts the Last Name records in the dataset and displays the records
in their new order. The first record is still Abercrombie, but now the second and third names
are Atlas and Bankov, respectively. Such a sort would be useful to provide more systematic
access to the records in the database. Rather than displaying the records as they were entered
in the database (with no apparent order), an alphabetical sort provides the user with some-
thing more tangible.

514 part IV Database and Web programming

13. Click the Move Last button on the toolbar.

Now Zimprich appears, as shown in the following screen shot:

Because the names are listed alphabetically from A to Z, Zimprich is now last in the list of
faculty members.

14. Scroll through the remainder of the records, and then verify that it is now in ascending alpha-
betical order.

15. Click the Close button to end the program.

You’re on your way with building custom queries by using SQL statements and Query Builder. This
tool will be especially helpful if you want to quickly add some SQL queries to your database applica-
tion. Database programming is a complex topic, but you have learned fundamental techniques that
will help you build datacentric applications—highly personalized collections of data that benefit the
user and his or her computing needs—in Visual Basic.

Summary

This chapter has offered an introduction to database programming in Visual Basic with Windows Forms
and the ADO.NET data model. ADO.NET is the standard data access technology for Visual Studio
programmers; it is a fundamental building block for Visual Basic programs that connect to local and
remote databases. You began your work with ADO.NET by using the Data Source Connection Wizard
to connect to a local Access database on your system. You learned how to create a dataset that repre-
sents the fields and records of a database table and how to use the Dataset Designer and Data Sources
window to create bound objects on the forms of a Windows desktop application. You also learned how
to use SQL SELECT statements and the Query Builder tool to filter database information.

In the next chapter, you’ll build on these important skills by connecting to XML documents in a
Windows Store application. You’ll move beyond wizards and visual tools, and you’ll explore funda-
mental data management techniques within Visual Basic code. Although the techniques are some-
what different in a Windows Store app that organizes data assets in a different manner, you’ll still be
binding data to objects on the page—an essential skill that you also explored in this chapter.

 515

C H A P T E R 1 8

Data access for Windows Store
apps

After completing this chapter, you will be able to

■■ Bind XAML controls to data in a Windows Store application.

■■ Use the XDocument and XElement classes in the System.Xml.Linq namespace.

■■ Read and write records in XML data sources.

■■ Use LINQ to search and filter XML documents.

In this chapter, you’ll continue working with data in a Visual Studio 2013 application. In Chapter 17,
“Database controls for Windows desktop apps,” you learned how to establish a connection to a

database by using the Data Source Configuration Wizard and how to bind Windows Forms controls
to an Access database and extract records. Accessing data is conceptually similar in a Windows Store
app, although the process of binding data to XAML controls is somewhat different. You’ll learn the
syntax in this chapter, and the information that you access will come from classes, collections, and
XML documents.

Windows Store apps often use XML documents as the source of their information when they need
database information. This is because XML documents have some important advantages over propri-
etary database formats, such as Microsoft Access.

First, XML is based on an open, public standard that has been adopted by Microsoft and other
software publishers for information exchange. Second, XML files are easily created within an applica-
tion or downloaded via the Windows Store. Because your project is installed and updated via the
web, data access is typically much more involved than simply accessing records from a local database.
Third, XML files have a well-understood hierarchy and tagging format that is easily integrated into a
Visual Studio programming project. Finally, the ADO.NET database framework has been optimized for
XML data sources and syntax.

This chapter teaches you how to bind XAML controls to data in a Windows Store application and
how to read, search, and write to XML documents—a major source of data on the Windows platform.

516 part IV Database and Web programming

Data binding in XAML

The first skill to learn when working with data in a Windows Store app is binding data to XAML controls
on the page. Binding means establishing a connection between a user interface control and a data
object that has been included or referenced in the project. You typically bind Windows Store controls
to data by using XAML markup while you are designing the user interface for your application.

After the data binding has been established, the control on the page will change automatically
whenever the data object is updated. In addition, your program can send changes made to the data
in bound controls back to the original data source so that a Windows Store application can interact
with and update local files stored on the user’s system or files stored on the Internet.

a variety of data sources
The data for a Windows Store app can exist in several locations. In some cases, the Visual Studio
developer will be involved with locating and loading the files directly, and in some cases, Windows
will handle most of the details about where the files are located and how they are stored.

If your app works with local files on the computer, you can access these resources by using XML-
related objects and methods in ADO.NET (discussed later in this chapter) or by loading the files
directly via one of the file picker tools provided by the .NET Framework. You can also access live data
on the Internet, such as RSS feeds or Bing Maps, using API calls in Windows Web Services.

You should also know that Windows will store the data associated with your application in differ-
ent locations. If you build an application that is enabled for roaming, meaning that the settings and
files can be kept in sync across multiple devices, Windows will handle where the information is stored
in the cloud and how it is accessed. When your program has app data that is specific to a particular
user or session, such as confidential information or user preferences, Windows will store the informa-
tion securely in the system registry and various local files. When the user runs the program again, this
information will be loaded automatically.

Although the potential range of data sources and connections goes well beyond the scope of this
chapter, most data in a Windows Store app can be packaged as an instance of a class or by using a
data template so that the data can be displayed on a page using bound controls. You’ll see how this
works in the exercises that follow.

Binding elements
Every data binding includes the following elements:

■■ A binding source that is an object with data that you want to access or display. Typically, a
property in the data object is the source of the data.

■■ A binding target that is a control in the user interface that displays data. A property in the con-
trol is typically set as the binding target, such as the Text property of the TextBox control.

 CHAPTER 18 Data access for Windows Store apps 517

■■ A binding object that transfers the data between the binding source and binding target and
that can also reformat the data by using a converter, if required.

The data binding is expressed in XAML markup as a markup extension. Markup extensions are
used in XAML when there is a need to identify an attribute that is not simply a literal value. The name
of a data source fits this definition; another typical usage for markup extension is when you want to
specify a static resource such as a built-in text style in Visual Studio to format an object on the page.

A pair of curly braces, “{“ and “}”, indicate that the specified XAML is a markup extension. This
syntax will force the XAML processor to evaluate the given attribute and insert the resource speci-
fied when the program runs. One of the most common reference words used in markup extension is
Binding, which indicates that the control is a binding target and that a binding object will specify how
the data binding will take place.

For example, the following XAML defines a TextBox control named OutputTextBox on the page of
a Windows Store app. Notice that the Text property of this control uses a markup extension reference
to indicate that the control is a binding target in the application.

<TextBox x:Name="OutputTextBox" Text="{Binding}" FontSize="28" IsReadOnly="True"
 TextWrapping="Wrap" AcceptsReturn="True" Margin="12,51,1001,637"
 ScrollViewer.VerticalScrollBarVisibility="Auto" />

When data binding is specified in XAML as shown in the preceding example, additional proper-
ties can also be set to control how the binding functions in the program. For example, the following
XAML shows how one might configure the Text property for data binding and also specify that the
data access be TwoWay (indicating that both the target and the source will be updated when either
changes), and that the text displayed will be additionally formatted by the Converter1 style within a
StaticResource dictionary.

Text="{Binding Mode=TwoWay, Converter={StaticResource Converter1}}"

The Visual Studio documentation on MSDN provides several examples of how binding
objects can be specified using the various properties and methods in the Binding class. See
http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.binding.aspx.

In the following exercise, you will see how the TextBox control defined in the preceding example
can be bound to a class in a Visual Basic program.

Binding a control to a class
In Chapter 16, “Object-oriented programming techniques,” you learned how to create your own base
classes with custom properties and methods and how to use the new classes using method overrid-
ing and other techniques. Those skills will come in handy in this exercise, where you will use a custom
base class named Student to hold registration information for a ski school. The Visual Basic class will
have four properties that hold data about the student and skiing course that they are enrolled in,
including Student, ClassName, StartDate, and Instructor. You’ll learn how to bind this class to a TextBox
control on the page so that the control can display information from a linked source.

http://msdn.microsoft.com/en-us/library/windows/apps/windows.ui.xaml.data.binding.aspx

518 part IV Database and Web programming

Although the example doesn’t demonstrate how to connect to an XML data source or an entire
collection of records, this first exercise is a steppingstone toward that goal. When you know how to
bind a XAML control to a data object (such as an instance of the Student class), you can use similar
techniques to bind to any type of data in a Windows Store app.

Bind a data source to a TextBox control

1. Start Visual Studio, and open the Data Binding program, a Windows Store app located in the
My Documents\Visual Basic 2013 SBS\Chapter 18 folder.

This demonstration program already contains TextBox and ListBox controls, defined with
XAML markup, to show how binding works in different data access scenarios. The binding
source in this example is the Student class, a custom class that is defined in the MainPage.Xaml.vb
code-behind file.

The basic user interface for the Data Binding app looks like this in the IDE:

Now look at the XAML code that produces the Grid background image and the TextBox con-
trol. (You’ll examine the ListBox control in the next exercise.)

2. Open the XAML tab of the Code Editor, and examine the markup for the page.

You’ll see the following statements:

 CHAPTER 18 Data access for Windows Store apps 519

<Grid.Background>
 <ImageBrush ImageSource="ms-appx:/Assets/Ski_Resort.JPG"/>
</Grid.Background>

<TextBox x:Name="OutputTextBox" Text="{Binding}" IsReadOnly="True"
 TextWrapping="Wrap" AcceptsReturn="True" Margin="156,94,597,589"/>

The first block of markup simply sets the ImageSource property for the Grid background
image. We used this syntax in earlier chapters; recall that to make it work you need to load the
image file into the project’s Assets folder (which I’ve done for you). The Ski_Resort.jpg image
gives the application a wintry feel.

Now examine the second set of lines, which define the OutputTextBox object. Notice in par-
ticular the text box’s Text property, which is set to {Binding}. This bit of markup extension pre-
pares the text box for a data connection when the program runs. In effect, the XAML defines
the OutputTextBox object as the binding target for a data source.

You have two options for specifying the binding source. First, you can set the Binding.Source
property in the text box’s XAML to specify (by name) the data object in the program that is
the source of the information. Alternatively, you can set the text box object’s DataContext
property, which is the preferred method if you are making more than one connection to
the data source in the program. I’ll use the second method in this program, and I’ll set the
DataContext property to the Student class using program code.

3. Open the MainPage.xaml.vb code-behind file in the Code Editor.

This is the location of the program’s constructor and custom class used for data access. First,
look at how the Student class is defined using Visual Basic code:

'A public class that provides a data source (with 4 properties) for bound controls.
Public Class Student
 Public Sub New()
 End Sub

 Public Sub New(ByVal studentName As String, ByVal classTitle As String,
 ByVal sessionDate As DateTime, ByVal teacher As String)
 Student = studentName
 ClassName = classTitle
 StartDate = sessionDate
 Instructor = teacher
 End Sub

 'These properties contain student name, course, start date, & instructor.
 Public Property Student As String
 Public Property ClassName As String
 Public Property StartDate As DateTime
 Public Property Instructor As String
 ' The following statement overrides the ToString method.
 Public Overloads Overrides Function ToString() As String
 Return Student + " enrolled in " + ClassName + "; Begins: " _
 + StartDate.ToString("d") + "; Instructor: " + Instructor
 End Function
End Class

520 part IV Database and Web programming

The Student class is a new class created just for this program and its data requirements. The
class defines four public properties, and it creates a ToString method override to display the
data. The properties are Student, ClassName, StartDate, and Instructor. I’m using typical class
and property procedure syntax for the declaration; you can learn more about these Visual
Basic keywords in Chapter 16.

4. Scroll up in the Code Editor to display the Public Sub New procedure.

You’ll see the following program statements, followed by a block of comments:

' Constructor
Public Sub New()
 InitializeComponent()

 ' Sample 1: Bind a TextBox control to the Student class to display
 ' one student record.
 ' Sets DataContext property of text box to new student record with name,
 ' course, start date, and instructor fields.
 OutputTextBox.DataContext = New Student("Kim Akers", "Intermediate Skiing",
 New DateTime(2015, 2, 5), "Hamlin")

This New procedure runs when the program is launched, providing a simple way to test the
program code that binds the TextBox control to data in the Student class. Recall from Chapter
16 that this procedure is called a constructor. A constructor is simply a procedure named New
that Visual Basic calls when a new instance of a class or structure is created. Constructors do
basic initialization work and get an object ready for use.

The statement related to data access here is the final statement (broken into two lines), which
sets the DataContext property of the text box object to a new instance of the Student class. As
noted earlier, the DataContext property provides a simple way to specify the data source that
is used for data binding.

A typical use of DataContext is to set it to point directly to a data source object. This data
source object might be an instance of a class such as the Student class used here. Alternatively,
you might create a data source as an observable collection (which I’ll do in the next exercise)
so that the data context allows modifications made to the data to travel back to the linked
collection.

The DataContext property is most convenient when you want to bind several different proper-
ties on the same object to a shared data source. However, you can also leave the DataContext
property undefined, leaving binding directives to other statements, such as the Binding.Source
keyword.

In its entirety, the two-line statement that we just examined defines a new data object (a class
named Student), fills the object with data, and then identifies the data object as the bind-
ing source for the TextBox control on the page. However, it would be just as simple to assign
another kind of data object to the TextBox control—you are limited only by the capability of
the TextBox control to display data.

 CHAPTER 18 Data access for Windows Store apps 521

Finally, note the comment block consisting of twelve lines at the bottom of the Sub New pro-
cedure. This is the sample code for the next exercise you’ll work on. I’ve just commented it out
here to avoid distraction right now.

You’ll run the program now to see how data binding works.

5. Click the Start Debugging button.

The application launches and displays a page containing a ski resort image, a text box, and a
list box. The Sub New procedure runs immediately and produces the following result:

As you can see, Visual Basic created the Student class, filled the class with the information for
one student, bound the class to the TextBox control, and displayed the information on the
screen. In each example that you work with in this chapter, the TextBox control will use the
ToString method as the source of the content that is displayed. Close the program, and return
to the Visual Studio IDE.

You’re off to a good start. You’ve learned a very fundamental use of data binding—establishing a
connection between a control on the page and a custom class that contains data. Now you’ll bind a
ListBox control to an entire collection of student records.

522 part IV Database and Web programming

Using a collection as a source of data
Now that you know how data binding works, it is time for a more typical example of data binding in a
Windows Store app. Building on a skill you learned in Chapter 14, “Using arrays, collections, and gener-
ics to manage data,” you’ll learn how to bind a generic collection to a ListBox control in this section.

The generic collection type we’ll use in this exercise is a list known as an ObservableCollection,
because it implements the INotifyCollectionChanged and INotifyPropertyChanged interfaces. These
interfaces send change notification events to bound controls when an item in the collection is modi-
fied or when a property of the collection is modified, respectively. In Visual Studio 2013, not all data
objects send this type of notification to bound controls, so ObservableCollection is especially handy.
However, you can implement the INotifyPropertyChanged interface yourself for a binding source if
you ever need to. For more information, see the section “Change notification” in the topic “Data bind-
ing overview,” at http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx.

The sample code that I want you to examine and run is also located in the Data Binding project,
which should be loaded in Visual Studio now if you completed the previous exercise.

Bind an observable collection to a ListBox control

1. Display the MainPage.xaml file again in the Code Editor so that you can see the XAML that
defines the ListBox object on the page that will be the binding target for the observable
collection.

You’ll see the following markup:

<ListBox x:Name="OutputList" ItemsSource="{Binding}" HorizontalAlignment="Left"
 Height="287" VerticalAlignment="Top" Width="655" Margin="156,252,0,0"/>

Recall that a XAML ListBox control is a user interface tool that displays a list of items in a
rectangular box on the screen. Unlike the TextBox control, the items in a ListBox control can
be accessed individually and modified, removed, or sorted. You can also add new items to a
ListBox control at run time.

In this bit of markup, I am naming the control OutputList (so that I can reference it in
Visual Basic code) and I am setting the ItemsSource property to {Binding}, which establishes
OutputList as the binding target. (You’ll find that most of the XAML controls that can be
assigned a collection of objects have an ItemsSource property.) Like the previous exercise, I’ll
set the binding source for the data connection by setting the ListBox control’s DataContext
property to the instance of the observable collection AllStudents.

2. Display the MainPage.xaml.vb code-behind file in the Code Editor.

Now you’ll see how the observable collection is defined, and you’ll uncomment the program
code to fill the collection with data.

http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx

 CHAPTER 18 Data access for Windows Store apps 523

3. Locate the Public AllStudents program statement near the middle of the file.

You’ll see the following code:

'A public generic collection used for Sample 2 to store student data.
Public AllStudents As New ObservableCollection(Of Student)()

This statement creates a new public observable collection named AllStudents to store student
records in the ski school. The collection will contain records of type Student—that is, records
that each match the structure of the Student class you created in the first exercise. (Because
you are still in the same program, that class is still defined, unchanged, in the MainPage.xaml.
vb file.) Here you can see the advantage of creating your own classes, if it was not already
obvious—you can create custom data records that are easily combined into collections of
almost any size.

The only code that remains is the block that fills the collection with data and then sets the
DataContext property of the ListBox object to the AllStudents collection. Because this is a sim-
ple demonstration program, I will just be using the AllStudents collection’s Add method to add
four records to the data object. But in a full-featured program, you could use input controls to
prompt the user for student records, validate them, and then add them to the collection. You
could also load information from a text file or database into the collection.

4. Locate the Public Sub New procedure near the top of the file.

You’ll see the following code:

' Constructor
 Public Sub New()
 InitializeComponent()

 ' Sample 1: Bind a TextBox control to the Student class to display
 ' one student record.
 ' Sets DataContext property of text box to new student record with name,
 ' course, start date, and instructor fields.
 OutputTextBox.DataContext = New Student("Kim Akers", "Intermediate Skiing",
 New DateTime(2015, 2, 5), "Hamlin")

 ' Sample 2: Bind a ListBox control to a collection of student records.
 ' To run this sample, uncomment the following code, which adds 4 student
 ' records to the collection in the format required by Students class.
 ' AllStudents.Add(New Student("Walter Harp", "Beginning Snowboarding",
 ' New DateTime(2014, 1, 15), "Khan"))
 'AllStudents.Add(New Student("Toni Poe", "Advanced Ski Racing",
 ' New DateTime(2014, 1, 8), "Hanson"))
 'AllStudents.Add(New Student("Paul Cannon", "Beginning Nordic",
 ' New DateTime(2015, 1, 13), "Khan"))
 'AllStudents.Add(New Student("Sunil Uppal", "Beginning Nordic",
 ' New DateTime(2015, 1, 13), "Khan"))
 'OutputList.DataContext = AllStudents 'this line assigns collection to list box

 End Sub

524 part IV Database and Web programming

This is the routine that runs when the Windows Store app is launched. Currently, just the data
binding code connecting the TextBox control to the Student class is active. However, now you’ll
activate (or uncomment) the Visual Basic code related to Sample 2, which fills the AllStudents
collection with data and binds it to the ListBox control.

5. Uncomment the nine lines of code in this procedure that begin with a single quotation mark
(‘). The first line I want you to uncomment begins with ‘AllStudents.Add. The last line begins
with ‘OutputList.DataContext.

To uncomment a line of code, you simply remove the single quotation mark from the begin-
ning of the line. If you are using the default VB keyboard setup, you can also select a group of
commented lines and press Ctrl+K followed by Ctrl+U to uncomment the lines. (You can also
comment-out a collection of selected lines by pressing Ctrl+K followed by Ctrl+C.)

The New Sub procedure should look like this when you are finished:

Each of the Visual Basic program statements assigns a student record to the AllStudents col-
lection. The New DataTime syntax adds the date of the first ski school class to the collection
in DateTime format, which is more flexible than simply storing the date in a String variable.
The final statement completes the data connection process, using the list box’s DataContext
property to set the AllStudents collection as the binding source.

You’ll run the program now to see how binding to a collection works.

6. Click the Start Debugging button.

The app starts and displays a page containing a ski resort image, a text box, and a list box. The
Sub New procedure runs and produces the following result:

 CHAPTER 18 Data access for Windows Store apps 525

The four student records in the collection appear in the list box object. This means that Visual
Basic created the Student class, used the class to define an observable collection named
AllStudents, filled the collection with data, bound the collection to the ListBox control, and
successfully displayed the information by using the ToString method.

7. Click each item in the list box individually.

Because list box items are kept distinct, each of the items can be selected and manipulated
individually, which makes this a good control to display lists of data.

It would now be a relatively simple task to write individual event handlers that added or
removed items from the collection, disabled items, or rearranged the list. (Each event handler
could be tied to a user interface control, such as a button object.) The key mechanisms for
creating these features are the ListBox control’s SelectionChanged event, which fires when an
item in the list box is selected, and the SelectedIndex property, which contains information
about the item selected.

Because you have bound an observable collection to the list box, any changes that you make
to the items in the list can also be sent back to the AllStudents data object, if you prefer. To
accomplish this, one change you would need to make is to set the Mode property of the bind-
ing object to TwoWay. However, you will also need to allow for the data source to be updated
by actions that are independent of the user’s interaction with the ListBox control. (That is, you
can assume that your application is the only way that items are added to or removed from a
data source.)

526 part IV Database and Web programming

8. Close the program.

9. When the Visual Studio IDE reappears, save your changes and close the Data Binding project.

You’ve seen how data binding works in a Windows Store app and, hopefully, some of the poten-
tial of this powerful ADO.NET technology. Now you’ll learn more about using XML documents in a
Windows Store app.

Accessing data in XML documents

In Chapter 15, “Innovative data management with LINQ,” you learned a little about XML documents
and how they can be used as a source of data for LINQ queries. Now it’s time to experiment a little
more with XML and to see how XML documents can be read, searched, and written by a Windows
Store app.

An XML document is a simply a structured text file that conforms to the open XML specifications
established by the World Wide Web Consortium (W3C). XML documents do not have a set list of
predefined elements that they need to contain. Instead, they allow you to create your own names and
structure for elements in a document. The elements just need to conform to basic syntax rules for
tagging (enclosing items with < and > tags) and to fit together in a hierarchy under a single top-level
element. In Visual Studio, you can add an XML document to a project by including it in your project’s
Assets folder.

XML files are essentially just text files, so they are relatively small in size when compared to rela-
tional databases that hold the same content. This makes XML files efficient to work with and exchange
over the web. The format’s popularity has led Microsoft to integrate XML support into ADO.NET and
the Visual Studio languages, and since Visual Studio 2008, XAML markup, which is closely related to
XML, has been a feature of application development for Windows. In the remainder of this chapter,
you’ll work with two simple XML documents. You’ll practice fundamental data access skills, including
reading an XML file, searching for information in XML files, and writing to an XML file. You’ll use the
Visual Studio System.Xml.Linq namespace to assist you with these efforts.

reading an XML file
With the advent of Language Integrated Query (LINQ), working with XML document has become
even easier in a Visual Studio program. Two helpful classes in the System.Xml.Linq namespace that
provide useful functionality are XDocument and XElement. You’ll use both classes in this chapter.

XDocument allows you to store a complete in-memory copy of an XML document in your program.
After you load the document into memory, you can display its contents, search for specific items with
LINQ, or add new items to the document. XDocument even has a Save method that allows you to save
the changed in-memory version of the XML document to disk.

 CHAPTER 18 Data access for Windows Store apps 527

The following Visual Basic code demonstrates how to load an XML document named Students.xml
into memory, storing the document’s contents in a new object named Students.

Dim Students As XDocument = XDocument.Load("Assets/Students.xml")

Note that the preceding statement assumes that the Students.xml file has already been added
to the project’s Assets folder, making it available for use throughout the project. And because the
Students object is of type XDocument, it has access to all of the properties and methods of the
XDocument class. (You’ll see a few of these used in the exercises that follow.)

The XElement class complements XDocument, allowing you to load just a portion of an XML docu-
ment into memory. For example, you could create an XElement object containing just one tagged
element, or you could create an XElement object that holds a large portion of an XML document in
memory for some processing purpose.

The following program statement creates a new XElement object named xe that contains begin-
ning and ending LASTNAME tags and the string value “Lyon”:

Dim xe As XElement = New XElement("LASTNAME", "Lyon")

This creates the equivalent of the following XML markup:

<LASTNAME>Lyon</LASTNAME>

In the exercise that follows, you’ll open the XML Document Data project, a Windows Store app
written in Visual Basic. The project contains six code samples that demonstrate how XML docu-
ments are read, searched through, and written—the most common database programming tasks in
a Windows Store application. You will uncomment the various code samples as you work your way
through the remaining sections of this chapter.

The first exercise demonstrates how you can open an XML document in a Windows Store app and
then display its entire contents—including tags—in a text box object on the page. This first exercise
is simply meant to show the structure of the XML document and to show you how easy it is to display
such a file in a program. However, you’ll more typically suppress the XML tags, and I’ll do this in most
of the subsequent exercises.

Open an XML document and display its contents

1. Start Visual Studio, and open the XML Document Data program, a Windows Store app located
in the My Documents\Visual Basic 2013 SBS\Chapter 18 folder.

This demonstration program already contains a TextBox control named OutputTextBox, a
Button control named XmlTestButton, a code-behind file containing data access routines, two
XML files in the Assets folder, and a background image for the page.

528 part IV Database and Web programming

The basic user interface for the XML Document Data app looks like this in the IDE:

The XAML for the Button and TextBox controls is very straightforward; however, you should
note that the TextBox control is not bound to a data source in this particular example. (You
learned how that ADO.NET technology works in the last exercise.)

When the user clicks the XmlTestButton control, an event handler named XmlTestButton_Click
fires, which runs the data access routines I’ve developed for you in the code-behind file. The
output of the data access routines is always displayed in the OutputTextBox object so that you
can see how the XML data is loaded and processed by the program.

2. Open the MainPage.xaml.vb code-behind file in the Code Editor.

This is the location of six routines or samples that demonstrate how to read, display, search
through, and write XML documents. The first routine is uncommented and ready for use. (The
other samples are commented, and you will uncomment them in future exercises.)

You’ll see the following Visual Basic code near the top of the code-behind file:

'SAMPLE 1: Opening an XML document in a text box.
' This code loads an XML document into the Students object and displays it
' in a text box, complete with tags.

OutputTextBox.Text = "All content in the XML file including tags:" & vbCrLf & vbCrLf
Dim Students As XDocument = XDocument.Load("Assets/Students.xml")
OutputTextBox.Text &= Students.ToString

 CHAPTER 18 Data access for Windows Store apps 529

The first line displays an explanatory header at the top of the text file. The second line declares
an XDocument object named Students to hold the contents of the Students.xml file. The third
line assigns the content of the Students object to the OutputTextBox object so that it appears
on the page with the header. The ToString method is used to convert the XML data to String
format.

Note that this code simply displays the contents of the XML document in the text box—tags
and all. Accordingly, it is useful primarily for testing purposes and to demonstrate how easy it
is to work with and display XML document content in a program.

3. Click Start Debugging to run the program.

4. Click the Display Data button.

Visual Studio loads the XML document into the Students object and displays it in the text box.
Your page will look like this:

The Students.xml file contains the last names of students in the Alpine House ski school who
are scheduled to take classes during the Winter 2014 term. Tags appear around the various
structural headings and names, and you can use the scroll bars to view the entire document.
This is the data that you will be working with in the next few exercises.

5. Close the program.

530 part IV Database and Web programming

Now you’ll learn how to display records in an XML document without the tags. This task can be
accomplished in several ways, but perhaps the most straightforward approach is to use LINQ, the
data extraction tool you learned to use in Chapter 15. Because LINQ is built into Visual Studio and the
Visual Basic programming language, it has a compact coding structure and also provides IntelliSense
to help you work with database records.

You’ll use LINQ in the following exercise to display all of the records in the Students.xml document
that are surrounded by <LASTNAME></LASTNAME> tags.

read a selection of tagged XML elements

1. Open the MainPage.xaml.vb code-behind file, if it is not currently visible in the Code Editor.

The XmlTestButton_Click event handler is the most dominant routine in the MainPage.xaml.vb
file, and you’ll see that it contains six data access code blocks written in Visual Basic. Because
all six of these sections use the OutputTextBox object to display database information on the
page, I designed them to be run and tested one at a time. Accordingly, the procedure you’ll
follow in this exercise and those that follow is to uncomment the block that you want to run
and test and to comment-out the blocks that you are no longer using.

Note By uncomment, I simply mean to remove the comment character (‘) from the
beginning of each line in the routine. Comment-out means to place a comment char-
acter (‘) at the beginning of each line, effectively hiding the code from the compiler
and rendering it inactive.

2. Comment out the first block (Sample 1) in the XmlTestButton_Click event handler, and then
uncomment the second block (Sample 2).

Remember that you can comment out a block if you select it and press Ctrl+K, followed by
Ctrl+C. You can uncomment a block if you select it and press Ctrl+K, followed by Ctrl+U.

After you’re finished, you’ll see the following code for Sample 2, which demonstrates how to
read a selection of tagged records from an XML document:

'SAMPLE 2: Display a selection of records from an XML document using LINQ.
' In the following LINQ query, all of the tagged items that match LASTNAME
' are displayed in a text box. Note the exact capitalization of LASTNAME!

OutputTextBox.Text = "Last Names of all Students in program" & vbCrLf & vbCrLf
Dim Students As XDocument = XDocument.Load("Assets/Students.xml")
Dim query = From person In Students.Descendants("LASTNAME")
 Select person.Value

For Each item In query
 OutputTextBox.Text &= item & vbCrLf
Next

 CHAPTER 18 Data access for Windows Store apps 531

Chapter 15 discusses the syntax for LINQ query expressions in detail, but as a review, recall
that most LINQ queries use Dim to declare a storage variable to hold the results of the query,
and in this case, I’ve used query. LINQ is in essence a data extraction tool, and the elements of
a LINQ query systematically extract the specified elements from a data source. Here the data
source is the XML document stored in the Students data object, and the records that I want to
extract are all of the tagged items or “nodes” identified by the LASTNAME element.

There is no specific Where clause in this LINQ query. All of the LASTNAME records are
returned by the Select statement and stored in the person variable. A For Each…Next loop then
displays the names one by one in the OutputTextBox object.

Be advised that operations involving XML and LINQ are case sensitive, so you must identify
the LASTNAME element in this routine by using all capital letters. (This is because the tags in
the Students.xml file are coded in all capital letters.)

3. Click Start Debugging to run the program.

4. Click the Display Data button.

Visual Studio loads the XML document into the Students object and then uses LINQ to extract
and display the specified LASTNAME records. Your page will look like this:

There are 32 names in the Students.xml file. You can examine the names that are not currently
visible by using the vertical scroll bar in the text box. (Recall that the scroll bars won’t appear
until you touch the text box or hover the mouse over it.)

532 part IV Database and Web programming

As the preceding illustration shows, the LINQ query extracted a selection of tagged items
from the XML document and displayed them on the page. You can now use this technique to
read and manipulate many types of elements from XML documents. The only thing that you
will need is some practice writing expressions that navigate the sometimes-complex hierarchy
of an XML data source.

5. Close the program.

In the next exercise, you’ll learn how to reference XML elements that are located a little deeper
in the structure of an XML document. The key syntax item that you’ll work with in Sample 3 is the
Element method, which is provided by both the XDocument and XElement classes. The Element
method allows you to access child elements within the specified XML document’s structure.

Use the Element property to locate child elements in an XML hierarchy

1. Display the MainPage.xaml.vb code-behind file again.

2. Comment out the second block (Sample 2) in the XmlTestButton_Click event handler, and then
uncomment the third block (Sample 3).

This exercise demonstrates how you can use the Element method of the Students data object
to reference individual elements within an XML data tree. The Sample 3 code looks like this:

'SAMPLE 3: Display XML elements nested in a more complex XML hierarchy.
' This example displays an instructor scheduled to work in Winter 2015 in Students.xml.

OutputTextBox.Text = "Instructors scheduled to work in Winter 2015" & vbCrLf & vbCrLf
Dim Students As XDocument = XDocument.Load("Assets/Students.xml")
OutputTextBox.Text = OutputTextBox.Text & _
Students.Element("STUDENTS").Element("WINTER2015").Element("INSTRUCTOR").Value

This routine does not use LINQ to extract a record but uses the Element method and the Value
property. The individual element that I want to extract is the instructor name that appears
in the WINTER2015 section of the Students.xml file. This section of the file is near the end of
the document. Three calls to the Element method are combined in one statement to navigate
down the XML data tree to the first INSTRUCTOR element in the file. The Value property is
then used to return the text that is contained in the referenced element.

3. Click Start Debugging to run the program.

4. Click the Display Data button.

Visual Studio displays the banner message, loads the XML document, and uses the Element
method to locate the first INSTRUCTOR record. The Alpine Ski House instructor for Winter
2015 (Hamlin) is displayed in the text box.

 CHAPTER 18 Data access for Windows Store apps 533

Your screen will look like this:

As the preceding illustration shows, you can extract an element from an XML document that is
deep within its structure by using successive calls to the Element method. You simply need to
know the structure of the XML container that you are referencing.

This syntax also offers an alternative to using LINQ to read data from an XML document.
However, LINQ is much more effective at extracting information when you have a more com-
plex retrieval criteria. This is especially true when you are trying to extract a series of elements
that match a criteria.

5. Close the program.

In the next exercise, you’ll see another example of LINQ’s impressive extraction capabilities.

Searching for items in an XML file
The LINQ tool is designed specifically for extracting or searching within XML files for information. In
particular, LINQ can go behind simply locating particular headings in an XML data source—it can also
search within the XML tags to extract specific information based on multiple search criteria. As you
learned in Chapter 15, this capability allows you to ask sophisticated questions about your data, such
as “How many books were published by Lucerne Publishing that earned more than $100,000 in gross
sales over the past 12 months?” or “How many female ski students do we have in the program that
are between the ages of 16 and 17, inclusive?”

534 part IV Database and Web programming

The key to asking these types of questions with LINQ is the Where clause, which can specify
additional filtering of the query data. You can also use the Attribute method, which identifies specific
attributes within an XML data hierarchy.

The following exercise, Sample 4 in the XML Document Data project, uses LINQ to search the
SkiTeam2014.xml document for the answer to the question posed above: “How many female ski stu-
dents do we have in the program that are between the ages of 16 and 17, inclusive?”

The SkiTeam2014.xml document was first used in Chapter 15 in this book. (Although here you will
be using different LINQ queries.) I have added this document to the XML Document Data project’s
Assets folder so that you have an additional data container to work with. This is what the contents of
the SkiTeam2014.xml document look like:

<?xml version="1.0"?>

<AllRacers>
 <Skier FirstName="Claus" LastName="Hansen" Gender="M" Age="14" />
 <Skier FirstName="Yun-Feng" LastName="Peng" Gender="M" Age="13"/>
 <Skier FirstName="Uzi" LastName="Hefetz" Gender="F" Age="17"/>
 <Skier FirstName="Begoña" LastName="Hurtado" Gender="F" Age="18"/>
 <Skier FirstName="Erzsébet" LastName="Balázs" Gender="F" Age="16"/>
 <Skier FirstName="Holly" LastName="Holt" Gender="F" Age="16"/>
 <Skier FirstName="Alan" LastName="Brewer" Gender="M" Age="17"/>
 <Skier FirstName="Oliver" LastName="Kiel" Gender="M" Age="13"/>
 <Skier FirstName="Isabelle" LastName="Scemla" Gender="F" Age="14"/>
 <Skier FirstName="Katherine" LastName="Simpson" Gender="F" Age="16"/>
 <Skier FirstName="Chris" LastName="Bryant" Gender="M" Age="18"/>
 <Skier FirstName="Ayla" LastName="Kol" Gender="F" Age="19"/>
 <Skier FirstName="Carlos" LastName="Carvallo" Gender="M" Age="15"/>
 <Skier FirstName="Peter" LastName="Krebs" Gender="M" Age="13"/>
 <Skier FirstName="April" LastName="Stewart" Gender="F" Age="16"/>
 <Skier FirstName="Samantha" LastName="Smith" Gender="F" Age="16"/>
 <Skier FirstName="Renee" LastName="Lo" Gender="M" Age="19"/>
 <Skier FirstName="Steven" LastName="Thorpe" Gender="M" Age="13"/>
 <Skier FirstName="Holly" LastName="Dickson" Gender="F" Age="16"/>
 <Skier FirstName="Geoff" LastName="Grisso" Gender="M" Age="14"/>
 <Skier FirstName="Danni" LastName="Ortman" Gender="F" Age="19"/>
 <Skier FirstName="Adina" LastName="Hagege" Gender="F" Age="17"/>
 <Skier FirstName="Makoto" LastName="Yamagishi" Gender="F" Age="16"/>
 <Skier FirstName="Greg" LastName="Winston" Gender="M" Age="15"/>
</AllRacers>

Use LINQ to extract specific information from an XML data source

1. Display the MainPage.xaml.vb code-behind file in the Code Editor.

2. Comment out the third block (Sample 3) in the XmlTestButton_Click event handler, and then
uncomment the fourth block (Sample 4).

The Sample 4 program code looks like this when the section has been uncommented and
made ready for use. Note that I’ve indented the Where, And, and Select clauses a little to make
the code a little more readable and to match LINQ syntax conventions.

 CHAPTER 18 Data access for Windows Store apps 535

'SAMPLE 4: Use LINQ to search creatively in an XML document.
' This query searches the SkiTeam2014.xml file for female skiers
' between 16 and 17 (inclusive) that are in the XML document.

OutputTextBox.Text = "Female ski school students between 16 and 17" & vbCrLf & vbCrLf
Dim xdoc As XDocument = XDocument.Load("Assets/SkiTeam2014.xml")
Dim query = From skier In xdoc.Descendants("Skier")
 Where (skier.Attribute("Gender").Value = "F") _
 And (skier.Attribute("Age").Value >= 16) And (skier.Attribute("Age").Value <= 17)
 Select FName = skier.Attribute("FirstName").Value,
 LName = skier.Attribute("LastName").Value

For Each skier In query
 OutputTextBox.Text &= skier.FName & " " & skier.LName & vbCrLf
Next

This Visual Basic routine displays a header, opens the SkiTeam2014.xml file, and executes a
LINQ query to extract specific information from the data source. (The query variable holds an
expression tree that defines the query.)

You should recognize the From clause, which indicates that the descendants of the <Skier>
element will be used as the source for the data search. A long Where clause filters the XML
such that only the ski school students who are female and between the ages of 16 and 17
(inclusive) will appear in the query results. Notice how I use optional parentheses to clearly
separate the different components in the Where clauses, how I used the Attribute method to
identify specific elements in each record, and how I use the And keyword to combine different
parts of the Where clause.

For skier records that do match the gender and age filters, the FirstName and LastName attri-
butes for each ski racer are returned and displayed in the text box on the page. The process is
a little more complex than the examples used earlier in the chapter, because we are searching
for specific trends in the data.

Finally, the items retrieved by the LINQ query are processed by a For Each...Next loop, which
steps through the query results item by item, displaying a line in the text box for each female
ski school student who is between 16 and 17.

Let’s see how many students fit these particular search criteria.

3. Click Start Debugging to run the program.

4. Click the Display Data button.

Visual Studio displays the header, loads the XML data source, and then uses LINQ to search for
a subset of records and document elements. Your screen will look like this:

536 part IV Database and Web programming

As the preceding illustration shows, nine student names were returned by the search query.
This is information that would have been rather tedious to gather had we examined the file
manually and tried to count the students by looking at the raw XML data.

Now imagine how powerful this search tool could be if you had thousands of records in an
XML document that you wanted to examine in a Windows Store app?

5. Close the program.

In the following exercise, you’ll see how to make changes to an XML document that is loaded in
memory.

Writing to an XML file
Writing to an XML file means modifying the XML data container that is stored in memory and
(optionally) saving those changes to disk. As a programmer, you might decide to write to an XML file
when your user attempts to update a student or employee record or when you want to add entirely
new records to your XML-based data store.

Visual Studio handles modifying XML data through a variety of mechanisms. In the following exer-
cises, you’ll learn how to update an element in an XML data object by using the Element and SetValue
methods. You’ll also create a new node in an XML document by creating a new XElement object for
the node, specifying the content of the node, and then using the Add method to add the node to the
XML document. These are essential skills as you work with and build XML data stores in memory.

 CHAPTER 18 Data access for Windows Store apps 537

Finally, there might be times that you want to save a modified XML document from computer
memory back to disk so that the changes are saved permanently. This can be accomplished using the
Save method for an XML data object that has been declared using the XDocument class. However, I
don’t demonstrate this method in the following procedure. (I want to preserve the XML sample files
for you in an unmodified state.)

You’ll begin by modifying an element in the in-memory copy of an XML document.

Modify an element in an XML document

1. Display the MainPage.xaml.vb code-behind file in the Code Editor.

You’re still working in the XML Document Data program, a Windows Store app written
in Visual Basic. This time you’ll return to experiments with the Students.xml document.
You’ll learn how to modify the first record in the XML document that is surrounded by the
<LASTNAME></LASTNAME> tags.

2. Comment out the fourth block (Sample 4) in the XmlTestButton_Click event handler, and then
uncomment the fifth block (Sample 5).

The Sample 5 program code looks like this when the section has been uncommented and
made ready for use:

'SAMPLE 5: Modify an element in the in-memory copy of an XML Document.
' This code shows how to change the LASTNAME field in the first record in the XML file
' from Smith to George. The final line displays the name so you can verify the change.

Dim xdoc As XDocument = XDocument.Load("Assets/Students.xml")
xdoc.Element("STUDENTS").Element("WINTER2014").Element("LASTNAME").SetValue("George")
OutputTextBox.Text = xdoc.Element("STUDENTS").Element("WINTER2014").Element("LASTNAME").
Value

This routine uses three Element methods to reference the first LASTNAME record in the
Students.xml document. The second line of code uses the SetValue method to change the
name stored in that location from “Smith” to “George.” The third line uses the Value property
to display the modified record. (Type the entire statement on one line—it just wraps here due
to the book's margins.) What we’re hoping to see is the name “George” in the text box on the
page—not “Smith.”

This routine is very short—it displays no header or other information in the text box. All we’re
hoping to see there is the modified name “George.”

Let’s see how this basic write operation works on the in-memory copy of Students.xml.

3. Click Start Debugging to run the program.

538 part IV Database and Web programming

4. Click the Display Data button.

Visual Studio executes the event handler, loads the XML document into memory, and modifies
the first LASTNAME record that it finds. Your screen will look like this:

The program worked as intended. The output in the text box is simply “George,” nothing
more, nothing less. This means that the code is working.

Here we used just XDocument and XElement object syntax. As you can see, it is just as easy to
modify an XML element in memory as it is to display an XML element.

5. Close the program.

In the following exercise, you’ll see how to create a new node of XML data and how to add it to the
XML document that is stored in memory.

Create a new node with data and add it to an XML document

1. Display the MainPage.xaml.vb code-behind file one final time.

2. Comment out the fifth block (Sample 5) in the XmlTestButton_Click event handler, and then
uncomment the sixth block (Sample 6).

The Sample 6 program code looks like this after it has been readied for use:

'SAMPLE 6: Add to an XML Document by creating a new node.
' To create a new XML "node" and add it to the end of the LASTNAME section, do this:
' Load XML document into Students variable. Create a new XElement object to hold
' the new node, and assign the LASTNAME value "Lyon" to the node.
' Use Add method to add the new node to the end of the LASTNAME section.
' Display modified XML document in the text box (with tags) to verify change.

Dim Students As XDocument = XDocument.Load("Assets/Students.xml")
Dim xe As XElement = New XElement("LASTNAME", "Lyon")
Students.Element("STUDENTS").Element("WINTER2014").Add(xe)
OutputTextBox.Text = Students.ToString

 CHAPTER 18 Data access for Windows Store apps 539

This routine begins with the declaration of the Students object (of type XDocument) and loads
the Students.xml file into the object. Then a new node is declared named xe, which is of type
XElement. Data is also assigned to the new node in the second line. In this case, the node con-
forms to the format of a LASTNAME element, and the name “Lyon” is assigned to the node.

In the third line of code, the new xe object is added to the Students data object via the Add
method. As you’ll see in a moment, the Add method directs Visual Studio to add the node not
to the end of the document but to the end of the <WINTER2014> section.

Finally, the entire contents of the modified in-memory copy of the Students.xml document are
displayed in the OutputTextBox object on the page. This will allow you to examine the XML file
and see how it has been changed.

3. Click Start Debugging to run the program.

4. Click the Display Data button.

Visual Studio loads the Students.xml document into memory, creates the xe node containing
new XML data, adds the node to the in-memory copy of the XML document, and displays the
entire document in the text box on the page. Notice that the routine displays all of the docu-
ment’s XML tags too, so you can see what the new node looks like in context.

5. Scroll to the bottom of the text box.

Your screen will look like this:

540 part IV Database and Web programming

At the end of a long list of <LASTNAME></LASTNAME> elements, you will see the
<LASTNAME>Lyon</LASTNAME> node. This is the new addition to the XML document that
was created in this exercise. Something that is important to notice as well is that the new ele-
ment is not placed at the end of the file, but at the end of the <WINTER2014> section. That is,
Visual Studio not only modified the XML document, but it knew where to put the information.

6. Close the program, save your changes, and then close Visual Studio.

You’re finished working with Windows Store data access concepts for now.

a user interface for data entry
Although this chapter focused on fundamental skills related to binding data to XAML controls and
manipulating the contents of XML documents, you can begin to see how these building blocks can
be used in more sophisticated Visual Basic programs to receive input from the user, manipulate it in
memory, and store it permanently on disk via XML documents or another mechanism.

For example, recall the user interface for data entry that you developed along with custom classes
in Chapter 16, which provided several fields for receiving input from the user and displaying output:

 CHAPTER 18 Data access for Windows Store apps 541

This type of front end could be ideal for gathering student or employee information in a Windows
Store application. You could take the information gathered by such a page and store it in an observ-
able collection declared according to the parameters of a class that you defined to hold student
records. You could then bind this collection to controls in the user interface, and you could use LINQ
to extract interesting information from the collection.

Finally, you could store the contents of the collection in an XML document, which you might load,
modify, and save back to disk as needed in your program. It might also be nice to supplement the
TextBox and Button controls you see in the preceding illustration with the CommandBar and Flyout
controls you learned about in Chapter 9, “Exploring Windows 8.1 design features: Command bar,
flyout, tiles, and touch.” The decision is really up to you!

Summary

This chapter has offered an introduction to fundamental data access techniques in Windows Store
applications. First, you learned how to bind XAML controls to classes and data collections in a
Windows Store app. You learned how to configure the necessary binding elements in a project, how
to use the Binding class in XAML markup, and how to write Visual Basic code to manage a variety of
data access tasks.

You also learned more about using XML documents in a Windows Store app, including how to
read and display XML data elements, how to extract XML data with LINQ, and how to modify XML
documents with methods in the XDocument and XElement classes. These essential skills will prepare
you to make the most of XML data sources in your programs. Learning data access with XML is an
important skill to acquire, because XML has achieved worldwide acceptance and is highly suited for
transactions over the web. The ADO.NET database framework has also been optimized for XML data
sources and syntax.

In the next chapter, you’ll learn about the web development options in Visual Studio 2013. You’ll
explore several ADO.NET programming models, including Web Forms, ASP.NET MVC, Web Pages with
Razor syntax, and HTML5/JavaScript. You’ll also create a car loan calculator website that demonstrates
how server controls are used, how to write Visual Basic event handlers, and how to handle typical web
development scenarios in ASP.NET and Visual Basic.

 543

C H A P T E R 1 9

Visual Studio web development
with aSp.Net

After completing this chapter, you will be able to

■■ Understand ASP.NET 4.5.1, Microsoft’s newest web development framework.

■■ Evaluate leading ASP.NET web development platforms, including Web Forms, ASP.NET MVC,
Web Pages (with Razor), and HTML5/JavaScript.

■■ Build a sample car mortgage application using Web Forms.

■■ Add server controls and event handlers to a Web Forms project.

■■ Display database records and customize a website template.

The topic of creating Visual Studio 2013 applications for the web deserves an entire book on the
subject. Actually, the topic deserves several books. But rather than simply forwarding you on to

other sources of information, I want to give you an overview of the exciting web technologies avail-
able in Visual Studio 2013 and offer a walkthrough of the powerful Web Forms development plat-
form. I think you’ll be quite impressed with what you can accomplish with just a few hours’ work in
Web Forms, and you’ll find many conceptual similarities to developing apps in the Windows Forms
and Windows Store models.

This chapter begins with an introduction to ASP.NET 4.5.1, an extension of the .NET Framework,
and continues with a survey of the web projects that you can create in Visual Studio 2013, including
Web Forms, ASP.NET MVC, Web Pages (with Razor), and a programming model that uses HTML5 and
JavaScript.

Although a complete description of ASP.NET isn’t possible here, you should find enough mate-
rial to help you make some basic decisions about which platform to investigate when you decide to
design Visual Studio applications for the web. In most cases, you’ll be using the Visual Basic and .NET
Framework skills that you have learned and practiced throughout this book.

544 part IV Database and Web programming

Inside ASP.NET

ASP.NET is a web application framework designed to create dynamic webpages and websites for the
Internet. ASP.NET was first released in 2002 with Microsoft Visual Studio.NET version 1.0. Subsequent
versions of ASP.NET have been aligned with new releases of the .NET Framework and Visual Studio.
Following this general pattern, Visual Studio 2013 released with ASP.NET 4.5.1 as its web develop-
ment interface, which corresponded to the release of the .NET Framework 4.5.1. The two libraries are
designed to be used together.

One of the goals of ASP.NET was to simplify web development by providing a programming model
that was similar to what developers were already doing on the Windows platform. ASP.NET achieved
this by allowing developers to build pages composed of controls, similar to the way that Windows
Forms applications were created in the Visual Studio IDE. A Web Forms control, such as a button
or label, functioned similarly to a Windows Forms button. In both cases, there were customizable
properties, methods, events, and code-behind files that worked according to the general principles of
object-oriented programming in Visual Studio. This included the ability to use the entire Visual Basic
language and reference objects in the ASP.NET Framework, just as developers had used these features
for Windows programming and the .NET Framework. However, while Windows Forms controls are
rendered on the screen, ASP.NET Web Forms controls produce segments of HTML and JavaScript that
form pages sent to a browser on the user’s computer or handheld device.

Like the .NET Framework, ASP.NET is built on the Windows Common Language Runtime (CLR),
which allows Visual Studio developers to write ASP.NET programs using any supported .NET language,
including Visual Basic. Using ASP.NET, you can create a website that displays a user interface, pro-
cesses data, and provides many of the commands and features that a standard application for
Windows might offer. However, the website that you create is viewed in a web browser, such as
Internet Explorer, Google Chrome, Mozilla Firefox, Apple Safari, or a mobile device such as Windows
Phone 8, an Android smartphone, or an Apple iPhone.

ASP.NET websites are typically stored on one or more web servers, which use Microsoft Internet
Information Services (IIS) to display the correct webpages and handle most of the computing tasks
required by the website. This distributed strategy allows your websites to potentially run on a wide
range of Internet-based or stand-alone computers—wherever your users and their rich data sources
are located.

Note When you use Visual Studio, the websites that you create can also be located and
run on a local computer that does not require IIS, giving you more options for development
and deployment. This is a fine point about developing and testing your application that I
will pick up later in the chapter.

The following sections describe the most important web development opportunities available
to Visual Basic 2013 developers, including Web Forms, ASP.NET MVC, Web Pages (with Razor), and
HTML5 with JavaScript.

http://en.wikipedia.org/wiki/Web_application_framework
http://en.wikipedia.org/wiki/Dynamic_Web_pages
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/Common_Language_Runtime
http://en.wikipedia.org/wiki/List_of_CLI_languages

 CHAPTER 19 Visual Studio web development with ASP.NET 545

Web Forms
ASP.NET Web Forms lets you build dynamic websites or web applications using a familiar drag-and-
drop, event-driven model. You create pages by dragging Toolbox controls onto a design surface.
Because this model has been available for some time, dozens of controls and components are avail-
able, including a data access model that is similar to what developers have used with Windows Forms.
Many Visual Studio and web developers are familiar with this model and its strengths.

The Web Forms framework targets developers who have used Visual Studio before and are com-
fortable with declarative and control-based programming, including Windows Forms and Windows
Presentation Foundation (WPF). The Web Forms model provides a designer-driven development par-
adigm, so it’s popular with developers looking for a rapid application development (RAD) approach
to web development. Web Forms is also a good fit for traditional desktop programmers who do not
have that much experience in HTML and JavaScript. One potential shortcoming of this model is that
ASP.NET sends a considerable amount of content to the user’s browser to enable its rich collection of
controls and features. Web programming models like ASP.NET MVC and Web Pages (with Razor) were
developed in part to create web applications that have a smaller footprint.

To create an ASP.NET Web Forms application with Visual Basic in Visual Studio 2013, you select the
New Project command from the File menu. Under Templates, you select Web and then ASP.NET Web
Application. In the New ASP.NET Project dialog box, select Web Forms and click Create Project.

You can also create a website with the Web Forms model, the approach that will be taken later
in this chapter. The following screen shot shows the New ASP.NET Project dialog box with the Web
Forms project type selected. This is the project type that you select when you want to create a web
application using the Web Forms model.

546 part IV Database and Web programming

aSp.Net MVC
ASP.NET MVC is an alternative framework for creating web applications that first appeared in 2009.
Because it came after Web Forms, the new framework was designed to address what were perceived
as some of the limitations of Web Forms, including the way that HTML was rendered for webpages,
the combination of business logic and user-interface presentation code in code-behind files, and the
way that Web Forms applications were tested. The Model-View-Controller (MVC) architecture was
selected for this framework (which had existed since the 1970s) because it had a built-in structure
that separated the business logic layer of a web application from its presentation layer. Accordingly,
an ASP.NET MVC application requires a developer to build a web application as a composite of three
roles: Model, View, and Controller.

In this programming scenario, a model represents the business objects in the application, a view
renders the user interface to display information, and a controller handles requests from the user
and manages application logic and flow. The requests are mapped to methods in classes, and these
methods receive user input and provide other functionality. Many software developers are already
familiar with this programming model and will therefore find it easy to use, especially when it is inte-
grated with the powerful features of the .NET Framework and ASP.NET object libraries. The separation
of business logic from presentation code is especially useful. The current version of ASP.NET MVC is
version 5.

To create an ASP.NET MVC application with Visual Basic in Visual Studio 2013, you select the New
Project command from the File menu. Under Templates, you select Web and then ASP.NET Web
Application. In the New ASP.NET Project dialog box, select MVC and click Create Project.

The following screen shot shows the New ASP.NET Project dialog box with the MVC project type
selected:

 CHAPTER 19 Visual Studio web development with ASP.NET 547

Web pages (with razor)
In 2011, Microsoft released a free web development tool named WebMatrix, a cloud-connected
application that allows developers to build dynamic websites using templates and open-source
content from information management systems such as Drupal and WordPress. WebMatrix was also
designed to be compatible with ASP.NET and Visual Studio 2010. It provided an easy-to-learn web
development tool that offered an alternative and enhancement to the Web Forms and ASP.NET MVC
models. To differentiate WebMatrix tools from Web Forms and ASP.NET MVC, the new model was
called ASP.NET Web Pages in the Visual Studio 2012 and Visual Studio 2013 products. The technology
is rapidly evolving and attracting adherents, especially those who have some experience with HTML,
Visual Basic, and Visual C#. The current release is version 3.

In the Web Pages model, you create dynamic webpages that have the .VBHTML (for Visual Basic)
or .CSHTML (for C#) extension. These are essentially HTML files within in-line code written in either
the Visual Basic or Visual C# language. In-line code means that there is no absolute requirement for
separate code-behind files in a Web Pages project, as you would see in a Web Forms or Windows
Store application (although typically, developers create separate code files just like any other .NET
application). The in-line coding approach is often called “Web Pages with Razor syntax” because the
in-line code follows certain syntax rules. You can tell the difference between HTML markup and the
Razor code in a Web Page file by the ‘@’ character that appears before the Visual Basic or Visual C#
code. These Razor instructions are typically used to send instructions to the web server.

Razor is technically a view engine—that is, a pluggable module that implements template syntax
within the ASP.NET MVC platform. As a result, Web Pages with Razor should really be understood
as an extension of ASP.NET MVC. It allows you to create optimized HTML for webpages with a
minimum of code. Rather than tedious hand-coding or potentially confusing user interface and
code-behind files, the Razor syntax allows you to create the needed HTML markup with a modified
version of Visual Basic or Visual C# syntax. All of this is available to you within the familiar Visual
Studio 2013 IDE.

You can learn more about the WebMatrix web development tool at http://www.microsoft.com/web/.
However, the support for Web Pages with Razor is now built into Visual Studio 2013. To create an ASP.
NET Web Pages application with Visual Basic in Visual Studio, you select the New Web Site command
from the File menu. Under Templates, select Visual Basic, and then select ASP.NET Web Site (Razor v3).
Click OK to configure the new Web Pages project. Visual Studio will create a boilerplate website that is
ready to go, with an assortment of .VBHTML files ready for customizing in Solution Explorer.

The following screen shot shows the New Web Site dialog box with the ASP.NET Web Site (Razor
v3) project type selected:

http://www.microsoft.com/web/

548 part IV Database and Web programming

HtML5 and JavaScript
You have spent considerable time in this book learning how to write Windows Store applications. An
excellent question might now be: Is there an easy way for me to create web applications that look and
behave like tile-based Windows Store apps but that run in an Internet browser? And while we’re at it,
here’s a follow-up: Is there a simple way to write a Visual Basic application in Visual Studio that runs in
Windows 8.1 and a variety of web browsers and handheld devices, such that no converting, upgrad-
ing, or porting is required?

Unfortunately, the short answer to both of these questions is: “No.”

It is not possible (yet) to simply upgrade or recompile a Windows Store application for use on
the web or to create an application like Windows Calculator that automatically runs on Windows 8.1,
Windows Phone 8, and web servers. The reason is that the Windows, Phone, and web platforms are
considerably different, and the needs of browser-based or mobile applications are simply much dif-
ferent than traditional desktop computers and laptops running Windows 8.1. This is not to say that
there aren’t many similarities and common tools used for creating Windows, Phone, and web-based
applications, but the Holy Grail of developing one project in Visual Studio and deploying it automati-
cally to a variety of platforms is still a ways off.

 CHAPTER 19 Visual Studio web development with ASP.NET 549

So, in Visual Studio 2013, you develop core code, data stores, and user interface assets and then
adapt them to different operating environments using libraries and classes in the .NET Framework.
If you want to create a web application that actually looks and operates like a Windows Store app,
with tile-based features and a similar user interface, you should create a Windows Store app using
JavaScript, a programming language specifically designed for use with web browsers.

Like Visual Basic, JavaScript is one of the primary languages for Visual Studio development.
However, JavaScript also has an incredible heritage as a web-based development tool. If you cre-
ate a Windows Store app in Visual Studio and select one of the JavaScript templates, you can create
controls and features that are directly connected to Windows 8.1 and .NET Framework services. This
is made possible because Windows Store apps designed with JavaScript use resources in the Windows
Library for JavaScript (WinJS). This web development option is typically called “Windows Store app
with HTML5 and JavaScript.”

In such a Windows 8.1 project, JavaScript code is embedded directly into the HTML of webpages.
This code is also allowed to interact with the browser’s Document Object Model (DOM), which can
represent HTML and other browser objects. The DOM enables webpages to implement typical HTML5
features such as animations, transitions, text color changes, and text effects.

The JavaScript language uses a syntax similar to that of C and supports language constructs such
as if...else and do...while. JavaScript also supports various data types, including Array and Object. Best
of all, you can use the templates and controls that you’ve become familiar with in Windows Store
apps, all within the familiar setting of the Visual Studio 2013 IDE. However, you do need to switch
languages, essentially taking a break from Visual Basic and moving into JavaScript for the sake of
retaining Windows Store-type features and tools. It’s not the end of the world, even for Visual Basic
diehards like myself.

To create a Windows Store application for the web with JavaScript, you start Visual Studio 2013
and select the New Project command from the File menu. Under Templates, select Other Languages
and then select JavaScript. Click Windows Store, and then click the new project template that you
want to open. (The list of templates is identical to what you see under Visual Basic/Windows Store
apps.) Specify a project name, and then click OK to open the new web application.

The following screen shot shows the New Project dialog box with the JavaScript/Windows Store/
Navigation App template selected:

550 part IV Database and Web programming

Building a Web Forms website with ASP.NET

After a review of some of the leading Visual Studio web development technologies, the best way to
get started with ASP.NET is to get some hands-on experience. In the exercises that follow, you’ll create
a simple car loan calculator with the Web Forms development model described earlier in this chapter.
You’ll create a website that will determine the monthly payments for an automobile purchase, display
a table of data from a database, and display a help page when needed.

You’ll begin the process by verifying that Visual Studio is properly configured for ASP.NET pro-
gramming, and then you’ll review the essential steps for creating a Web Forms website. (You can
create either websites or web applications with the Web Forms model, but we’ll try the more compre-
hensive website approach here.)

Next, you’ll move on to creating the project with Visual Studio, which entails creating several
ASP.NET pages, using Toolbox controls, writing code, testing, and other familiar tasks.

Software requirements for aSp.Net development
Before you get started, take a moment to understand the software requirements for what follows. To
begin ASP.NET programming, you need to have Visual Studio 2013 Professional, Premium, or Ultimate
installed. You also need to be running Windows 8.1.

 CHAPTER 19 Visual Studio web development with ASP.NET 551

If you don’t have one of the full retail versions of Visual Studio, you can install a product known as
Visual Studio Express 2013 for Web at http://www.microsoft.com/express/web/. This free tool contains
almost all the features described in this chapter. (I’ll point out any differences as we go.) If you are
using Visual Studio Express 2013 for Web, be sure to adjust the settings to Expert by clicking the Tools
menu, clicking Settings, and then clicking Expert Settings. This will ensure that the steps in this chap-
ter more closely match your software. When the differences between these editions of the software
don’t matter, I’ll simply refer to the product as Visual Studio.

Something quite helpful here is that Visual Studio includes its own local web server for Internet
development, so setting up and configuring a separate web server with Microsoft Internet
Information Services (IIS) and the .NET Framework is not required. Having a local web server makes
it easy to create and test your ASP.NET websites, and you’ll see it described below as the ASP.NET
Development Server.

In Visual Studio, you can create and run your website in one of three of the following locations:

■■ Your own computer (via the ASP.NET Development Server).

■■ An HTTP server that contains IIS and related components.

■■ An FTP site (a remote file server). This option is for distribution only. Visual Studio can copy a
website to an FTP site, but it must then be deployed to an HTTP server that contains IIS and
related components.

The first location is the option we’ll use in this book because it requires no additional hardware or
software. In addition, when you develop your website on the local file system, all the website files are
stored in one location. When you’ve finished testing the application, you can deploy the files to a web
server of your choosing.

essential steps
To create a website in Visual Studio 2013, you click the New Web Site command on the File menu, and
then use the Visual Studio IDE to build one or more webpages that will collectively represent your
website. Each webpage consists of the following two pieces:

■■ A Web Forms page, which contains HTML, ASP.NET markup, and controls to create the user
interface.

■■ A code-behind file, which is a code module that contains Visual Basic code that relates directly
to the Web Forms page.

This division is conceptually much like the Windows Forms and Windows Store platforms you’ve
been working with already in this book—there’s a user interface component and a code module com-
ponent. The code for both of these components can be stored in a single .aspx file, but typically the
Web Forms page code is stored in an .aspx file and the code-behind file is stored in an .aspx.vb file.

In addition to webpages, websites can contain code modules (.vb files), HTML pages (.htm files),
configuration information (Web.config files), global web application information (Global.asax files),

http://www.microsoft.com/express/web/

552 part IV Database and Web programming

cascading style sheet (CSS) information, scripting files (JavaScript), master pages, image files, and
other components. You can use the Web Designer and Solution Explorer to switch back and forth
between these components quickly and efficiently.

Webpages vs. Windows Forms
What are the important differences between webpages and Windows Forms? To begin with, web-
pages offer a slightly different programming paradigm than Windows Forms. Whereas Windows
Forms use a Windows-based application window as the primary user interface for a program, a web-
site presents information to the user through one or more webpages with supporting program code.
These pages are viewed through a web browser, and you can create them by using the Web Designer.

Like a Windows Form, a webpage can include text, graphic images, buttons, list boxes, and other
objects that are used to provide information, process input, or display output. However, the basic set of
controls that you use to create a webpage is not the set on the Common Controls tab of the Toolbox.
Instead, ASP.NET websites must use controls on one of the tabs in the Web Forms Toolbox, including
Standard, Data, HTML, and many others. Each of the Web Forms controls has its own unique methods,
properties, and events, and although there are many similarities between these controls and Windows
Forms controls, there are also several important differences. For example, the Windows Forms
DataGridView control is called GridView in Web Forms and has different properties and methods.

Many webpage controls are server controls, meaning that they are controlled by the web server.
Server controls have an “asp” prefix in their tag. HTML controls (located on the HTML tab of the Web
Forms Toolbox) are client controls by default, meaning that they run only within the user’s browser.
However, for now, you simply need to know that you can use server controls, HTML controls, or a
combination of both in your website projects.

Server controls
Server controls are more capable than HTML controls and function in many ways like the Windows
Forms controls. Indeed, many of the server controls have the same names as the Windows Forms
controls and offer many of the same properties, methods, and events. In addition to simple controls
such as Button, TextBox, and Label, more sophisticated controls such as Chart, FileUpload, LoginView,
and RequiredFieldValidator are provided on a number of tabs in the Toolbox. The screen shot on the
following page shows a sample of the server controls in the Web Forms Toolbox. (AJAX Extensions,
Dynamic Data, and Reporting controls are not shown.) This impressive collection of controls is one of
the main reasons web developers like working with Web Forms applications.

 CHAPTER 19 Visual Studio web development with ASP.NET 553

HtML controls
The HTML controls are a set of older user interface controls that are supported by all web browsers
and conform closely to the early HTML standards developed for managing user interface elements
on a typical webpage. They include Button, Text, and Checkbox—useful basic controls for manag-
ing information on a webpage that can be represented entirely with HTML code. Indeed, you might
recognize these controls if you’ve coded in HTML before. However, although they’re easy to use and
have the advantage of being a common denominator for web browsers, they’re limited by the fact
that they have no ability to maintain their own state. (That is, the data that they contain will be lost
between views of a webpage unless you write code to manage the state.) The next screen shot shows
the HTML controls offered on the HTML tab of the Toolbox when the Web Designer is loaded:

554 part IV Database and Web programming

Create a new website

1. Start Visual Studio, and then click the New Web Site command on the File menu.

Note If you are using Visual Studio Express 2013, you won’t see the New Web Site
command on the File menu, because web development is not supported by that
product. But don’t worry, you can get the necessary software by downloading Visual
Studio Express 2013 for Web at http://www.microsoft.com/express/web/. Do that now,
and return to this step when you are ready to go.

Although you might have seen the New Web Site command before, we haven’t used it yet in
this book. This command prepares Visual Studio to build a website. You see a New Web Site
dialog box similar to the following:

http://www.microsoft.com/express/web/

 CHAPTER 19 Visual Studio web development with ASP.NET 555

In this dialog box, you can select a variety of website templates (including a Web Forms site),
the location for the website (local file system, HTTP server, or FTP site), and the programming
language that you want to use (Visual Basic or Visual C#).

You can also identify the version of the .NET Framework that you want to target with your
web application. (Version 4.5.1 offers the most recent features, but there are times that you
might need to design specifically for platforms with an earlier version of the .NET Framework.
However, the Express product does not provide the option of targeting a specific version of
the .NET Framework.)

2. In the New Web Site dialog box, verify that Visual Basic is the selected language and that ASP.
NET Web Forms Site is the selected template.

3. In the Web Location list box, make sure that File System is selected.

4. Click the Browse button, browse to the My Documents\Visual Basic 2013 SBS folder, and then
edit the Folder path so that it is My Documents\Visual Basic 2013 SBS\My Chapter 19.

Because a Visual Studio website takes up an entire folder, you’ll create a new folder for your
project with the “My” prefix. Although you have been specifying the folder location for proj-
ects after you have built the projects in this book, in web development, projects are typically
saved up front.

556 part IV Database and Web programming

5. Click Open to confirm the location selection, and then click Yes to create the new folder on
your system.

6. Click OK to accept your selections and create the new website.

Visual Studio loads the Web Designer, creates a webpage (Default.aspx) to contain the user
interface, and creates a code-behind file (Default.aspx.vb) that will store the code for your
webpage.

If you don’t see Default.aspx open in the Web Designer, double-click Default.aspx in Solution
Explorer now to open it.

7. At the bottom of the Web Designer, click the Design tab if it is not already selected.

Your screen looks something like the following illustration:

Unlike the Windows Forms Designer, the Web Designer displays the webpage in three possible
views in the IDE, and three tabs at the bottom of the Designer (Design, Split, and Source) allow
you to change your view of the webpage.

The Design tab shows you approximately how your webpage will look when a web browser
displays it. When the Design tab is selected, a basic template page with the words Modify This
Template To Jump-Start Your ASP.NET Application appears in the Designer, and you can add
controls to your webpage and adjust how objects on the page are arranged.

 CHAPTER 19 Visual Studio web development with ASP.NET 557

On the Source tab, you can view and edit the HTML and ASP.NET markup that are used to dis-
play the webpage in a web browser. The Split tab offers a composite view of the Design and
Source tabs. Because you are used to seeing XAML markup and a Windows Store page in the
Designer in Split view, the overall look of the Web Designer will be somewhat familiar to you.

A few additional differences between the Windows Forms Designer and the Web Designer
are worth noting at this point. The Toolbox now contains several collections of controls used
exclusively for web programming. Solution Explorer also contains a different list of project files
for the website you’re building, as shown in the preceding screen shot. In particular, notice the
Default.aspx file in Solution Explorer; this file contains the user interface code for the active
webpage. Nested under the Default.aspx file, you’ll find the code-behind file named Default.
aspx.vb. A configuration file named Web.config and a master page file named Site.master are
also listed.

tip When you close your new website and exit Visual Studio, note that you open
the website again by clicking the Visual Studio File menu and then clicking the Open
Web Site command. Websites are not opened by using the Open Project command
on the File menu.

Now you’re ready to add some text to the webpage by using the Web Designer.

Using the Web Designer

Unlike a Windows Form, a webpage can have text added directly to it when it is in the Web Designer.
In Source view, the text appears within HTML and ASP.NET tags somewhat as it does in the Visual
Studio Code Editor. In Design view, the text appears in top-to-bottom fashion within a grid as it
does in a word processor such as Microsoft Word, and you’ll see no HTML tags. In the next exercises,
you’ll type text in Design view, edit it, and then make formatting changes by using buttons on the
Formatting toolbar. Manipulating text in this way is usually much faster than adding a Label control
to the webpage to contain the text. You’ll practice entering the text for your car loan calculator in the
following exercise.

add text in Design view

1. Click the Design tab, if it is not currently selected, to view the Web Designer in Design view.

A faint rectangle appears at the top of the webpage, near the template text Modify This
Template To Jump-Start Your ASP.NET Application. The template text is there to show you
how text appears on a Web Form and where you can go to get additional information about
ASP.NET. You’ll also notice that your webpage has Home, About, and Contact tabs, as well as
Register and Log In fields, which are provided for you as part of your default page.

558 part IV Database and Web programming

2. Position your insertion point at the end of the text Jump-Start Your ASP.NET Application.

A blinking I-beam appears at the end of the line.

3. Press the Backspace key to remove Modify This Template To Jump-Start Your ASP.NET
Application. You should also delete the period at the beginning of the line.

4. Type Car Loan Calculator in place of the text you deleted.

Visual Studio displays the title of your webpage exactly as it will appear when you open the
website in your browser.

5. Delete the paragraph beginning with To Learn More About ASP.NET…, and in its place, type
the following sentence:

Enter the required information and click Calculate!

Now you’ll use the Formatting toolbar to format the title with italic formatting.

6. Right-click the Standard toolbar in Visual Studio to display the list of toolbars available in the
IDE.

7. If you do not see a checkmark next to Formatting in this list, click Formatting to add the
Formatting toolbar.

The Formatting toolbar now appears in the IDE if it was not already visible. Notice that it con-
tains a few features not usually found on a text formatting toolbar.

8. Select the text Car Loan Calculator. Before you can format text in the Web Designer, you must
select it.

9. Click the Italic button on the Formatting toolbar.

Your screen looks like this:

Now, you’ll examine the HTML and ASP.NET markup for the text and formatting you entered.

 CHAPTER 19 Visual Studio web development with ASP.NET 559

View the HtML and aSp.Net markup for a webpage

1. Click the Source tab at the bottom of the Designer.

The Source tab displays the actual HTML and ASP.NET markup for your webpage. To see more
of the markup, you might want to resize a few programming tools temporarily and use the
document scroll bars. The markup looks like the following screen shot. Your markup might
have some differences.

A webpage is made up of page information, scripting code, cascading style sheet (CSS) infor-
mation, HTML tags, ASP.NET tags, image references, objects, and text. The @ Page directive
contains information about the language you selected when creating the web application, the
name of any code-behind file, and any inherited forms.

HTML and ASP.NET tags typically appear in pairs so that you can see clearly where a section
begins and ends. For example, the <h1> tag identifies the beginning of a major heading,
and the </hi> tag identifies the end. Notice that the Car Loan Calculator text appears within
 tags to make the text italic. Below the Car Loan Calculator text, the second line
of text you entered is displayed.

Important Remember that the Source tab is an actual editor, so you can change
the text that you entered by using standard text editing techniques. If you know
something about HTML and ASP.NET, you can add other tags and content as well.

560 part IV Database and Web programming

2. Examine the line <h1><%: Title %>Car Loan Calculator</h1>.

The <%: Title %> tag in this line directs the web browser to place the title of the page at the
beginning of the line (before the words Car Loan Calculator) when the page is loaded. (The
Title value is currently assigned the string “Home Page” by markup at the top of the page.)

3. Because you don’t want that particular label on your page anymore, select the tag
<%: Title %> and then press Del.

4. Now click the Design tab to display your webpage again in Design view, and see how the
change impacted your webpage.

The page header is no longer visible. Now you’ll make some room for content by deleting the
instructions in the MainContent section of the webpage.

5. Select the line We Suggest The Following:, as well as all of the content in the three numbered
steps below.

6. Press Del to delete the boilerplate information.

This will make room for new content.

7. Press Enter eight times to make room for text and controls on the page.

Your screen should look like this:

Now you’ll open the Toolbox, if it is not visible, and add some new content.

 CHAPTER 19 Visual Studio web development with ASP.NET 561

Adding server controls to a website

In the following exercise, you’ll add TextBox, Label, and Button controls to the main page in the car
loan calculator. Although these controls are located in the Web Forms Toolbox, they’re very similar
to the Windows Forms controls of the same name that you’ve used throughout this book. (I’ll cover a
few of the important differences as they come up.) The most important thing to remember is that in
the Web Designer, controls are inserted at the insertion point if you double-click the control name in
the Toolbox. After you add the controls to the webpage, you’ll set property settings for the controls.

Use TextBox, Label, and Button controls

1. Click to place the insertion point at about the third line from the top in the MainContent sec-
tion that you just cleared and filled with eight lines.

Because controls are placed at the insertion point, you need to place the cursor in a specific
location before double-clicking a control in the Toolbox.

tip By default, the Web Designer positions controls relative to other controls. This
is an important difference between the Web Designer and the Windows Forms
Designer. The Windows Forms Designer allows you to position controls wherever you
like on a form. You can change the Web Designer so that you can position controls
wherever you like on a webpage (called absolute positioning); however, you might
get different behavior in different web browsers.

2. Open the Toolbox, and display the Standard tab, if it isn’t already visible.

3. Double-click the TextBox control on the Standard tab of the Toolbox to create a text box
object at the insertion point on the webpage.

Notice the asp:textbox#TextBox1 text that appears above the text box object. The “asp” prefix
indicates that this object is an ASP.NET server control. (This text disappears when you run the
program.)

4. Click below the text box object to place the insertion point on the next line.

5. Double-click the TextBox control again to add a second text box object to the webpage.

6. Repeat steps 4 and 5 to create a third text box object below the second text box.

Now you’ll use the Label control to insert labels that identify the purpose of the text boxes.

7. Click to the right of the first text box object to place the insertion point at the right edge of
the text box.

8. Press the Spacebar key twice to add two blank spaces, and then double-click the Label control
in the Toolbox to add a label object to the webpage.

562 part IV Database and Web programming

9. Repeat steps 7 and 8 to add label objects to the right of the second and third text boxes.

10. Click to the right of the third label object to place the insertion point to the right of the label,
and then press Enter.

11. Click below the third text box object, and then double-click the Button control to create a but-
ton object near the bottom page.

The Button control, like the TextBox and Label controls, is very similar to its Windows Forms
counterpart. Your screen looks like this:

Now you’ll set a few properties for the seven new controls you have created on the webpage.
If it is not already visible, open the Properties window by pressing F4. As you set the proper-
ties, you’ll notice one important difference between webpages and Windows Forms—the
familiar Name property has been changed to ID in Web Forms. Despite their different names,
the two properties perform the same function.

12. Set the following properties for the objects on the webpage:

Object Property Setting

TextBox1 ID AmountTextBox

TextBox2 ID InterestTextBox

TextBox3 ID PaymentTextBox

 CHAPTER 19 Visual Studio web development with ASP.NET 563

Object Property Setting

Label1 ID AmountLabel

Text “Loan Amount”

Label2 ID InterestLabel

Text “Interest Rate (for example, 0.09)”

Label3 ID PaymentLabel

Text “Monthly Payment”

Button1 ID CalculateButton

Text “Calculate”

Your webpage looks like this:

Writing event handlers for webpage controls

You write default event handlers for controls on a webpage by double-clicking the objects on the
webpage and typing the necessary program code in the Code Editor. Although the user will see
the controls on the webpage in his or her own web browser, the actual code that’s executed will be
located on the local test computer or a web server, depending on how you configured your project
for development and how it is eventually deployed.

564 part IV Database and Web programming

For example, when the user clicks a button on a webpage that is hosted by a web server, the
browser sends the button click event back to the server, which processes the event and sends a new
webpage back to the browser. Although the process seems similar to that of Windows Forms, there’s
actually a lot going on behind the scenes when a control is used on an ASP.NET webpage!

In the following exercise, you’ll practice creating the default event handler for the CalculateButton
object on the webpage.

Create the CalculateButton_Click event handler

1. Double-click the Calculate button on the webpage.

The code-behind file (Default.aspx.vb) opens in the Code Editor, and the CalculateButton_Click
event handler appears.

2. Type the following program code:

Dim LoanPayment As Double
'Use Pmt function to determine payment for 36-month loan
LoanPayment = Pmt(CDbl(InterestTextBox.Text) / 12, 36, CDbl(AmountTextBox.Text))
PaymentTextBox.Text = Format(Abs(LoanPayment), "$0.00")

This event handler uses the Pmt function, a financial function that’s part of the
Microsoft.VisualBasic namespace, to determine what the monthly payment for a car loan
would be by using the specified interest rate (InterestTextBox.Text), a three-year (36-month)
loan period, and the specified principal amount (AmountTextBox.Text). The result is stored in
the LoanPayment double-precision variable, and then it is formatted with appropriate mon-
etary formatting and displayed by using the PaymentTextBox object on the webpage.

The two Text properties are converted from string format to double-precision format by using
the CDbl function, which you learned about in Chapter 11, “Mastering data types, operators,
and string processing.”

The Abs (absolute value) function is used to make the loan payment a positive number. (Abs
currently has a jagged underline in the Code Editor because it relies on the System.Math class,
which you’ll specify next.)

Why make the loan payment appear as a positive number? The Pmt function returns a nega-
tive number by default (reflecting money that’s owed), but I think negative formatting looks
strange when it isn’t part of a balance sheet, so I’m converting it to positive.

Notice that the program statements in the code-behind file are just regular Visual Basic
code—the same stuff you’ve been using throughout this book. Basically, the process feels
similar to creating a Windows-based application in a RAD environment.

3. Scroll to the top of the Code Editor, and then enter the following program statement as the
first line of the file:

Imports System.Math

 CHAPTER 19 Visual Studio web development with ASP.NET 565

The Abs function isn’t included in Visual Basic by default, but it is part of the System.Math
class in the .NET Framework and can be more easily referenced in your project by the Imports
statement. Web applications can make use of the .NET Framework class libraries just as
Windows applications can.

The Code Editor looks like this:

4. Click the Save All button on the Standard toolbar.

That’s it! You’ve entered the program code necessary to run the car loan calculator and make your
webpage interactive. Now you’ll build and run the project and see how it works. You’ll also learn a
little bit about security settings within Internet Explorer, a topic closely related to web development.

Build and view the website

1. Click the Start Debugging button on the Standard toolbar.

Visual Studio starts the ASP.NET Development Server, which runs ASP.NET applications locally
(on your own computer) so that you can test this application. A status balloon appears at the
bottom of your screen and lets you know the local Uniform Resource Locator (URL) on your
computer that has been established. You also might see a message about debugging:

566 part IV Database and Web programming

The potentially confusing Debugging Not Enabled dialog box is not a major concern. Visual
Studio is indicating only that the Web.config file in your project does not currently allow
debugging (a standard security feature). Although you can bypass this dialog box each time
that you test the application within Visual Studio by clicking the Run Without Debugging but-
ton, I recommend that you modify the Web.config file now.

Important Before you widely distribute or deploy a real website, be sure to disable
debugging in Web.config to keep your application safe from unauthorized tampering.

2. If you do see this dialog box, click OK to modify the Web.config file.

Visual Studio modifies the file, builds your website, and displays the opening webpage in
Internet Explorer (or your default browser).

The car loan calculator looks like the following screen shot. (I’m using Internet Explorer for
the browser.) If your browser window does not appear, you might need to select it on the
Windows taskbar.

 CHAPTER 19 Visual Studio web development with ASP.NET 567

Important If you are using Internet Explorer, you might see an Information Bar
at the top of Internet Explorer now indicating that intranet settings are turned off
by default. This warning is designed to protect you from rogue programs or unau-
thorized access. An intranet is a local network (typically a home network or small
workgroup network), and because Visual Studio uses intranet-style addressing when
you test websites built on your own computer, you’re likely to see this warning mes-
sage. To suppress the warning temporarily, click the Information Bar and then click
Don’t Show Me This Again. To remove intranet warnings more permanently, click
the Internet Options command on the Tools menu of Internet Explorer, click the
Security tab, and then click Local Intranet. Click the Sites button, and clear the check-
mark from Automatically Detect Intranet Network in the Local Intranet dialog box.
However, exercise caution whenever you disable security warnings, because they are
meant to protect you.

Now, let’s get back to testing our webpage.

3. Type 18000 in the Loan Amount text box, press Tab, and then type 0.09 in the Interest Rate
text box.

You’ll compute the monthly loan payment for an $18,000 loan at 9 percent interest for 36
months.

4. Click the Calculate button.

Visual Basic calculates the payment amount and displays $572.40 in the Monthly Payment text
box. Your screen looks like this:

568 part IV Database and Web programming

Your program is working correctly.

Now that you’re in the default website template, take a moment to look around the applica-
tion and see what else the default template provides you.

5. Click the About link in the upper-right corner of the website.

The default text for the current About page appears. This is content that you can quickly cus-
tomize. (And you’ll see how to in a moment.)

6. Click the Contact link in the upper-right corner of the website.

Basic boilerplate contact information appears, which you can also customize for your business.

7. Click the Log In link.

You’ll see a basic Log In screen template, as shown in the following illustration:

 CHAPTER 19 Visual Studio web development with ASP.NET 569

8. There is really a lot here in the default website template. As noted earlier, the multitude of
controls and handy features of the default website template are a few of the reasons that
developers like using the Web Forms model to build websites and write web applications.

9. Close your browser window.

You’re finished testing your website for now. When your web browser closes, your program
is effectively ended. As you can see, building and viewing a website is basically the same as
building and running a Windows-based application, except that the website is executed in
the browser. You can even set break points and debug your application just as you can in a
Windows application.

Curious about installing a website like this on an actual web server? The basic procedure for
deploying websites is to copy the .aspx files and any necessary support files for the project to a
properly configured virtual directory on a web server running IIS and the .NET Framework. There are
a couple of ways to perform deployment in Visual Studio. To get started, click Copy Web Site on the
Website menu, or click Publish Web Site on the Build menu. For more information about your options,
see “ASP.NET Deployment Content Map” in the Visual Studio Help documentation. To find a hosting
company that can host ASP.NET web applications, you can check out http://www.asp.net.

http://www.asp.net

570 part IV Database and Web programming

Validating input fields on a webpage
Although this webpage is useful, it runs into problems if the user forgets to enter a principal

amount or an interest rate or specifies data in the wrong format. To make websites like this
more robust, I usually add one or more validator controls that force users to enter input in the
proper format. The validator controls are located on the Validation tab of the Web Forms Tool-
box and include controls that require data entry in a field (RequiredFieldValidator), require entry
in the proper range (RangeValidator), and so on. They are straightforward to use.

Customizing the website template

Now the fun begins! Only very simple websites consist of just one webpage. Using the Web Designer,
you can expand your website quickly to include additional information and resources, including HTML
pages, XML pages, text files, database records, web services, login sessions, site maps, and more. If
you want to create additional webpages, you have the following options:

■■ You can use an existing webpage that is part of the website template that you are using. For
example, in the website template that you have open now, there are About, Contact, and Log
In pages that you can customize quickly.

■■ You can create a new webpage by using the HTML Page template or the Web Form template.
You select these templates by using the Add New Item command on the Website menu. After
you create the page, you add text and objects to the page by using the Web Designer or
HTML.

■■ You can add a webpage that you have already created by using the Add Existing Item com-
mand on the Website menu, and then customize the page in the Web Designer. You use this
method if you want to include one or more webpages that you have already created in a tool
such as Microsoft Blend for Visual Studio. (However, if you add pages that rely on external
style sheets or other resources, you’ll need to add those items to the project as well.)

In the following exercise, you’ll display the About webpage supplied by the template that you are
using, and you will customize it with some information about how the car loan calculator application
works.

Customize the about.aspx webpage

1. Display Solution Explorer, and then double-click the About.aspx file.

Visual Studio displays About.aspx in the Designer, and it displays a line of placeholder text
(Your App Description Page.).

 CHAPTER 19 Visual Studio web development with ASP.NET 571

2. Delete the placeholder text and the lines below it, and then type the following information:

Car Loan Calculator

The Car Loan Calculator website was developed for the book Microsoft Visual Basic
2013 Step by Step, by Michael Halvorson (Microsoft Press, 2013). The website is best
viewed using Microsoft Internet Explorer. To learn more about how this ASP.NET Web
Forms application was created, read Chapter 19 in the book.

Operating Instructions:

Type a loan amount, without currency symbol or commas, into the Loan Amount box.

Type an interest rate in decimal format into the Interest Rate text box. Do not include
the “%” sign. For example, to specify a 9% interest rate, type “0.09”.

Note that this loan calculator assumes a three-year, 36-month payment period.

Click the Calculate button to compute the basic monthly loan payment that does not
include taxes or other fees.

3. Use the Italic button on the Formatting toolbar to add italics to the book title
Microsoft Visual Basic 2013 Step by Step.

4. Use the Bold button on the Formatting toolbar to add bold formatting to the Operating
Instructions heading, as shown here:

5. Click the Save All button on the Standard toolbar to save your changes.

6. Click the Start Debugging button.

Visual Studio builds the website and displays it in Internet Explorer.

7. Click the Home tab on the webpage.

Visual Studio displays the Home page for your website, the car loan calculator.

572 part IV Database and Web programming

8. Compute another loan payment to experiment further with the loan calculator.

If you want to test another set of numbers, try entering 20000 for the loan amount and 0.075
for the interest rate. The result should be $622.12.

9. Now click the About tab to view the About webpage with instructions for your program.

Internet Explorer displays the About page on the screen. Your browser looks something like
this:

10. Read the text, and then click the Back button in Internet Explorer.

Just like any website, this one lets you click the Back and Forward buttons to jump from one
webpage to the next.

11. Close Internet Explorer to close the website.

You’ve added a simple About page to your website, and you have experimented with moving from
one page to the next. Pretty cool so far. Now try something more sophisticated that shows how far
you can take your website if you choose to include information from a database.

 CHAPTER 19 Visual Studio web development with ASP.NET 573

Displaying database records on a webpage

Accessing the web is a daily activity for many (and soon most?) people on our planet. A typical sce-
nario in web-based computing is using a web browser to access large amounts of information. Often,
the sheer quantity of information that needs to be accessed on commercial websites far exceeds what
a developer can realistically prepare for by using basic text documents. In these cases, web program-
mers add database objects to their websites to display tables, fields, and records of database informa-
tion, and they connect these objects to a secure database residing in the cloud.

Visual Studio 2013 makes it easy to display the database information that is stored on a database
server, and there are many mechanisms for doing this. As your computing needs grow, you can use
Visual Studio to process orders, handle security, manage customer information profiles, and create
new database records—all from the web. If you choose to use the Web Forms model, the platform
can deliver this power very effectively.

For example, the Web Forms GridView control is easily accessible in the Toolbox, and it can be
used to display database tables containing dozens or thousands of records on a webpage without any
program code. You’ll see how this works in the following exercise, which adds a webpage containing
loan contact data to the Car Loan Calculator project.

add a new webpage for database information

1. With the Car Loan Calculator website still loaded into the Designer, click the Add New Item
command on the Website menu.

Visual Studio displays a list of components that you can add to your website.

2. Click the Web Form template (the first item in the list), type FacultyLoanLeads.aspx in the
Name text box, and then click Add.

Visual Studio adds a new webpage to your website. You’ll customize it with some text and
server controls.

3. Click the Design tab to switch to Design view.

4. Enter the following text at the top of the webpage:

The following grid shows instructors who want loans and their contact phone
numbers:

5. Press Enter twice to add two blank lines below the text.

Note Remember that webpage controls are added to webpages at the insertion
point, so it is always important to create a few blank lines when you are preparing to
add a control.

574 part IV Database and Web programming

Next, you’ll display two fields from the Faculty table of the Faculty.accdb database by adding a
GridView control to the webpage. GridView presents information on a webpage by establishing a
grid of rows and columns to display data as you might see it in a program such as Microsoft Excel
or Microsoft Access. GridView can be used to display almost any type of tabular data, including text,
numbers, dates, or the contents of an array.

Note that I’m using the same Access database table I used in Chapter 17, “Database controls for
Windows desktop apps,” so that you can see how similar data access is in ASP.NET. In a more sophis-
ticated project, it is likely that you would use SQL databases to store data. ASP.NET handles these
formats very well, too.

add a GridView control

1. With the new webpage open and the insertion point in the desired location, double-click the
GridView control on the Data tab of the Web Forms Toolbox.

Visual Studio displays the GridView Tasks list box and adds a grid view object named
GridView1 to the webpage. The grid view object currently contains placeholder information.

If the GridView Tasks list is not visible, click the GridView1 object’s smart tag to display the list.

2. In GridView Tasks, click the Choose Data Source arrow, and then click the <New Data Source>
option.

3. Visual Studio displays the Data Source Configuration Wizard, a tool that you used in Chapter
17 to establish a connection to a database and select the tables and fields that will make up a
dataset.

Your screen looks like this:

 CHAPTER 19 Visual Studio web development with ASP.NET 575

4. Click the SQL Database icon, type Faculty in the Specify An ID For The Data Source box, and
then click OK.

You are now prompted to specify the location of the database on your system.

5. Click the New Connection button.

6. Click Microsoft Access Database File under Data Source, and then click Continue.

7. In the Add Connection dialog box, click the Browse button, and then select the Faculty.accdb
file in the My Documents\Visual Basic 2013 SBS\Chapter 17 folder. Click Open.

8. Click OK in the Add Connection dialog box.

9. Click Next in the Choose Your Data Connection dialog box to confirm the Faculty.accdb file
you’ve selected.

10. Click Next in the Save The Connection String dialog box.

You are now asked to configure your data source with an SQL-type Select statement—that
is, to select the table and fields that you want to display on your webpage. Here, you’ll use
two fields from the Faculty table. (Remember that in Visual Studio, database fields are often
referred to as columns, so you’ll see the word columns used in the IDE and the following
instructions.)

576 part IV Database and Web programming

11. If the Faculty table is not selected, click the Name list box arrow, and then click Faculty. (There
are only one or two database tables in this particular file, but if there were several, you could
use the Name list to view them.)

12. Select the Last Name and Business Phone check boxes in the Columns list box.

Your screen looks like this:

As you make selections in this dialog box, you are building an SQL Select statement, which
you can see at the bottom of the dialog box.

13. Click Next to see the Test Query screen.

14. Click the Test Query button to see a preview of your data.

You’ll see a preview of actual Last Name and Business Phone fields from the database. This
data looks as expected, although if we were preparing this website for wider distribution, we
would take the extra step of formatting the Business Phone column so that it contains stan-
dard spacing and phone number formatting.

15. Click Finish.

Visual Studio closes the wizard and adjusts the number of columns and column headers in the
grid view object to match the selections that you have made. However, it continues to display
placeholder information (“abc”) in the grid view cells.

 CHAPTER 19 Visual Studio web development with ASP.NET 577

16. With the GridView Tasks list still open, click the Auto Format command.

17. Click the Professional scheme.

The AutoFormat dialog box looks like this:

The ability to format, adjust, and preview formatting options quickly is a great feature of the
GridView control.

18. Click OK, and then close the GridView Tasks list by clicking on the webpage.

19. Save your changes to the project.

Now, you’ll add a hyperlink on the first webpage (or Home page) that will display this page when
the user wants to see the database table. You’ll create the hyperlink with the HyperLink control, which
has been designed to allow users to jump from the current page to a new one with a simple mouse
click.

578 part IV Database and Web programming

How does the HyperLink control work? The HyperLink control is located in the Standard Toolbox.
When you add a HyperLink control to your webpage, you set the text that will be displayed on the
page by using the Text property, and then you specify the desired webpage or resource to jump to
(either a URL or a local path) by using the NavigateUrl property. That’s all there is to it.

add a hyperlink to the Home page

1. Click the Default.aspx tab at the top of the Designer.

The Home page for your website opens in the Designer.

2. Click below the Calculate button object to place the insertion point after that object.

3. Double-click the HyperLink control on the Standard tab of the Toolbox to create a hyperlink
object at the insertion point.

4. Select the hyperlink object, and then set the Text property of the object to “Display Loan
Prospects.”

We’ll pretend that your users are bank loan officers (or well-informed car salespeople) looking
to sell auto loans to university professors. Display Loan Prospects will be the link that they click
to view the selected database records.

5. Set the ID property of the hyperlink object to “ProspectsLink”.

6. Click the NavigateUrl property, and then click the ellipsis button in the second column.

The Select URL dialog box opens.

7. Click the FacultyLoanLeads.aspx file in the Contents Of Folder list box, and then click OK.

8. Click Save All to save your changes.

Your link is finished, and you’re ready to test the website and GridView control in your browser.

 CHAPTER 19 Visual Studio web development with ASP.NET 579

test the final Car Loan Calculator website

1. Click the Start Debugging button.

Visual Studio builds the website and displays it in the default browser.

2. Enter 8000 for the loan amount and 0.08 for the interest rate, and then click Calculate.

The result is $250.69. Whenever you add to a project, it is always good to go back and test the
original features to verify that they have not been modified inadvertently. Your screen looks
like the following screen shot.

The new hyperlink (Display Loan Prospects) is visible at the bottom of the webpage.

580 part IV Database and Web programming

3. Click Display Loan Prospects to load the database table.

Internet Explorer loads the Last Name and Business Phone fields from the Faculty.accdb data-
base into the grid view object. Your webpage looks something like this:

The information is nicely formatted and appears useful. By default, you’ll find that the data in
this table cannot be sorted, but you can change this option by selecting the Enable Sorting
check box in GridView Tasks. If your database contains many rows (records) of information,
you can select the Enable Paging check box in GridView Tasks to display a list of page num-
bers at the bottom of the webpage (like a list that you might see in a search engine that
displays many pages of “hits” for your search).

4. Click the Back and Forward buttons in Internet Explorer.

As you learned earlier, you can jump back and forth between webpages in your website, just
as you would in any professional website.

5. When you’re finished experimenting, close Internet Explorer to close the website.

You’ve added a table of custom database information to your website.

 CHAPTER 19 Visual Studio web development with ASP.NET 581

Editing document and site master properties

Here are two last ASP.NET skills to enhance your website and send you off on your own explorations
with Web Forms.

You might have noticed while testing the Car Loan Calculator website that Internet Explorer
displayed “Home Page” in the title bar and window tab when displaying your website. Your program
also displays the template title “My ASP.NET Application” at the bottom of the window in a copyright
message. You might want to change these and other default settings within your project.

First, you can customize what Internet Explorer and other browsers display in the title bar by set-
ting the Title property of the DOCUMENT object for the webpage. Give this a try now.

Set the Title property

1. With the Default.aspx webpage open in Design view, click the DOCUMENT object in the
Object list box at the top of the Properties window.

Each webpage in a website contains a DOCUMENT object that holds important general
settings for the webpage. However, the DOCUMENT object is not selected by default in
the Designer, so you might not have noticed it. One of the important properties for the
DOCUMENT object is Title, which sets the title of the current webpage in the browser.

2. Set the Title property to Car Loan Calculator.

The change does not appear on the screen, but Visual Studio records it internally. Now, change the
title of your application in something called the site master page.

edit the site master page title

1. Double-click the Site.master file in Solution Explorer to edit the master page in the Designer.

Visual Studio displays the master page for editing. The master page is a template that pro-
vides default settings for your website and lets you adjust characteristics such as appearance,
banner titles, logo, menus, and links. For example, you can click smart tags associated with the
website’s menu items and adjust them.

Your screen looks like this:

582 part IV Database and Web programming

2. Delete the text Your Logo Here.

Although a logo is an attractive feature, you won’t add one right now.

Type Time for a new car? in the area where the logo message was.

At the bottom of the page, change the copyright message to Trey Research.

3. Click the Start Debugging button.

Visual Studio opens Internet Explorer and loads the website. Now a more useful title bar and
banner message appears, as shown in the following screen shot:

 CHAPTER 19 Visual Studio web development with ASP.NET 583

Now that looks better.

4. Close Internet Explorer, and then update the Title property for the new loan prospects page
that you added so that it matches the pattern of the other webpages on your site.

5. When you’re finished experimenting with the Car Loan Calculator, save your changes and
close Visual Studio.

584 part IV Database and Web programming

Summary

This chapter explored web programming with Visual Studio 2013 and ASP.NET 4.5.1, Microsoft’s
framework for web development. The chapter surveyed the leading web platforms in Visual Studio
and explained that each model has its complexities, benefits, and enthusiasts. I introduced Web
Forms, ASP.NET MVC, Web Pages (with Razor syntax), and web development with HTML5 and
JavaScript. Although the topic of web development with Visual Studio deserves several books to fully
outline the opportunities and complexities, this chapter has emphasized what will look familiar to
Visual Basic programmers who have been writing traditional Windows-based apps.

To get some hands-on experience with web development in Visual Studio 2013, you created a car
loan calculator using the Web Forms development model and Designer. You examined the software
requirements for ASP.NET development, examined server controls and HTML controls in the Toolbox,
and created a new website in the Visual Studio IDE. After adding server controls and a Visual Basic
event handler to the project, you used a GridView control to display Access database records, and
you further customized the website by using the .NET Framework, adding a new webpage, adding a
hyperlink, and making adjustments to the Site.master file. Your completed project looked very good
running in Internet Explorer, a testament to the quality of the Web Forms controls and template,
which collectively produce nice looking and handsomely formatted webpages.

In Part V, “Microsoft Windows Phone programming,” you’ll learn the basics of the Windows Phone
8 SDK and how to write programs for the Windows Phone 8 platform by using Visual Basic 2013 and
the Visual Studio IDE.

 585

PART V

Microsoft Windows
Phone programming

CHAPTER 20 Introduction to Windows Phone 8
 development. .587

CHAPTER 21 Creating your first Windows Phone 8
 application. .607

 587

C H A P T E R 2 0

Introduction to Windows phone 8
development

After completing this chapter, you will be able to

■■ Describe the development opportunities in the Windows Phone 8 platform.

■■ Identify the key features and attributes of the Windows Phone ecosystem.

■■ Evaluate the Windows Phone Store.

■■ Install the Windows Phone SDK 8.0 and 8.0.1 toolkits.

■■ Understand differences and similarities between the Windows Phone 8 platform and the
Windows Store platform.

Are you ready to give Windows Phone programming a try? In this chapter, you’ll learn about the
requirements and opportunities presented by the Windows Phone 8 platform for Visual Basic

programmers.

While most introductory and intermediate books about Visual Basic do not discuss mobile phone
programming, the opportunities presented by this emerging platform are simply too important to
pass up. In particular, the Visual Studio 2013 development team has worked hard to narrow the gap
between Windows 8.1 desktop development and Windows Phone 8 development. If you’ve become
comfortable writing Windows Store apps using the tools in this book, you’ll be amazed at how quickly
you can begin writing your own Phone apps with Visual Studio and the Windows Phone SDK 8.0.

In this chapter, you’ll get an overview of the features and capabilities presented by the Windows
Phone 8 platform. You’ll identify key hardware characteristics in the Windows Phone ecosystem, and
you’ll explore the impressive marketing opportunities tendered by the Windows Phone Store. You’ll
learn how to install the Windows Phone SDK 8.0 on your system and how to verify that Visual Studio
is ready for Phone app development. Finally, you’ll see how Windows Phone development compares
to and contrasts with Windows Store app development. While creating a Windows Phone app is not
simply a matter of porting your Windows Store app to the Phone platform, you’ll discover that there
are many similarities and shared techniques between the two environments.

588 part V Microsoft Windows phone programming

This chapter is essentially a warm-up act. The material that you learn here will prepare you for
hands-on development work in Chapter 21, “Creating your first Windows Phone 8 application.” Note
that a registered Windows Phone 8 device is not required to complete the exercises in Chapters 20
and 21, although if you have such a phone (as I do), you can use it to think creatively about Windows
Phone development.

Opportunities in the Windows Phone 8 platform

In 2007, the consumer marketplace for mobile phones and applications exploded into a revenue-
generating machine with the advent of smartphones. While the new smartphone devices rapidly cre-
ated large and enthusiastic followings, the real revolution for mobile phone customers and software
developers became the public marketplace that developed for mobile phone apps. Suddenly develop-
ers could reach a worldwide audience of millions with their phone programs, and customers could use
the multitude of applications to turn their smartphones into full-featured tools, gaming devices, and
media players, shifting their daily computing experience from the desktop to the cloud.

Microsoft responded to this revolution by abandoning the Windows Mobile platform and redou-
bling its efforts to create a smartphone platform that would compete with, and surpass, anything that
had been released yet by Apple or Google. Their contribution in 2010 was the Windows Phone 7 plat-
form, which presented a redesigned user interface and architecture based on recent developments
in the Zune, Xbox, and Windows environments. In particular, the new Windows Phone 7 platform
required that phone hardware manufacturers meet an aggressive new set of hardware requirements
for mobile phones, including a standard set of buttons and features. To make the system easy for
Windows developers to accept, Microsoft chose the Visual Studio development platform as the pri-
mary tool for creating Windows Phone apps.

When Microsoft released the Windows 8 operating system in Fall 2012, it revised and enhanced
its phone platform as well, introducing Windows Phone 8. The two Windows platforms shared the
design guidelines for user interface construction—a tile-based layout that I have referred to in this
book as “the Windows Store application guidelines.”

The Windows Phone 8 platform is a very impressive entry into the highly competitive smart-
phone marketplace. Windows Phone 8 devices are currently manufactured by Nokia, HTC, Samsung,
and Huawei. Since late 2012, several million Windows Phone 8 devices have been sold by carriers in
the United States, such as Verizon, T-Mobile, AT&T, and Sprint. (In Europe, a leading carrier selling
Windows Phone 8 devices is France Telecom Orange.)

Although Android and iPhone devices still outsell Windows Phone, the Windows Phone 8 platform
has been a success, and there is a significant business opportunity now for Windows Phone developers.
In particular, those developers with Visual Studio and either Visual Basic or Visual C# experience will find
that their current programming skills provide an excellent foundation for Windows Phone development.

 CHAPTER 20 Introduction to Windows Phone 8 development 589

Note As this book went to press in Fall 2013, Microsoft had just announced the
availability of Windows Phone 8 Update 3. This Windows Phone operating system
update includes a new Driving Mode feature, improved Internet sharing, support
for 1080p devices with 5- and 6-inch screens, and numerous performance enhance-
ments. However, there are few, if any, changes that developers need to make to
current Windows Phone 8 apps to make them compatible with Windows Phone 8
Update 3. A new version of the Windows Phone SDK is available (version 8.0.1), and
instructions are provided later in this chapter for installing it. The exercises in this
book are compatible with Windows Phone 8 Update 3 and Windows Phone SDK 8.0.1.

Key Windows phone 8 features
Because Windows Phone 8 apps and Windows Store apps share the same user interface guidelines,
the two platforms have many common features. For example, the following screen shot from my HTC
Windows Phone 8 device shows the Phone Start page with its familiar tile-based layout. This is the place
where apps are launched with a tap on the app tile, a very familiar concept for Windows Store users.

In addition, notice how the Phone Start page tiles have a solid color background and white letter-
ing on top, just like the live tiles in a Windows Store application. In fact, you’ve already learned how
to design tiles like these in Chapter 9, “Exploring Windows 8.1 design features: Command bar, flyout,
tiles, and touch.”

Windows Phone apps also place a premium on touch and gestures, just like the specs recommend
for Windows Store apps. In fact, other than Bluetooth devices and voice commands (a cool feature
of the Windows Phone), there is no other way to provide user input on a Windows smartphone than
touch—everything is about using gestures such as tap, double-tap, pan, flick, hold, pinch, and stretch.

590 part V Microsoft Windows phone programming

Hardware requirements
The Windows Phone 8 hardware requirements specify that all phones have a power button, a touch
screen that supports at least four simultaneous touch points, a volume control with rocker switch, a
camera button, a back button, a start button, and a search button. The start button must be centrally
located in the bottom center of the device and should be marked with a Windows Start page logo.
The search button should be on the lower-right side and be labeled with a Search charm (magnifying
glass icon). The back button should be on the lower-left side and labeled with a left-pointing arrow.
By requiring all of these hardware input controls and labels, the Windows Phone ecosystem provides
a reliable environment for both users and programmers.

In addition, there are some important hardware requirements for Windows Phone 8 devices
that impact how the phone can be used by developers. The camera must be capable of capturing
5-megapixel images (minimum), Bluetooth connectivity is required, Wi-Fi capability is required, and
a number of environmental sensors are required, including GPS, an accelerometer, a compass, a light
sensor, a proximity sensor, and a gyro. These sensors are among the most exciting hardware features
of Windows Phone, capable of producing amazing special effects in applications. A Windows Phone
8 app developed in Visual Studio and Visual Basic is capable of interacting with all these hardware
features.

Integration and collaboration
An impressive feature of the Windows Phone 8 platform is the ability for Phone apps and users to be
highly interactive, encouraging communication and collaboration in unprecedented ways. Windows
Phone allows you to manage personal contacts, phone messages, text messages, voice mail, and
email in one location and then store all related communications in the cloud so that they can be
accessed from any location.

The People hub supports meeting and collaboration spaces called Rooms and Groups, as well
as connectivity with social networking apps such as Facebook and Twitter. Office apps for Windows
Phone provide productivity tools and integration with Outlook, Word, Excel, and PowerPoint projects.
Windows SkyDrive allows users to share and preserve information in the cloud and sync it with other
desktop and laptop systems.

The Phone’s Calendar app allows you to share your calendar with friends and work colleagues and
sync it with Windows, Google, and iPhone devices. The Music + Videos hub allows you to listen to
your music, watch videos, subscribe to podcasts, and create playlists. If you add an Xbox Music Pass,
you can download or stream music from a global catalog containing millions of songs.

You can also pin live tiles on the Start page and customize how your phone looks and operates
so that contacts, applications, music, websites, directions, games, photos, documents, and more are
at your fingertips. If you pin a tile representing a person on the Start page, you will quickly be able
to see their most recent social media posts, tweets, and photos related to an individual in an instant.

 CHAPTER 20 Introduction to Windows Phone 8 development 591

Along with social media updates, you’ll also see new texts, emails, and incoming calls from the person
you’re following. Whenever you need to access the Internet, Windows Phone 8 launches a feature-rich
version of the Internet Explorer 10 browser, supported by the Bing search engine.

And yes, you can also make telephone calls with Windows Phone devices!

The Windows Phone Store

Because the Windows Phone Store provides a new and potentially profitable way of selling and dis-
tributing Windows Phone 8 applications to a wide audience, this section provides an overview of what
the Windows Phone Store is and how you can use it to reach customers for Windows Phone apps.
There is a compelling business incentive for developing Windows Phone apps that is similar to the
opportunity presented by the Windows Store for Windows 8.1 developers.

What is the Windows phone Store?
The Windows Phone Store is an electronic marketplace that allows consumers to search
for and acquire Windows Phone applications. You can access the Windows Phone Store
from a Windows-based computer using the Windows Phone application or a web browser
(http://www.windowsphone.com), but the Store is accessed on a Windows Phone through the Store
app. This hub for purchasing and downloading Phone programs was previously known as the
Windows Phone Marketplace, and it serves customers with Windows Phone 7 and Windows Phone 8
devices.

The Windows Phone Store is designed much like the Windows Store. The difference, of course,
is that the Windows Phone store is designed to merchandize, sell, and install Windows Phone apps.
In this way, it is similar to Apple’s App Store for iPhone and the Google Play store that sells apps for
Android.

The Windows Phone Store allows software developers to monetize Phone applications, either
by charging for the Phone app or by including advertising in the Phone app. Apps that are down-
loaded from the Windows Phone Store are certified and ready to run. The details about downloading,
deploying, and updating the application are handled by the Windows Phone Store automatically.

accessing the Windows phone Store
The Windows Phone Store is designed for customers who already have a Windows Phone. However,
if you don’t yet have a Windows Phone and you want to learn more about the phones or applications
that are available, you can visit it from a Windows-based computer or device by visiting the website
http://www.windowsphone.com.

http://www.windowsphone.com
http://www.windowsphone.com

592 part V Microsoft Windows phone programming

The following screen shot shows what the Windows Phone Store looks like when you visit it from a
Windows-based computer using Internet Explorer:

Across the top of the screen are tabs that allow customers to search for available Windows Phones,
applications, games, and other information. Because I am a registered Windows Phone customer and
user, my particular phone and user name are shown in the upper-right corner of the screen. (I have an
HTC phone running Windows Phone 8.0. The screen resolution of this particular device is 720×1280.)
I can access the Windows Phone Store from my smartphone, but it is also convenient to access the
Store through my Windows 8.1 desktop. This allows me to manage settings, look at installed photos
and other media, and review application purchases.

As you can see in the preceding illustration, in the Windows Phone Store some of the apps are sold
for a price and others are free. Free applications sometimes display advertisements as a way to gain
revenue or are used to support existing products or services, such as a restaurant app, a sports-team
app, or an app that provides access to a financial institution. Another feature of the App marketplace
is the rating system that shows customer satisfaction with a particular app.

When you select a particular application in the Windows Phone Store, you’ll see a details page
similar to the following screen:

 CHAPTER 20 Introduction to Windows Phone 8 development 593

The app listing page is the place where software vendors get a chance to sell their product and
describe the benefits. It is tremendously important to present your Phone app in the best possible
light in this location. The application name, logo, description, customer rating, price, and screen
illustrations are all important factors in making a good impression on your audience. As people pur-
chase or download your app, the rating system (based on five possible stars for the highest level of
customer satisfaction) will become especially important to customers, because there are often several
products in the marketplace that provide similar services.

Here is what the Store app icon looks like on a Windows Phone 8 device. (You’ll see the Store tile in
the middle of the following screen.)

594 part V Microsoft Windows phone programming

You launch the Store app by tapping the Store tile on the Windows Phone Start page. Inside the
Store, you’ll see product categories much like the ones you’ve already examined in the Windows
desktop version of the Store, including apps, games, music, and podcasts. Because the Phone has less
real estate on the screen, you’ll typically see just one column of text in an app.

You can search for Phone apps in the Store by using the Search charm as you would in the
Windows Store. In the following illustration, you’ll see that I’ve located the MapQuest Phone app and
have displayed its Details page. This page contains an icon, app title, size (2 MB), customer rating, and
Install button.

 CHAPTER 20 Introduction to Windows Phone 8 development 595

Installing a Windows Phone app from the Windows Phone Store is extremely simple. You just click
the Install button, and within moments, the app will be deployed on your Phone, ready for use. A reli-
able cellular or Wi-Fi connection is required to download the app and (often) to gather data for the
app while the program runs.

How much money do developers make?
Windows Phone apps can be distributed free via the Windows Phone Store or sold for a price.
Microsoft follows a revenue-sharing model to pay software developers for the apps that they sell in
the Windows Phone Store. Currently, the revenue sharing rate is 70% of net revenues for the software
developer and 30% of net revenues for Microsoft. (Net revenues means gross sales receipts less appli-
cable taxes and country surcharges.) This revenue sharing model might change over time.

A setting known as a price tier sets the fee for the Windows Phone app that you sell in the
Windows Phone Store. For example, typical price tiers in the United States for Windows Phone 8 apps
are $0.99, $1.49, $1.99, and $2.99. Local and country taxes are also added to this amount when the
user makes a purchase.

Windows Phone Dev Center gives you the option to customize your app’s price for each country
that you sell in. When you register as a Windows Phone developer, you will be given a developer
account that tracks your sales and shows you your incoming revenue stream, as well as account infor-
mation so that you can get paid electronically. There are interesting debates currently on the MSDN
forums about whether it is more profitable to sell Phone apps for a fee or make money by advertising
or selling in-product services directly from your Windows Phone app. You can also offer users a free
trial of your application, which gets them using your product, and then ask for payment after a set
period of time.

planning ahead for certification
Microsoft recommends that you review the certification requirements carefully for Windows Phone
apps before you begin serious development work on your project so that you aren’t surprised by the
necessary steps. For the most part, these steps are simply good development practices that will make
your programs robust and high quality. Microsoft is enforcing high standards so that customers come
to trust the Windows Phone Store and all of the software distributed through it.

A list of certification requirements is maintained by Microsoft on the Microsoft Developer Network
(MSDN) in the Windows Phone Development Center. The certification requirements are updated peri-
odically, and they are designed to keep poorly constructed applications and inappropriate content
out of the Store. In this way, the Windows Phone Store requirements are similar to the Windows Store
app requirements that you read about in Chapter 1, “Visual Basic 2013 development opportunities
and the Windows Store.”

The current list of certification requirements can be found on MSDN at: http://msdn.microsoft.com/
en-us/library/windowsphone/develop/hh184843.aspx. You’ll see the following certification categories
listed on MSDN:

http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh184843.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh184843.aspx

596 part V Microsoft Windows phone programming

■■ App policies for Windows Phone

■■ Content policies for Windows Phone

■■ App submission requirements for Windows Phone

■■ Technical certification requirements for Windows Phone

■■ Additional requirements for specific app types for Windows Phone

The next section in this chapter describes the Windows Phone Software Development Kit (SDK)
(version 8.0) that you need to write Windows Phone 8 apps. When this SDK is installed and a Windows
Phone project is loaded in Visual Studio, the Project menu in the IDE will have an Open Store Test Kit
command that you can use to evaluate your Windows Phone 8 app against the certification require-
ment list. This is a very helpful tool with comprehensive tests that will help you get your Phone app
ready for submission. You should review this list of requirements before you get too far along in your
development effort.

You will also need to register as a Windows Phone developer before you submit an application for
certification. There is an annual fee for being a Windows Phone developer, although it is a relatively
minimal cost, and it is free if you are a student or teacher receiving software through Microsoft
DreamSpark, an educational program that supports teaching and research. The registration provides
some helpful development tools and your own personal dashboard to track your Phone apps and
earnings.

Working with Windows Phone SDK 8.0

If you have Visual Studio 2013 Professional, Premium, or Ultimate, you should already have the soft-
ware that you need to write your first Windows Phone 8 apps. These retail editions of Visual Studio
contain the necessary templates, emulators, and support files to enable Windows Phone 8 develop-
ment. However, you may need to run setup again to install the necessary files. (The Windows Phone
8.0 SDK is an optional feature installed at setup.)

To find out if you have the files that you need, start Visual Studio, and then select the New Project
command from the File menu. If you don’t see the Windows Phone category under Visual Basic, you’ll
need to modify your Visual Studio installation. The easiest way to do this is to open Control Panel,
select Programs, and then Programs and Features. Double-click Microsoft Visual Studio 2013 to
modify the program’s features. When Visual Studio setup starts, select Windows Phone 8.0 SDK under
Optional Features to Install. You’ll see the following screen:

 CHAPTER 20 Introduction to Windows Phone 8 development 597

If you are still using Visual Studio 2012 or if you have Visual Studio Express 2013 for Windows, you
will need to download the Windows Phone SDK 8.0 to prepare your computer for Windows Phone
8 development. In addition, you will need to download the Windows Phone SDK 8.0 if you have a
retail edition of Visual Studio 2013 but would also like to develop apps for Windows Phone 7.5. (Visual
Studio 2013 supports Windows Phone 8, but not Windows Phone 7 unless you download the SDK.)
The following section describes how to download the SDK if you need it.

598 part V Microsoft Windows phone programming

Downloading the SDK
The Windows Phone SDK 8.0 includes an Express edition of Visual Studio and all of the tools that you
need to develop apps for Windows Phone 8.0 and Windows Phone 7.5. The product is configured this
way to lower the requirements necessary to create Phone apps and to make the product suitable for
students learning programming in the context of Phone apps.

If you have a retail edition of Visual Studio 2012 or Visual Studio 2013, the SDK will not install the
Express product but instead will install the necessary libraries, templates, and emulators to configure
your version of Visual Studio for Phone app development. The download also includes Blend Express
for Windows Phone.

On the Microsoft website, you will also see information about the newest Windows Phone SDK,
named Windows Phone SDK 8.0.1. This version of the SDK supports Windows Phone 8 Update 3,
which is a Phone operating system update scheduled for Fall 2013. SDK 8.0.1 does not offer new APIs
for developers, but it supports new 1080p devices with 5- and 6-inch screens and provides software
emulators for these devices. From the developer point of view, there is not much difference between
SDK 8.0 and SDK 8.0.1, and it does not matter which SDK you use when you complete the exercises in
this book. I will refer to both, collectively, as the Windows Phone SDK 8.0.

Note The Windows Phone SDK 8.0 toolkit does not run well in a virtual machine environ-
ment. The reason is that the emulator application, which simulates a Windows Phone 8
device within Visual Studio, is actually itself a virtual machine. So things get really slow, and
this configuration for your computer is not recommended.

To download the Windows Phone SDK 8.0, use the following steps.

Get the SDK

1. Open a web browser, and go to the following website: https://dev.windowsphone.com/en-us/
downloadsdk.

2. Under SDK 8.0, click Download.

3. Follow the instructions for installation that appear on the screen.

As newer versions of the SDK become available, you might need to reinstall the SDK or modify
the techniques described in this section or the exercises that follow. Obviously, Microsoft has
invested a lot in Windows Phone and will continue to refine and revise the product.

4. After the installation is complete, you might want to consider purchasing an annual Windows
Phone Dev Center subscription.

https://dev.windowsphone.com/en-us/downloadsdk
https://dev.windowsphone.com/en-us/downloadsdk

 CHAPTER 20 Introduction to Windows Phone 8 development 599

An annual subscription entitles a developer to submit an unlimited number of paid apps to the
Windows Phone Store and up to 100 free apps. As I noted earlier, registration is a relatively
low-cost endeavor, and it is free if you are a DreamSpark student.

Alternatively, you can complete Chapters 20 and 21 in this book and then decide whether
Windows Phone development is for you. It is not necessary to purchase an annual subscrip-
tion to complete the exercises that I have prepared for you. However, you will need to get a
subscription before you can publish applications on the Windows Phone Store.

Now verify that you’re ready to start Windows Phone programming.

5. Start Visual Studio 2013.

You should see a Windows Phone template when you create a new project.

6. On the File menu, click New Project.

7. Under Templates, select Visual Basic and then select the Windows Phone category.

You should see a collection of Windows Phone templates, as shown in the following screen
shot:

600 part V Microsoft Windows phone programming

8. Click Windows Phone App (Visual Basic), and click OK.

If the necessary libraries and support files are installed, Visual Studio 2013 will configure your
system for Windows Phone 8 programming, and you’ll see the following screen:

This is the Visual Studio IDE configured for Phone development. A phone template appears in
the Designer on the left side of the screen, ready for you to add controls and XAML markup.

You’ll create your first Phone app in this IDE in Chapter 21.

Comparing Windows Phone 8 and Windows Store platforms

Before you begin designing your Windows Phone app, take a moment to consider differences and
similarities between the Windows Phone 8 platform and the Windows Store platform. If you have
been working through the exercises in this book, you’ll find that the two environments have a lot in
common, and the Visual Studio IDE is certainly among the most important parallels. These lists will
help you manage your expectations and transfer your development skills from one environment to
the next.

 CHAPTER 20 Introduction to Windows Phone 8 development 601

Differences
There was once a time when software developers expected that porting an application from one hard-
ware platform to the next should entail little more than configuring a few settings and then recompil-
ing the program for a new environment. This holy grail is tempting to hope for, but very unrealistic. In
terms of Windows Phone 8, the platform certainly has much in common with Windows Store develop-
ment, but it is also its own unique hardware environment. Some of the major differences Windows
Store developers will find when writing applications for Windows Phone include the following:

■■ User interface The Phone screen is obviously much smaller than a laptop or desktop com-
puter screen, and the Phone’s screen resolution is different. Accordingly, applications will need
a complete user interface redesign when being ported to the Windows Phone platform, and
new Phone apps will need to adapt creatively to the Phone interface, which features pan-
orama views, hubs, and other unique content styles. Multiple columns do not work well on a
Windows Phone—there is not enough space to display them.

■■ XAML controls and namespaces Although XAML is used to define the user interface of
a Windows Phone app (and therefore it makes the “similarities” list below), the XAML con-
trols in a Windows Phone app are different than in a Windows Store app (although many
have the same names), and accordingly, they have slightly different properties and methods.
This is because the XAML controls needed to be optimized for the Phone environment, its
design, and its space constraints. So XAML markup cannot easily be reused if you are port-
ing a Windows Store app to the Windows Phone 8 platform. The same is also true for the
namespaces in Windows Phone libraries. You’ll find that the Phone namespaces have different
names, and this even applies to the pages that you use for an application’s user interface. For
example, Page is the root page element for a Windows Store app, but in a Windows Phone
app, the root element is PhoneApplicationPage.

■■ Hardware A major advantage of the Windows Phone platform is the exciting hardware that
smartphone manufactures are required to include in Windows Phone 8 devices. You’ll want
to take advantage of some of this hardware, which includes a camera, Bluetooth connectiv-
ity, GPS, an accelerometer, a compass, a proximity sensor, and so on. This is simply not the
case with Windows desktop devices—you can’t know for sure what type of hardware your
Windows Store app will have access to, so you can’t be quite so bold in your programming.
Even in a case when there is a shared hardware device between platforms, such as a camera
device that is commonly found on newer Windows desktops and laptops, the development
technique for accessing the feature is different. Both Windows Store apps and Windows Phone
apps support capturing images and video, but the APIs that you use are different.

■■ Designed solely for touch Although it is required for Windows Store apps to support touch
and gestures if the user’s computer is designed to support these features, many (or most?)
computers running Windows 8 and Windows 8.1 still do not fully support touch-based input.
However, touch is typically the only physical mechanism for input on a Windows Phone, so
the apps must be designed primarily for touch. This means that the program code that you
have written for other types of input won’t work “as is” in your Windows Phone app. You’ll also
need to get used to new types of events and event handlers in your code.

602 part V Microsoft Windows phone programming

■■ Application lifecycle Although there are similarities to how Windows Phone apps start, run,
go dormant, and terminate, the APIs that Windows Store apps and Windows Phone apps call
to manage the lifecycle of an application are somewhat different. One reason for this is that
relatively limited system resources exist in the Windows Phone environment compared to the
relatively expansive space of a (newer) Windows 8.1 desktop computer. A new term to learn
related to lifecycle management on a Windows Phone device is tombstoning, an application
state in which a dormant Phone app is shut down to free up system resources. However, when
a tombstoned Phone app is activated by the user again, the program needs to open and run
as if it had never been terminated. (That is, the application state needs to be preserved.)

■■ Background processing By design, a Windows Phone 8 device will typically run only one
application at a time to prevent battery loss. This is a lesson that Microsoft learned after
watching Android users constantly complain that they were running out of battery power
because they had inadvertently enabled multitasking on their smartphones. For this reason,
a Windows Phone app will run only one application at a time, and developers will need to
approach multitasking in a different way than you might in a Windows Store app. However, in
some circumstances a kind of limited multitasking is allowed; for example, you can play music
on the Phone’s speaker from one application while using another application. Or you can
browse the web while making a phone call.

■■ Windows Runtime APIs Although both Windows Phone and Windows Store apps have
access to the extensive Windows Runtime API libraries, there are differences in how these
classes are used. System tasks and contracts are different, local storage is different, network-
ing is different, and Toast notifications are different.

■■ Testing As you will see in Chapter 21, the procedures for testing a Windows Phone app are
somewhat different than a Windows Store app. Essentially, you test a Phone app in a software
emulator that functions like a real Windows Phone. However, because the emulator is a piece
of software that shows input on the screen in Visual Studio, it does not have a touch interface
or buttons that you can press like a Windows Phone does. Alternatively, you can use your own
Windows Phone for testing during the development process. The only requirement is that you
register with Microsoft as a Phone developer. After you do so, you can unlock your phone so
that it can download an app that has not been certified yet.

■■ User expectations Most significantly, user expectations are simply different for smartphone
apps. The platform calls for new and innovative mobile solutions. Customers want to find Wi-Fi
hotspots when they’re out walking around, they want to stay connected with their friends
via social media, they want to use the sensors on their phones to react to their environment,
and they want to share media and track their phone’s data usage. They want to start a task
and then complete it on their laptop or desktop. For this reason, new ideas and solutions are
required.

 CHAPTER 20 Introduction to Windows Phone 8 development 603

Similarities
The preceding list of differences between platforms might seem a little daunting at first, but there
really is a lot of good news for Windows Store programmers who are hoping to become produc-
tive quickly with Windows Phone 8 development. Some of the major similarities you’ll find between
Windows Store and Windows Phone 8 development include the following:

■■ Visual Studio development environment As you’ve already seen, the Visual Studio IDE
can be configured easily for Windows Phone 8 development, and the SDK that you need is
actually free at this time. Within Visual Studio, most of the tools that you will use to write
Windows Phone programs are the ones that you have already been using. The Designer, the
Code Editor, Solution Explorer, and the Properties window are all similar to the Properties win-
dow you see during Windows Store app development. You create applications using the same
object-oriented programming model, and the process of creating, building, and debugging
solutions is the same.

■■ XAML markup Building on the success of Windows Presentation Foundation (WPF) and
Windows Store app development, the user interface for Windows Phone apps is designed
using XAML markup. As you know now, XAML is an XML-based markup language that uses a
hierarchy of elements to describe an application’s design and to instantiate .NET objects. This
is all done in the Visual Studio IDE using the Code Editor and the Properties window. (You
can also use Blend for Visual Studio to create the XAML markup for your Phone app and your
Windows Store app.)

■■ XAML controls Both the Windows Store controls and the Windows Phone 8 controls are
based on the Windows 8.1 design guidelines, which aim to reduce screen clutter and unneces-
sary interface “chrome,” such as menu bars, toolbars, persistent scroll bars, and dialog boxes.
Accordingly, you’ll find that most of the Windows Phone controls have familiar names and
functionality, even if the specific properties, methods, and events are slightly different, and
you need to use them in different ways in the smaller ecosystem of the Phone.

■■ .NET Framework Although some of the Windows Runtime APIs are different when you
write Windows Phone 8 apps, you’ll find that most of the familiar .NET Framework libraries
and classes work without modification when you use them in a Windows Phone application.
The skills you’ve developed to declare collections and arrays, process strings, compute math-
ematical formulas, and so on will work mostly unchanged in Windows Phone apps because
Windows Phone programming is part of the .NET family of Windows technologies.

■■ Visual Basic language Visual Basic 2013 is the same core language in Windows Phone
8 development as it is in Windows Store development. This is because the Windows Phone
SDK 8.0 is a toolkit that configures Visual Studio for Phone programming, and Visual Basic
(along with Visual C#) is a core language in the Visual Studio product. This means that the
fundamental language skills that you have developed, such as using types, declaring variables,
writing event handlers, using structures and loops, managing data with LINQ, creating classes
and property procedures, and so on, are all fundamental activities that you can continue in
Windows Phone 8 apps.

604 part V Microsoft Windows phone programming

■■ Data access Data access tools and techniques in a Windows Phone 8 application are simi-
lar to what you have learned already for Windows Store apps. You can use ADO.NET, XML
documents, collections, LINQ, and so on in your projects. At the very technical level, the APIs
used in Windows Phone 8 apps are a subset of the APIs available to Windows Store applica-
tions, and they don’t provide support for temporary data storage and a few other advanced
features.

■■ Live tiles As you have seen in this chapter, the Windows Phone Start page makes use of
colorful application tiles just like the Windows 8.1 Start page. Both platforms also support live
tiles, which periodically update the content on tiles with useful information. (However, the
process for sending live tiles updates is somewhat different.) You can design the tiles neces-
sary for both platforms using tools in the Visual Studio IDE.

■■ Portable class libraries Although some of the code in a Windows Phone project needs
to be unique to that application, there are also times when code can be shared between a
Windows Store app and a Windows Phone app. In Visual Studio, this is facilitated by creating
a portable class library containing the shared code. Basically, what you do is write your Visual
Basic code in classes that contain the logic and structures that you want to share across mul-
tiple platform s, and then you build managed assemblies that encapsulate that logic. Portable
class libraries let you build assemblies that will work without modification on Windows Store,
Windows Forms, WPF, ASP.NET, Silverlight, Windows Phone 7, Windows Phone 8, and Xbox
360 platforms.

■■ Windows Phone Store From a business point of view, the merchandizing, sales, distribu-
tion, and update model provided by the Windows Phone Store is very similar to what is
provided by the Windows Store. For a Windows Store app developer, this business model is
familiar and the certification requirements are similar.

■■ Windows usability It is worth pointing out the obvious convergence and synergy now in
the marketplace between the Windows 8.1 and Windows Phone 8 platforms. These tools work
very well together, and users are often active in both environments, beginning a task on the
desktop, adding something on the Phone, and then viewing it later on a Surface tablet. If you
have experience writing Windows Store apps and designing programs for Windows 8.1 users,
that experience will be of great help to you as you create Windows Phone apps.

In summary, the Windows Store and Windows Phone 8 platforms provide a common feature set
and complementary business model, which allows for a significant amount of code and asset reuse
when building solutions for both platforms. However, there are significant differences between the
two environments, especially in relation to how the unique hardware characteristics of the Phone are
leveraged in a Windows Phone app. These differences mean that you will need to create a separate
user interface for both platforms and that, in most cases, the interfaces will require their own XAML
markup, controls, and event handlers. However, most significantly, Windows Phone 8 offers an excit-
ing platform for entirely new types of applications. As you design them, you will be able to take your
Visual Basic and Visual Studio coding skills with you!

 CHAPTER 20 Introduction to Windows Phone 8 development 605

Summary

This chapter introduced Windows Phone 8 development opportunities for Visual Basic 2013 program-
mers, including the Windows Phone Store, an exciting marketing and distribution point for software
developers who want to create smartphone applications. You’ve learned about the unique features of
the Windows Phone 8 ecosystem, how the Windows Phone Store operates, how the Windows Phone
SDK 8.0 toolkit is installed, and what the major differences and similarities are between Windows
Phone and Windows Store app development.

In Chapter 21, you’ll use Visual Studio and the Windows Phone SDK 8.0 to write a Windows Phone 8
application from scratch, leveraging the skills and techniques that you’ve learned throughout this book.

 607

C H A P T E R 2 1

Creating your first Windows
phone 8 application

After completing this chapter, you will be able to

■■ Use Visual Studio tools to build the user interface for a Windows Phone app.

■■ Use essential XAML controls in the Windows Phone Toolbox.

■■ Write Visual Basic event handlers for touch events in Windows Phone.

■■ Test your app in the Visual Studio Phone Emulator.

■■ Manage Windows Phone life-cycle states, such as Activated and Deactivated.

As you learned in Chapter 20, “Introduction to Windows Phone 8 development,” the Visual Studio
2013 IDE is ready to help you build Windows Phone applications. If you’ve completed that chap-

ter and have worked through the Windows Store programming content in this book, you’re ready to
build your first Windows Phone 8 app right now.

In this chapter, you’ll learn how to create a mobile phone application that keeps score on the golf
course as you play a real or imagined 18-hole round. If you have no particular interest in golf, don’t
worry about it—I’ve selected this smartphone app because the concept lends itself to walking around
outdoors, which is what I like to do with my Windows Phone. A golf-scoring app also needs to be able
to deactivate when it is not in use and activate again when you’re ready to record a score. This feature
requirement is typical of smartphone apps, and it will give me a chance to teach you how to use the
PhoneApplicationService class and the Activated and Deactivated event handlers.

You’ll begin your work by creating a new Windows Phone 8 project and exploring a Visual Studio
IDE that is configured for Phone programming. Then you’ll learn how to use XAML controls in the
Windows Phone Controls Toolbox, how to set properties and create event handlers, and how to
declare global variables in a Windows Phone application. Next, you’ll learn how to manage life-cycle
events in a Windows Phone application, including launching, activation, deactivation, and closing
events. Finally, you’ll learn how to test your Phone app using the Visual Studio Phone Emulator.

Note that a Windows Phone is not required to complete the exercises in this chapter. You just need
the Windows Phone SDK 8.0 toolkit, which is included in Visual Studio 2013 Professional, Premium,
and Ultimate. You can also download the toolkit manually. (For more information, see Chapter 20.)

608 part V Microsoft Windows phone programming

Creating a Windows Phone project

Visual Studio 2013 provides several templates for Windows Phone 8 app development, which you can
examine in the New Project dialog box when you open a new Windows Phone project. The selection
of Phone app templates is somewhat parallel to what you see in the New Project dialog box for a
Windows Store app, in that there is a basic, default template and also templates that have embedded
controls, such as the Windows Phone Panorama App template, which uses the Panorama control to
create an application workspace that is scrollable and similar to what you see in commercial Windows
Phone 8 apps.

Of particular interest is the Windows Phone Audio Playback template, which lets you play music
in the background from a Phone app. This template exploits a special service on the Phone platform
that allows background playback even after the app has been deactivated. (This is useful because
typically, Windows Phone apps don’t run in the background.)

In the following exercise, you’ll start building the Golf Caddy Windows Phone 8 app by first creat-
ing a new Phone project and then using XAML controls to build the user interface.

Create a new Windows phone project

1. Start Visual Studio 2013.

2. On the Visual Studio File menu, click New Project.

3. Under Templates, select Visual Basic and then select the Windows Phone category.

You’ll see a collection of Windows Phone templates. (If you don’t, it could be that the
Windows Phone SDK 8.0 toolkit is not installed. See Chapter 20 for a discussion about how to
configure your system properly for Windows Phone 8 development.)

4. Click Windows Phone App (Visual Basic) template.

This is the basic (default) Windows Phone app template, with plenty of useful template code
but no special controls or features.

5. In the Name text box, type My Golf Caddy, and then click OK.

Visual Studio creates a new Windows Phone 8 project named My Golf Caddy and prepares the
IDE for Windows Phone programming. (Throughout this chapter, you’ll simply see Golf Caddy
in the title bar, the name of the sample files project.) Your screen will look like this:

 CHAPTER 21 Creating your first Windows Phone 8 application 609

What you see here looks a lot like the standard IDE setup for a Windows Store or Windows
Forms app, except that the Designer on the left side of the screen contains a preview of the
Windows Phone user interface rather than a page with traditional desktop proportions.

Notice that the Code Editor is also displayed in the middle of the IDE. Because there is a little
more room on the screen (the Phone app’s user interface is not as big as a Windows Store
app), some developers like to display the Code Editor on the right side of the Designer.

In Solution Explorer, you will also see the familiar App.xaml and MainPage.xaml files, as well
as the Assets folder that contains tiles and other image files. These three project elements are
all included in Windows Store projects coded in Visual Basic, but the contents of each item are
slightly different.

Now you’ll look around the Visual Studio IDE a little more to see what else looks familiar.

explore the Visual Studio IDe

1. On the left side the IDE, locate the Toolbox, Device, Document Outline, and Data Sources
windows.

By default, these items are all in the docked position. Each tool performs a similar function
in the IDE when you are creating a Windows Phone app. You’ll use the Toolbox in the next
exercise.

610 part V Microsoft Windows phone programming

2. Near the lower-left corner of the Designer, locate the Zoom tool.

The Zoom tool allows you to zoom in on the current Phone page (to see more detail) or zoom
out (to see more of the page). This tool functions just like it did when you created Windows
Store apps. The current value of the Zoom tool is 67%, but you can select a different value by
clicking the Zoom tool’s drop-down button.

3. Near the lower-right corner of the IDE, locate the Properties window.

Although the controls, properties, and events in a Windows Phone app are unique to this
particular environment, the Properties window functions like it does in the Windows Store
platform. You can set properties by using XAML markup or by using the Properties window.
Before you can set a property, you must select the relevant control in the Designer or in XAML
markup.

4. In Solution Explorer, click the tree expansion node next to the App.xaml file.

The default contents of App.xaml are displayed in the Code Editor. This file is a partial class
representing global project settings and resources. It has the same name and purpose as the
App.xaml file in a Windows Store application, but the contents of App.xaml are different in a
Windows Phone app.

Beneath the expanded App.xaml file, you will also see App.xaml.vb, the Visual Basic code-
behind file that, when combined with App.xaml, will make a complete class in your project.
App.xaml.vb contains default Visual Basic code provided by the Windows Phone template that
defines the App class, initializes various components, and provides event handlers for life-
cycle events in the flow of your program, such as launching and deactivating. You’ll add code
to this file to manage the application state later in the chapter.

5. In Solution Explorer, click the tree expansion node next to the MainPage.xaml file.

Visual Studio displays the entry for the MainPage.xaml.vb file. MainPage.xaml is currently vis-
ible in the Designer—it contains the default template’s user interface for the Phone appli-
cation. The MainPage.xaml.vb code-behind file works just like its namesake in a Windows
Store application—it imports necessary namespaces, defines the partial class MainPage, and
provides space for event handlers that respond to interaction with the XAML objects defined
on the page in MainPage.xaml.

Now you’ll edit the default Windows Phone template in the Designer. You’ll use the Designer and
Properties windows to make changes to the PhoneApplicationPage element in the App.xaml file. The
PhoneApplicationPage class is equivalent to the Page class in a Windows Store app.

 CHAPTER 21 Creating your first Windows Phone 8 application 611

adjust settings in PhoneApplicationPage

1. Click the Page Name text block object at the top of the Windows Phone page in the Designer.

Visual Studio highlights the XAML markup for a TextBlock control in the App.xaml file that
contains the words “page name.” This is the default banner heading for the basic Windows
Phone template, and it is easy to customize by directly editing the XAML in App.xaml or by
using the Properties windows when the TextBlock object is selected.

2. In the Properties window, change the Text property of the selected TextBlock object to Golf
Caddy.

Visual Studio updates the App.xaml file and the page in the Designer, with the new heading.

3. Click the MY APPLICATION text block object above the new Golf Caddy object that you just
modified.

Visual Studio highlights the XAML markup for a second text block object in the App.xaml file.

4. Use the Properties window to change the Text property of this object to Score Master.

Your Windows Phone page will now look like this in the Designer:

Just like in a Windows Store app, you can set properties by using XAML markup directly or by
using the Properties window.

Now you’ll add a Windows Phone Image control to the user interface.

612 part V Microsoft Windows phone programming

add an Image control to the page

1. Right-click the Assets folder in Solution Explorer, point to the Add command, and then click
Existing Item.

2. In the Add Existing Item dialog box, browse to the My Documents\Visual Basic 2013 SBS\
Chapter 21 folder and click Golf Course, a JPEG file containing the image of a golf course
green and flag.

3. Click Add to add the photo to your project’s Assets folder.

As you learned in Windows Store development, when a file has been added to the Assets
folder it becomes part of the project you are working on, and it will be included when your
project is packaged for distribution via the Windows Phone Store.

4. Now open the Windows Phone Toolbox, and examine the controls that you can use to create
smartphone apps.

Your Toolbox will look like this:

 CHAPTER 21 Creating your first Windows Phone 8 application 613

The controls in the Windows Phone Toolbox share many of the names and characteristics of
Windows Store controls, and they are based on .NET classes and XAML. However, the Phone
controls are stored in a different namespace and maintain a different set of methods, proper-
ties, and events. You’ll also see some controls that are unique to the Windows Phone Toolbox,
such as Panorama.

5. Click the Image control, and then create an Image object on the page in the Designer that
takes up about three-quarters of the page.

This object will provide a colorful background picture for our Golf Caddy smartphone app.
You should size the image so that it takes up the complete application area provided by the
Phone app template below the Golf Caddy text block. The image control will snap into place
when you drag the control’s sides to the edge of the template.

6. With the new image object selected, return to the Properties windows, and then open the
Common category for the Image control.

7. Click the Source text box, and then click GolfCourse.jpg.

A photo of a golf course fills the image object in the Designer.

8. Set the Stretch property to Fill.

9. Adjust the spacing of the image so that it takes up the entire application area on the page
beneath the Golf Caddy text block.

Notice that the template design preserves a very thin ribbon of space around the border of
the Windows Phone page. I recommend that you leave this space black, because the template
design is preserving a thin ribbon of black around the display to show the current time and
other information.

10. In the Properties window, change the Name property of the image object to GolfImage.

Naming your objects is also an important step in Windows Phone programming, and it is a
requirement if you will be referring to an object in the MainPage.xaml.vb code-behind file.
(That’s not the case here, but it will be for other objects.)

Your page should look like this:

614 part V Microsoft Windows phone programming

Designing the Golf Caddy user interface

Now you’ll add the user interface controls that make up the Golf Caddy Phone app. This program is
designed to keep score for an 18-hole golf round as an alternative to using a printed scorecard and
pencil. Accordingly, the program should be easy to use and it should have interface tools that are
simple to operate via touch. I selected this particular program for this chapter because it is obviously a
mobile app—you wouldn’t carry a desktop or laptop around the golf course to keep score, would you?

The Golf Caddy program will use a TextBlock control (TotalTextBlock) to display the current score
as it builds through the 18-hole golf round. Each time that the score for a new hole is entered in the
Phone app, the TotalTextBlock object will be updated to reflect the rolling score.

The app will also use a TextBox control named HoleScore to receive numeric input from the
user and add it to the total. Next to the HoleScore text box there will be an unnamed label that
describes the text box, as well as a Button control named ScoreHoleButton that runs an event han-
dler to record the score when the user presses the button. There is also a TextBlock control named
CurrentHoleTextBlock, which displays the hole being played, and a second Button control named
NewRoundButton that the user will press when (and if) they want to reset the score and start a new
round of golf. Launching the program from the Start page will also reset the app and begin a new
round of golf.

The completed user interface will look like the page in the following illustration:

 CHAPTER 21 Creating your first Windows Phone 8 application 615

Perform the following exercises to complete the user interface for the Golf Caddy Phone app.

add three TextBlock controls and a TextBox

1. Click the TextBlock control in the Toolbox, and then create an oversized text block object near
the middle of the page. Name the text block TotalTextBlock, and set its FontSize property to
120. Set the Text property to “0”, and center-align the text that appears in the text block.

2. Click the TextBlock control in the Toolbox again, and below the new TotalTextBlock object,
create another text block object that will display the number of the current hole being played.
Name this object CurrentHoleTextBlock. Set the Text property to “Hole: 1”, and set the
FontSize property to 36.

3. Create another TextBlock control on the left side of the page (across from the
CurrentHoldTextBlock), and set its Text property to “Score”. Change the object’s FontSize

616 part V Microsoft Windows phone programming

property to 36. You don’t need to name this object because it won’t be used in the code-
behind file. It simply serves as a label for the text box object that you’ll create in the next step.

4. Below the text block containing “Score”, create a small TextBox control that contains enough
room to display a two or three-digit number. Name the object HoleScoreTextBox, and set its
InputScope property to Number. Remove the text that is currently in the text box so that it is
empty.

The InputScope property, introduced here for the first time, gives Visual Studio a hint about
what type of input might be received by the text box object. Because all input in a Windows
Phone app happens through touch input, Windows Phone displays a software input panel
(SIP) to help the user enter the needed characters. You’ll get this automatically with the
TextBox and PasswordBox controls.

You can change the look of the default Phone SIP by setting the TextBox control’s InputScope
property. A number of common options are provided in the Properties window for
InputScope. I’m making it easier for Golf Caddy users now by specifying Number.

5. Below the new text box object, in the lower-left corner of the page, create a new Button con-
trol named RecordScoreButton. Change the button’s Content property to “Score Hole.”

6. In the lower-right corner of the page, create a new Button control named NewRoundButton.
Change the button’s Content property to “New Round.”

Nice work. Your user interface will look like this in the Designer:

 CHAPTER 21 Creating your first Windows Phone 8 application 617

If you look in the Code Editor now, you’ll see XAML markup that defines the layout and con-
tent of the objects that you just created, and you can make property or spacing adjustments if
you want.

7. Click the Save All command on the File menu to save your additions to the Golf Caddy proj-
ect. Specify the My Documents\Visual Basic 2013 SBS\Chapter 21 folder as the location.

The Save All command saves everything in your project—the project file, the pages, the code-
behind files, the assets, and other related components in your Windows Phone 8 application.

Writing the code

Now you’re ready to write the code for the Golf Caddy program. In the following steps, you’ll
create a code module for a few global variables, and then you’ll create event handlers for the
RecordScoreButton and NewRoundButton objects. You’ll use the same Visual Basic language that you
have worked with throughout this book.

Use the Code editor

1. Click Add Module on the Project menu to create a new code module in the project.

2. With the Module template selected in the Add New Item dialog box, click Add.

Visual Studio adds a code module named Module1.vb to the project, and the files appears
in Solution Explorer with the other project files. The module is also visible now in the Code
Editor.

You’ll use this code module to declare two global variables so that they can be referenced in
both MainPage.xaml.vb and App.xaml.vb. The first variable (TotalScore) will be a short inte-
ger variable that holds the golfer’s score as it builds from hole to hole. The second variable
(CurrentHole) will also be a short integer variable. CurrentHole tracks the number of holes
played. When the program is launched, TotalScore is reset to 0, and CurrentHole is reset to 1.
These global variables will also be used to save and restore state information when the appli-
cation is deactivated and activated.

Note In this program, the number of holes played will always be 18, although
an enhanced version of the program could prompt the user for a number of in-
teresting options related to the golf round, including the number of holes to be
played, the name of the golf course, the par rating, the golfer’s name, the date,
and so on. These options would typically be set and stored on a separate set-
tings page in your Phone app, and they could be stored between rounds by using
methods in the IsolatedStorageSettings class. (See “Life cycle management with the
IsolatedStorageSettings class,” later in this chapter.)

618 part V Microsoft Windows phone programming

3. Type the following code between the Module and End Module statements:

'Global variables for the Golf Caddy Phone app
Public TotalScore As Short = 0
Public CurrentHole As Short = 1

4. Click the Save All button on the toolbar, and then click the Close button on the Module1.vb
tab to close the code module.

Now you’ll create event handlers for the two button objects.

5. In the Designer, click the button containing Score Hole (the RecordScoreButton object), and
then click the Event Handler (lightning bolt) button in the Properties window.

6. The list of events supported by the Button object appears in the Properties window, as shown
in the following screen:

Notice that the list of supported Button events is different than what you would see for the
Button control in a Windows Store application. This is because the Button control has been
optimized for Windows Phone 8 development.

Pause to think about how user input works in a Windows Phone app. There is no traditional
mouse, keyboard, or light pen here; all of the input is touch-based. For this reason, Windows
Phone programmers are often eager to exploit the Tap, DoubleTap, Drag, and Hold gestures,

 CHAPTER 21 Creating your first Windows Phone 8 application 619

which you’ll see listed in the collection of supported events for the Button control. However,
you’ll also see a number of events that seemingly relate to mouse input, such as Click,
DoubleClick, MouseMove, MouseWheel, and so on. Why would these mouse input events still
be listed for the Windows Phone Button control?

The answer is that mouse input is still used as a convenient model for event handling in
Windows Phone programming, even though a physical mouse is not actually used for input.
After all, there is a lot of code out there that processes mouse clicks to manage input con-
trols. The designers at Microsoft thought that it would be just fine to continuing using Click
and DoubleClick events as the primary events that a Button control waits for, even though the
mobile phone user is actually touching the phone screen and not using a mouse.

Accordingly, the two event handlers you’ll write in this chapter will wait for the Click event,
which takes place when the user presses the button objects on the screen. As you write your
own Windows Phone programs, you’ll want to expand you list of supported events to Hold,
Drag, and other gestures.

7. Double-click the Click event in the Properties windows for the RecordScoreButton object.

Visual Studio opens the RecordScoreButton_Click event handler in the Code Editor.

8. Type the following Visual Basic code:

'add score from current hole to total and display
TotalScore = TotalScore + HoleScoreTextBox.Text
TotalTextBlock.Text = TotalScore

'determine if there are any holes left to play
If CurrentHole = 18 Then
 'stop if 18th hole finished; disable Score Hole button, await new round
 RecordScoreButton.IsEnabled = False
Else
 'if not finished yet, move to next hole and await a new score
 CurrentHole = CurrentHole + 1
 CurrentHoleTextBlock.Text = "Hole: " & CurrentHole
End If

This event handler runs when the user clicks the Score Hole button, indicating that they have
typed a number into the HoleScoreTextBox object and want to move on to the next hole. The
tasks that this routine completes are very straightforward: The hole score in the text box is
added to the overall total and stored in the TotalScore global variable. This number is also dis-
played in the oversized TotalTextBlock object on the page so that the running total is visible.

The routine then tests to see where the golfer is in his or her round on the course. If they
were playing the 18th and final hole and just recorded that score, the routine disables the
RecordScoreButton object so that no more scores can be added, and the round is complete.
The user can then take their time viewing the page with its attractive graphic and final score.
When they are finished with their work, they can close the application by clicking the Back
button, or they can start a new game by clicking the New Round button.

620 part V Microsoft Windows phone programming

However, if the round is not complete, the event handler increments the global variable
CurrentHole and displays the new hole number on the page by using the CurrentHoleTextBlock
object. The Else clause manages this process once for each hole that the golfer plays. By con-
trast, the Then clause is executed only once during the entire round—when the 18th hole is
complete.

Now you’ll create the event handler for the New Round button.

9. In the Designer, click the NewRoundButton object, and then display the event list in the
Properties window.

10. Double-click the Click event in the Properties window to create the event handler.

Visual Studio opens the RecordScoreButton_Click handler in the Code Editor.

11. Type the following code:

'reset the game, variables, and user interface
TotalScore = 0
TotalTextBlock.Text = TotalScore
CurrentHole = 1
CurrentHoleTextBlock.Text = "Hole: 1"
RecordScoreButton.IsEnabled = True

This routine is executed when the golfer is ready for a new game. The global variable
TotalScore is reset to 0, and CurrentHole is reset to 1. The text block objects on the page are
reset to display the same initial settings that the user saw when they first launched the pro-
gram. Finally, the RecordScoreButton object is enabled so that it can be used again to enter
scores.

12. Click the Save All button to save your changes.

You’ve added enough features to run and test your application. However, the process is a little dif-
ferent than with a Windows Store or Windows Forms app. You’ll use the Visual Studio Windows Phone
Emulator.

Testing Windows Phone apps

The Visual Studio commands for running, testing, and debugging Windows Phone apps are similar to
the commands you have used for other application types in Visual Studio 2013. The only major differ-
ence is that for the majority of tests you will be running your application using the Windows Phone
Emulator software, a virtual machine that simulates the Phone platform. This will give you a sense of
how your application looks and functions before you test the app on an actual Windows Phone.

Remember that before your Windows Phone app can be published and distributed on the
Windows Phone Store, it needs to be formally registered with Microsoft, and it also needs to pass var-
ious certification tests. That is, Microsoft will not let you distribute your Windows Phone app until it
has been certified. The exception is that if you register as a Windows Phone developer with Microsoft

 CHAPTER 21 Creating your first Windows Phone 8 application 621

and pay for an annual subscription, you will be allowed to unlock your Windows Phone 8 device and
use it to run and test your Phone apps.

Before this takes place, you’ll want to do all of your major testing with the Windows Phone
Emulator software. You’ll try that now.

Use the Windows phone emulator

1. Click the Start button on the Standard toolbar.

Notice that the Start button has the name of a Windows Phone Emulator in it. For example,
my version of Visual Studio has an emulator named “WVGA 512MB” listed next to the Start
button. (A standard hardware specification that should simulate the minimum of what all
authorized Windows Phone 8 device manufacturers are using.) You can select a different emu-
lator by using the Start button drop-down list box.

Because this emulator is an actual virtual machine, it will take Visual Studio a little while to
launch it and to display your running app. Be patient. The first thing that you see will be the
emulator window on the screen with a sample Windows Phone Start page in it. You’ll see typi-
cal simulated tiles and features. This is what my emulator looked like shortly after I launched
the program:

622 part V Microsoft Windows phone programming

Don’t get carried away here—you won’t be able to start touching the emulator and operating
the Phone as if it were an actual touch device. However, the emulator has been designed to
work with mouse clicks on a desktop development system. You can click the Back, Windows,
or Search buttons, and you can drag in the user interface to scroll. You will also be able to click
the buttons in the Golf Caddy user interface with the mouse to test them.

The Golf Caddy app will start automatically. When the program appears in the emulator, it will
look like this:

The user interface looks nice. It is ready to receive input for an 18-hole golf game. But notice
that in addition to the Golf Caddy app, a few additional things are visible. For example, you
can see a phone-charging icon in the status bar at the top of the page, and the current sys-
tem time is also visible (1:15). Some debugging information is also visible on the page in the
upper-right corner.

Now you’ll test the app’s behavior.

 CHAPTER 21 Creating your first Windows Phone 8 application 623

2. Click the text box object below the Score label.

Windows Phone displays the software input panel for numeric input.

3. Click the number 4, your simulated score for the first hole.

Your screen will look like this:

4. Click the background of the Golf Caddy app.

The SIP disappears.

5. Click the Score Hole button.

The app updates the TotalScore variable and text block and moves to hole #2.

Your screen looks like this:

624 part V Microsoft Windows phone programming

The oversized score number is the most important user interface feature in this program. It
will allow the user to see at a glance how they are doing.

Now you’ll enter information for the rest of the holes in the 18-hole round. For simplicity,
you’ll use a score of 4 for all 18 holes, although you could easily enter different values with the
handy numeric key pad.

6. Click Score Hole repeatedly until you complete the 18th hole.

7. As you click the scores, imagine that you are playing golf and shooting a pretty great round
right now. (The typical par rating for a full-length golf course is 72.) Of course, this would take
about four hours to complete, and while you played the round, you would likely deactivate
the phone now and then or switch to other tasks.

After hole 18, the Golf Caddy app will look like this:

 CHAPTER 21 Creating your first Windows Phone 8 application 625

Notice that the Score Hole button is now disabled. But you can continue with another round
by clicking the New Round button on the page. Try it now.

8. Click New Round.

The Golf Caddy app resets the global variables, displays 0 for the score, and enables the Score
Hole button. Your app is ready for another round.

In just a few minutes, you have created a basic smartphone app that uses interface controls
and presents information in an attractive way. As you can see, the process is quite similar to
writing a Windows Store application—only the testing is different.

Now you’ll close the Golf Caddy app. In the emulator, you can do this by simply clicking the
Close button on the emulator toolbar or the Stop Debugging button on the Visual Studio
toolbar.

9. Click the Close button on the emulator now.

626 part V Microsoft Windows phone programming

The emulator closes, and the Visual Studio IDE returns.

Of course, the procedure for closing (or terminating) a Windows Phone app is much different for
the user who is actually operating a Windows phone. There are several options here—some actions
that close (or terminate) an app, and some that merely deactivate (or suspend) an app, holding it
in memory until the user ultimately returns to the program or until the app is tombstoned by the
Windows Phone OS and removed from memory. (Recall that Tombstoning is the forced closure of a
deactivated app by the phone, which happens when there is no longer enough memory to keep the
program in a suspended state.)

Tombstoning and other application life cycle issues will be discussed in the next section.

Application life cycle considerations

If you are not that familiar with Windows Phone hardware buttons and operating procedures, you
should know that there are several ways that a user might choose to open, close, or deactivate a
Windows Phone application. This makes sense, of course—the ability to rapidly switch from one
application to the next is a real benefit of a Windows Phone, and there are many ways to do it. Stop
to consider how often this type of rapid-fire switching happens during a typical phone session: a user
might display a webpage on their phone, only to stop to send a text message (maybe related to the
content they just viewed in a browser); then they might stop to take an incoming phone call, quickly
open the contacts list, run the calculator app to add something, and then send an email message,
which sends the user off on another web browser session to gather more data. As those of us who
have smartphones know, this entire session might take just a few minutes!

Rapid switching among applications like this brings up an important topic for Windows Phone
developers that we need to investigate now—life cycle management considerations. In particular, I
want to introduce you to the programming issues related to deactivation, activation, launching, and
closing apps in the Windows Phone 8 ecosystem.

Closing or deactivating?
For a Windows Phone user, it might seem like terminating (closing an app) and deactivating (suspend-
ing an app) are really very similar actions. And in truth, they should seem quite similar to the user.
However, it turns out that closing and deactivating applications are two related but distinct events in
the life cycle of a Windows Phone app.

A Windows Phone app is terminated when any of the following occurs:

■■ The user presses the Back button when the app is running. (This is the de facto “close” button
on a Windows Phone.)

■■ The user presses the Start button and launches another application.

■■ The phone runs out of battery power and shuts down.

 CHAPTER 21 Creating your first Windows Phone 8 application 627

■■ A deactivated app in memory is tombstoned by the operating system to save memory.

A Windows Phone app is deactivated when any of the following occurs:

■■ The user switches away from the application without closing it.

■■ The application that the user is using launches another application (or the user clicks a link or
URL in a program).

■■ The user receives an incoming phone call.

■■ The lock screen appears after a period of inactivity on the Phone.

Remember that the Windows Phone environment does not support true multitasking. To save
battery life, the system’s scarcest resource, the phone provides only limited background task support
to applications that are deactivated and still in memory. However, while in suspension, the data and
page details of a deactivated app are preserved in the system. All of this is by design.

The thing to remember is that the software developer can’t know for sure when or if a suspended
application will be activated again. Deactivated apps remain in memory until they are tombstoned by
the operating system, the app is activated again, or the system is shut down. By default, a Windows
Phone 8 device can keep up to eight deactivated apps in a suspended app stack in memory, but after
that, the apps are unloaded from memory to free up system resources.

Why does this internal state management matter to the programmer? It matters because the
developer needs to meet the expectations of the user related to the data in their application. If the
user was truly finished with the application and closed it, there is no expectation that the details of
the last session should be visible when the app is launched again. Consider this example: When you
use a calculator app on a smartphone and you launch the program after a long period of inactivity,
you don’t really expect the last calculation you made in that app days ago to still be there. But you
might expect that the calculator still has data in it if you are using the app and simply shift away from
it for five minutes while you take a phone call.

Visual Studio provides tools and .NET Framework APIs to help you manage life-cycle states in your
program so that an application that is temporarily deactivated by the user can be activated again with
no data loss. Much of this is done for you automatically; in Windows Phone 8, the system automati-
cally preserves application data and page data for up to eight apps that have been suspended. (This
“resume” feature is an improvement over Windows Phone 7.1, which didn’t preserve application data
automatically—it had to be saved programmatically by your application.) However, you might still
want to preserve data in your apps and reload it to guard against the potential problem of tombston-
ing. It really matters what type of application you are creating. For example, a user might not care
that calculator data is no longer visible, but they might expect that text messages or calendar infor-
mation is always visible in an app—whenever they come back to it.

In the following section, you’ll be introduced to the PhoneApplicationService class, which can help
you save and restore application data during periods of suspension.

628 part V Microsoft Windows phone programming

the PhoneApplicationSerivce class
The PhoneApplicationService class provides a way to monitor and respond to the various life-cycle
states that a Windows Phone application is going through. When you create a new Windows Phone 8
project in Visual Studio, the templates automatically create PhoneApplicationService resources for you
in the App.xaml and App.xaml.vb files. Let’s check these resources out in the following exercise.

examine Windows phone life-cycle states

1. With the Golf Caddy project still loaded in Visual Studio, display the App.xaml file in the XAML
tab of the Code Editor.

Near the end of the file, you’ll see the following XAML markup:

<Application.ApplicationLifetimeObjects>
 <!--Required object that handles lifetime events for the application-->
 <shell:PhoneApplicationService
 Launching="Application_Launching" Closing="Application_Closing"
 Activated="Application_Activated" Deactivated="Application_Deactivated"/>
</Application.ApplicationLifetimeObjects>

Do you see the event names Launching, Closing, Activated, and Deactivated? Your Phone app
defines these for you in App.xaml and creates event handlers so that you can add code to
manage what happens during the four life-cycle states. During launching, it is sometimes use-
ful to load saved application data. During closing, it makes sense to do final cleanup and save
any application data that has not been saved yet. However, be advised that you can’t be sure
that an app will actually execute its closing event handler, because it might be tombstoned by
the operating system before then. This makes the activated and deactivated states of critical
importance.

The activated event gives you a place to restore data that you saved when the application was
deactivated. Note that during the deactivation process, you are given only a few seconds to
store information, so it is important that any code you place here works quickly and efficiently.
As noted earlier, Windows Phone handles some of this saving for you automatically via its
“resume” feature.

2. Now open the App.xaml.vb file in the Code Editor.

You’ll see the following lines that reference the PhoneApplicationService event handlers in the
code-behind file. These are the default event handlers.

' Code to execute when the application is launching (eg, from Start)
' This code will not execute when the application is reactivated
Private Sub Application_Launching(ByVal sender As Object, ByVal e As LaunchingEventArgs)
End Sub

 CHAPTER 21 Creating your first Windows Phone 8 application 629

' Code to execute when the application is activated (brought to foreground)
' This code will not execute when the application is first launched
Private Sub Application_Activated(ByVal sender As Object, ByVal e As ActivatedEventArgs)
End Sub

' Code to execute when the application is deactivated (sent to background)
' This code will not execute when the application is closing
Private Sub Application_Deactivated(ByVal sender As Object, ByVal e As
DeactivatedEventArgs)
End Sub

' Code to execute when the application is closing (eg, user hit Back)
' This code will not execute when the application is deactivated
Private Sub Application_Closing(ByVal sender As Object, ByVal e As ClosingEventArgs)
End Sub

The Windows Phone app template created these empty procedures for you, and you can add
code to them to manage state information if you feel that your app would benefit from that
information.

Let’s run the Golf Caddy app again to see whether preserving state information would be
useful. However, first you’re going to set a special debugging option so that your program
will automatically be tombstoned the moment the app is deactivated. This is not the typical
behavior, because an app can reside suspended in memory for some time after it has deacti-
vated. Remember that the Windows Phone 8 device will store up to eight deactivated apps in
memory before it begins tombstoning programs on the stack. (Further, the user can display
the list of apps in the stack by holding down the Back button.)

3. Click Golf Caddy Properties on the Project menu, and then click the Debug category.

4. Select the Tombstone Upon Deactivation While Debugging check box.

Visual Studio will now let you test what your app will look like when it is deactivated, tomb-
stoned, and then activated again. The question is: Will it preserve the current score in your
golf round? Or will the global variables and information on the page be lost?

5. Click the Start Debugging button to run the Golf Caddy app in the emulator.

6. When the app appears, enter a score of 4 for the first hole, and enter 5 for the second hole.

Your screen will look like this:

630 part V Microsoft Windows phone programming

7. Click the Windows button to display the Start page.

Under normal operating conditions, this would simply deactivate your app, and you could
activate it again by clicking the Back button. But Visual Studio has tombstoned your app,
simulating a condition in which more recent deactivated apps have pushed your app out of
the suspended app stack.

 CHAPTER 21 Creating your first Windows Phone 8 application 631

8. Click the Back button.

Visual Studio resets the application page, and your data has been lost. Your screen looks like
this:

This is not an ideal situation, because it means that a few holes into the 18-hole golf round the
user might lose their score. This data loss would happen if they switched away to a number of
different programs at some point during the round, which is fairly typical if you consider how
tempting it is to take a phone call, check the calendar, add a contact, or take a photo during
the golf round.

Although this is a simple demonstration program, is there anything that can be done to pre-
vent this potential data loss?

The answer, of course, is “yes!”

9. Close the program by clicking the Close button on the emulator toolbar.

632 part V Microsoft Windows phone programming

With the potential problem clearly outlined, you’ll now add event handlers for the deactivation
and activation events. And you’ll edit the MainPage.xaml.vb file to restore key user interface settings.

Handle deactivation and activation states

1. Display the App.xaml.vb file again in the Code Editor.

2. In the Application_Deactivated event handler, type the following code:

If PhoneApplicationService.Current.State.ContainsKey("Score") Then
 PhoneApplicationService.Current.State("Score") = TotalScore
Else
 PhoneApplicationService.Current.State.Add("Score", TotalScore)
End If
If PhoneApplicationService.Current.State.ContainsKey("Hole") Then
 PhoneApplicationService.Current.State("Hole") = CurrentHole
Else
 PhoneApplicationService.Current.State.Add("Hole", CurrentHole)
End If

This handler is executed when the operating system notifies the Windows Phone app that it
is time to deactivate. Although Windows Phone can restore suspended applications that are
activated rather quickly, the PhoneApplicationService class offers a few useful methods and
properties to save information in the event of tombstoning and more significant data loss.

In the preceding code, I am using the key values of “Score” and “Hole” to save important state
information, just in case the app is tombstoned. Because I can’t be sure whether the app has
been deactivated in the past, I am creating the “Score” and “Hole” keys only if they do not
already exist. In this case, the only values from the program that I am saving are the global
variables TotalScore and CurrentHole, which are the essential data resources related to the golf
round that is underway.

3. In the Application_Activated event handler, type the following code:

If PhoneApplicationService.Current.State.ContainsKey("Score") Then
 TotalScore = PhoneApplicationService.Current.State("Score")
End If
If PhoneApplicationService.Current.State.ContainsKey("Hole") Then
 CurrentHole = PhoneApplicationService.Current.State("Hole")
End If
'Global variables TotalScore and CurrentHole then used to restore
'Golf Caddy UI settings when MainPage is loaded

 CHAPTER 21 Creating your first Windows Phone 8 application 633

This handler is the other half of the Application_Deactivated routine—it restores data to the
program that has been saved using the “Score” and “Hole” keys. However, the data restora-
tion happens only if the “Score” and “Hole” keys exist. As the final comment notes, the user
interface will be updated by the MainPage constructor.

Now you’ll return to the MainPage.xaml.vb file and use the global variables TotalScore and
CurrentHole to restore the user interface settings on the Golf Caddy page.

4. Display the MainPage.xaml.vb file in the Code Editor.

At the bottom of the constructor (the code between Public Sub New() and End Sub, which runs
each time that the MainPage.xaml file is loaded, type the following code:

'Update the Golf Caddy UI using global variables (important if app was tombstoned)
TotalTextBlock.Text = TotalScore
CurrentHoleTextBlock.Text = "Hole: " & CurrentHole

In my constructor, I placed these three lines as the last program statements before the
End Sub statement.

These lines of Visual Basic code will be executed each time that the MainPage.xaml file is
loaded. They will update the Text property for two important text blocks on the page. When
the program first starts, only the initial startup values are displayed. But if the program has
been tombstoned in the middle of a round and then reactivated, the global variables will
contain the current golf score and hole.

Now you’ll run the program again.

5. Click the Start Debugging button to run the Windows Phone app in the emulator.

6. When the app appears, enter a score of 7 for the first hole, and enter 6 for the second hole.

Your screen will look like this:

634 part V Microsoft Windows phone programming

7. Click the Windows button to display the Start page.

Windows Phone tombstones the program, because the Tombstone check box is still selected
in the Properties window.

8. Click the Back button.

Visual Studio resets the application page, and this time your application data has been pre-
served. The total score of 13 appears again, and the Golf Caddy app indicates that you are still
on hole number 3. You can test the restoration by adding a new score to the text box.

 CHAPTER 21 Creating your first Windows Phone 8 application 635

9. Type 3 in the text box, and click Score Hole.

Your screen shows a total score of 16. This means that the value was saved—even after a
tombstoning event. The current hole has also been incremented to 4. Your screen looks like
this:

10. Close the program in the emulator.

The Visual Studio IDE returns.

11. Click Golf Caddy Properties on the Project menu, and then click the Debug category.

12. Remove the checkmark from the Tombstone Upon Deactivation While Debugging check box.

You’re finished doing Windows Phone life cycle programming for now.

636 part V Microsoft Windows phone programming

Life cycle management with the IsolatedStorageSettings class
A useful exercise for you in the future might be to return to the Application_Deactivated event handler
in App.xaml.vb and see what other variables and properties you think would be useful to save with
key values in the Golf Caddy program. I preserved the essential values by saving the TotalScore and
CurrentHole variables. But you might also want to save the contents of the current hole text box, or
another value or property in the program.

As you write more sophisticated Windows Phone applications, you might also find that the
IsolatedStorageSettings class provides a helpful mechanism to store information a little deeper in the
system during closing operations. This is the approach that you would take if you wanted to save some
information when an app is closed and terminated that you can display again when the app is launched
anew. In such a scenario, the issue is not recovering from a deactivation or tombstoning event, but sav-
ing settings during the execution of a program that you might want to restore when the application is
started.

The IsolatedStorageSettings class provides methods to help you save what I would call “small
amounts of data” at application closing—that is, the contents of a few key variables, a short list of
important names, or perhaps a small collection of key numeric values. Alternatively, if you want to
save large amounts of user data, you would want to open and update an XML document or even use
an SQL Server database. Chapter 18, “Data access for Windows Store apps,” describes how to work
with XML documents in the context of a XAML user interface.

Although a full implementation of the IsolatedStorageSettings class goes beyond the scope of this
chapter, here is a possible Application_Launching event handler that you could add to the Golf Caddy
program. It loads the “Score” key that you used in the previous example with the contents of the
TotalScore variable:

Private Sub Application_Launching(ByVal sender As Object, ByVal e As LaunchingEventArgs)
 If IsolatedStorageSettings.ApplicationSettings.Contains("Score") Then
 TotalScore = IsolatedStorageSettings.ApplicationSettings("Score")
 End If
End Sub

You can see that the syntax of this event handler is very similar to the Application_Activated event
handler you wrote earlier in this chapter. Here is what the matching Application_Closing event handler
might look like that defines the “Score” key used in the preceding example:

Private Sub Application_Closing(ByVal sender As Object, ByVal e As ClosingEventArgs)
 IsolatedStorageSettings.ApplicationSettings("Score") = TotalScore
 IsolatedStorageSettings.ApplicationSettings.Save()
End Sub

 CHAPTER 21 Creating your first Windows Phone 8 application 637

In both cases, the IsolatedStorageSettings class is used. Note that both of these event handlers
require the following Imports statement at the top of the App.xaml.vb file to function properly:

Imports System.IO.IsolatedStorage

With the addition of the IsolatedStorageSettings class, you now have the ability to manage the com-
plex life-cycle demands of a Windows Phone 8 application. The ability to handle tombstoning and acti-
vation states will make your smartphone apps much more durable during actual operating conditions.

Setting options in the Window Phone manifest file

Like a Windows Store application, a Windows Phone 8 application has a manifest file that con-
tains important application settings, capabilities, and packaging information. This file is named
WMAppManifest.xml. You can use the Manifest Designer in Visual Studio to customize the manifest in
several useful ways.

You’ll see the file listed in Solution Explorer under the My Project node. If it is not visible, you might
need to click the Show All Files command on the Project menu. Try opening this manifest file now.

edit the Windows phone app manifest

1. Click Show All Files on the Project menu if the option is not already selected.

This option shows some of the hidden files in the project, including hidden project or system
files in Solution Explorer.

2. Open the My Project Node in Solution Explorer, and double-click the WMAppManifest.xml file.

3. Visual Studio displays the file in the Manifest Designer, as shown in the following illustration:

638 part V Microsoft Windows phone programming

4. Take some time to examine the four tabs in the Manifest Designer and the pages they
represent.

On the Application UI tab, you’ll see the name of the application that is displayed on the
Phone Start page as well as files and application icons for your app. You can create custom
tiles for your app using the steps found in Chapter 9, “Exploring Windows 8.1 design fea-
tures: Command bar, flyout, tiles, and touch.” There are slightly different tiles required for a
Windows Phone project, but the concept and design tools are the same.

On the Capabilities tab, you’ll see a list of the various capabilities and permissions that you can
give to your Windows Phone app. Security is a concern for Windows Phone applications, so
you don’t want to allow your app to access sensitive information or hardware on the system
that it is not entitled to. Likewise, the Requirements tab identifies the hardware requirements
of your application. For example, there are check boxes that allow you to enable Near Field
Communication, the front camera, the rear camera, a magnetometer, and a gyroscope.

On the Packaging tab, you’ll see software publisher information, as well as a list of the sup-
ported languages for your application.

5. After you make your changes to the Windows Phone manifest file, click the Save All button on
the toolbar.

 CHAPTER 21 Creating your first Windows Phone 8 application 639

6. Close the Manifest Designer.

7. Close the Golf Caddy Phone app, and then close Visual Studio.

You’re finished working with Visual Studio 2013 in this chapter—and this book!

Summary

This chapter described how to create a Windows Phone app with Visual Studio 2013 and the Windows
Phone SDK 8.0 toolkit. The development process has much in common with Windows Store app develop-
ment in Visual Basic. You added XAML Toolbox controls to a page, set properties, wrote program code,
tested the application, and managed important life-cycle events, such as Deactivated and Activated.

While creating the Golf Caddy application, you practiced using the TextBlock control, the Button
control, the Image control, and the TextBox control. You also learned how to declare global variables,
write event handlers, and manage application life-cycle states. Finally, you tested your Windows
Phone app using the Visual Studio Emulator software.

You’ve covered a lot of ground with Visual Basic app development in Visual Studio 2013. You
started out creating a Windows Store app, explored the Windows Forms and console app models
(the Windows desktop), web programming with Web Forms (ASP.NET), and now you’ve completed a
Windows Phone 8 app walkthrough. You’ve learned fundamental techniques for each development
platform, and you’ve also learned beginning and intermediate Visual Basic programming skills along
the way—the coding fundamentals upon which great Windows applications can be built. I wish you
the best of luck as you continue your work with Visual Basic and Visual Studio!

 641

> (greater than) sign
comparison operator, 343
relational operator, 324

#If DEBUG statements, 47, 117
<= (less than or equal to) sign

comparison operator, 343
relational operator, 324

< (less than) sign
comparison operator, 343
relational operator, 324

.mdb format (Microsoft Access), XML documents
vs., 454

- (minus) sign
arithmetic operator, 305
formulas evaluated using, 314

<> (not equal to) sign
comparison operator, 343
relational operators, 324

@ Page directive, 559
() (parentheses), formulas evaluated using, 314
| (pipe symbol), adding items to Filter List using, 186
+ - (plus and minus) signs, formulas evaluated

using, 314
+ (plus) sign

arithmetic operator, 305
shortcut operator, 313

A
Abs (absolute value) function, 564
Access

establishing data base connection using Data Source
Configuration Wizard, 492–501

working with databases using ADO.NET, 492–505
XML documents vs. .mdb format in, 454

access keys, adding to menu commands, 172–174

Index

Symbols
& (ampersand)

advanced arithmetic operator, 308
arithmetic operator, 305
shortcut operator, 313
using with String class, 320

< (angle bracket), in XAML markup, 195
* (asterisk)

arithmetic operator, 305
shortcut operator, 313

* / (asterisk and backslash), formulas evaluated
using, 314

\ (back slash)
arithmetic operator, 305
shortcut operator, 313

^ (caret)
advanced arithmetic operator, 308
arithmetic operator, 305
formulas evaluated using, 314

' (comment character), in Visual Basic program
code, 272

{ } (curly braces), indicator for markup extension, 517
= (equal) sign

assignment operator, 293
comparison operator, 343
relational operator, 324

/ (forward slash)
advanced arithmetic operator, 308–312
arithmetic operator, 305
shortcut operator, 313

/> (forward slash and a closing bracket), in XAML
markup, 195

>= (greater than or equal to) sign
comparison operator, 343
relational operator, 324

Acquire Developer License command

642 Index

Acquire Developer License command, 12
AddButton_Click event handler, 406, 413, 427–428,

451
Add Class command, 467
Add Connection dialog box, 494–495
Add Existing Item dialog box, 59
addition

arithmetic operator, 305
shortcut operator, 313

Add method, 423, 428, 537
Add New Data Source command, 493
Add New Item dialog box

Inherited Form template in, 461–462
naming classes, 469

Add ToolStripButton arrow, 182
ADO.NET, database programming with

about, 490
building database app in Data Sources

window, 501–505
database terminology, 490–492
establishing connection using Data Source

Configuration Wizard, 492–501
working with Access database, 492–505

All Windows Forms category, Button control in, 86
All XAML Controls category, in Toolbox tool, 59
Always Show Solution option, 21, 40
American National Standards Institute (ANSI),

character set, 323
American Standard Code for Information

Interchange (ASCII)
character set, 323
protecting text with encryption using, 331–339
working with, 323–325

ampersand (&)
advanced arithmetic operator, 308
arithmetic operator, 305
shortcut operator, 313
using with String class, 320

AndAlso conditional statements, 352–353
And, logical operator

about, 349–350
adding password protection using, 350–352

angle bracket (<), in XAML markup, 195
ANSI (American National Standards Institute),

character set, 323
AppBarButton control, 236–238
AppBar control, 236
AppBarToggleButton control, 236, 238, 242
Appearance category, in Properties window, 61

Application_Activated event handler, 632–633, 636
Application_Deactivated event handler, 632, 636
app listing page, of Windows Store, 10
apps. See desktop apps; See Windows Phone apps;

See Windows Store apps
App.xaml

creating style for, 222–227
examining, 197–200

ArcadeRiff.wav file, 58–59
ArgumentException object, 387
ArgumentOutOfRangeException object, 387
ArithmeticException object, 387
arithmetic operators, 305–313
Array class, processing large arrays using methods

in, 416–422
ArrayList class, 423
array literal, 402
array name, syntax element in array declaration, 398
arrays

about, 398
assigning initial values, 402–403
creating, 398–399
declaring multidimensional, 403
declaring with set elements, 399–400
extracting information using LINQ from

about, 437–438
extracting numeric information, 438–441

processing large, 416–422
setting aside memory for, 400–401
setting size at runtime of, 409–414
using LINQ locating overlapping elements

of, 448–449
using one-dimensional, 404–409
using ReDim Preserve to preserve contents

of, 414–416
working with elements of, 401–402

Artboard, Blend, 193
As Boolean clause, 346
Asc function, 325
ASCII (American Standard Code for Information

Interchange)
character set, 323
protecting text with encryption using, 331–339
working with, 323–325

AscW method, 325
ASP.NET

about, 544
binding datasets to web applications via, 492
building web forms website with, 550–556

 Button1_Click event handler

 Index 643

customizing website template, 570–572
displaying database records on webpage, 573–

580
editing document and site master

properties, 581–583
hosting web applications, 569
server controls

about, 552–553
adding to website, 561–563

software requirements for developing in, 550–
551

tags, 559
using Web Designer, 557–560
WebMatrix and, 547
writing event handlers for webpage

controls, 563–569
ASP.NET Development Server, 551, 561–563, 565
ASP.NET MVC

creating web applications using, 546
Web Pages with Razor and, 547–548

ASP.NET Web Forms
about, 545
ASP.NET Web Forms, 552
building website with, 550–556

ASP. NET Web Pages (with Razor)
about, 547
make up of, 559

assembly, 31
Assets folder

adding images to, 128–129
creating splash screen from, 70–73
for designing custom tiles for apps, 249
in Solution Explorer, 56–57

assignment operator (=), 293
asterisk (*)

arithmetic operator, 305
shortcut operator, 313

asterisk and backslash (* /), formulas evaluated
using, 314

attributes, as properties, 196
audio media, using MediaElement control for

playing, 58–60
Audio Playback template, Windows Phone, 607
Auto Hide command, 38
Auto Hide pushpin button, 37–39
AutoPlay check box, 60
AutoSize property, in Properties window, 95

B
background color, setting page, 62
background image, app with generic list and, 425–

432
back slash (\)

advanced arithmetic operator, 308
arithmetic operator, 305
formulas evaluated using, 314
shortcut operator, 313

badge notification, appearing in Lock screen, 250
base class

creating, 466–476
inheriting, 476–479
referencing, 481

BaseDiscount class, 481, 483–484
BasedOn property, using to inherit style, 228–231
binary operators, 350
binding

about, 516–517
elements for data, 516–517
to XAML controls, 516–526

Binding class, binding objects using, 517
Birthday program, creating using DateTimePicker

control, 152–154
BitArray class, 423
blank lines, in LINQ code blocks, 439
Blend, 202

add controls in, 202
XAML in, 193

blog for developers, preparing for Windows
Store, 12

Boolean
data type

about, 298
ListBox control and, 300–301

expressions, 346
IsChecked property, 204
IsCompact property, 237
IsMuted property, 137
setting properties, 98
ToggleButton control as, 203

bound controls, 502
browsers, web, creating, 142–146
Brush category, in Properties window, 51, 62
Build command, 76
Build My Form Inheritance command, 461
Button1_Click event handler, 350–351

button controls

644 Index

button controls
adding to desktop apps, 86–88
adding to phone app, 614, 616
adding to program, 54–55
adding to toolbar, 181–182
adding to website, 562–563
AppBarButton, 236–238
AppBarToggleButton, 236, 238, 242
controlling music playback with, 135–138
for opening flyout on page, 245–248
in list app, 425
in phone app, 614, 616
looping, 243
navigate to web address in browser, 142
setting properties of, 93–94
using with date time picker, 150

buttons
Auto Hide pushpin, 37–39
Categorized, 93
Check Drive, 379–381, 385, 389
Collapse Pane/Expand Pane, 30
Debugging, 116–117
Expand Pane/Collapse Pane, 30
Fill Array, 419
Horizontal Split, 30
looping, 243
New Connection, 494
Publish Now, 106
Solid Color Brush, 51
Sort Array, 420
Start Debugging, 103
Stop Debugging, 382
Test Connection, 495
Vertical Split, 30
Zoom drop-down, 49

Byte data type
about, 298
ListBox control and, 300–301

C
CalculateButton_Click event handler, 564–565
Calculate_Click event handler, 307
Calendar app (Windows Phone 8), 590
calendar information

running Birthday program, 152–154
using DateTimePicker control for gathering, 148–

152

camel-casing style, when declaring variables, 272,
293

Canvas control, 209
caret (̂)

advanced arithmetic operator, 308
arithmetic operator, 305
formulas evaluated using, 314
shortcut operator, 313

Categorized button, in Properties window, 93
CDbl function, 564
certification, planning for Windows Store

developer, 12
Change Data Source dialog box, 494
Char data type

about, 298
ListBox control and, 300–301

charms vs. command bars, 239
CheckBox control

creating, 155–158
running Checkbox program, 158–159

CheckButton_Click event handler, 379, 384, 386, 391
Check Drive button, 379–381, 385, 389
CheckedChanged event handler, 163
checklists, Windows Store requirements, 12–15
child element, in XAML, 196
Choose Data Source dialog box, 494
“chrome” (persistent user interface) features,

presenting users in Windows Store app
with, 236

ChrW method, 325
classes

binding control to, 517–521
binding objects using Binding class, 517
creating base, 466–476
for maintaining lists in System namespace, 423
identifying in Designer, 460
inheriting base, 476–479
Inherits statement in, 467
in polymorphism, 482
referencing base, 481

Class View tool, 24
Clear method, Array class, 416
Click event, in Properties window, 64–65
ClickOnce Security and Deployment, publishing

desktop app using, 105–107
cloud, Windows Azure applications for, 6
CLR (Common Language Runtime), Windows, 544
Code Editor

buttons, 30
displaying XAML markup in Designer, 25–30

 controls

 Index 645

docking as tabbed document, 37
green type in, 65
IntelliSense feature, 204, 500
keyword indicator in, 100
using for desktop apps, 99–101
using for Windows Phone apps, 617–620
using for Windows Store apps, 63–66
using LINQ with, 437
XAML tab of

about, 23
adding elements using, 202–212
adjusting Background property in, 201–202
displaying markup in Designer, 23
examining XAML project files, 198–200
setting property for text box object, 196

Collapsed (invisible) property, 61, 67
Collapse Pane/Expand Pane button, 30
collections

about, 422–423
app with generic list and background

image, 425–432
generic

about, 423–424
binding to ListBox control, 522–526
declaring, 424–425
LINQ retrieving data from, 451–453

using LINQ with, 450–451
ColorDialog control, 184, 187
Color Resources editor, 51
color value, hexadecimal, 51
columns (fields), 491
command bar

creating to manage tasks, 236–243
vs. charms, 239

CommandBar control, 236–238, 240–243
commas (,), displaying with data types using

Format() function, 299
comment character ('), in Visual Basic program

code, 272
Comment-out, 530
comments, in Code Editor, 65
Common category, in Properties window, 53, 55
Common Controls tab (Toolbox tool), 502, 506
Common Language Runtime (CLR), Windows, 544
comparison operators

about, 343
using with Select Case structure, 355–361

component tray pane, non-visible objects displayed
in, 171

concatenation (combination), string
advanced arithmetic operator, 308
arithmetic operator, 305
shortcut operator, 313
using with String class, 320

conditional expressions
order in decision structure of, 345
using, 343–344
using logical operators in, 349–352

conditional statement, in Do loop, 369
console applications

about, 267
Console object in, 272
creating in Visual Studio

about, 268–275
modules and procedures, 270–271
opening Console Application template, 269–

270
Roll-The-Dice application, 271–275
Sub Main() procedure, 271–275
temperature conversion application, 271–275

math games, interactive, 275–284
Visual Basic opportunities for, 6

Console class
in Find-The-Number console application, 276–

277
in simulate rolling dice console application, 280–

281
constants

about declaring, 292
defining, 295–296
guidelines for naming, 295–296

Const keyword, 295
constructor, 481, 520
Contains method, 122–124, 321, 443, 445
controls

about, 111
adding controls using Toolbox tool, 49–52
AppBar, 236
AppBarButton, 236–238
AppBarToggleButton, 236, 238, 242
bound, 502
button

adding to desktop apps, 86–88
adding to program, 54–55
adding to toolbar, 181–182
adding to website, 562–563
controlling music playback with, 135–138
for opening flyout on page, 245–248
in list app, 425

conversion functions

646 Index

in phone app, 614, 616
looping, 243
navigate to web address in browser, 142
setting properties of, 93–94
using with date time picker, 150

Canvas, 209–212
CheckBox, 155–159
ColorDialog, 184
ColorDialog, properties, 187
CommandBar, 236–238, 240–243
DateTimePicker control, 148–154
dialog box, 183–185
displaying database information using

toolbox, 506–509
FlipView, 127–132
FolderBrowserDialog, 184
FontDialog, 184
Grid, 201
GridView, 574–578
GroupBox, 159–164
HTML, 553–554
HyperLink, 578–579
Image

about, 55
adding images to program, 56–58
adding to phone app page, 612–614
ceating, 205
style set for, 219

in Windows Phone Store, 601, 603
Label

adding to form, 175
adding to website, 562–563
in Windows Forms Toolbox, 88–89
setting properties, 95–97

ListBox, 164–168, 297–304, 355, 522–526
MaskedTextBox, 346–348, 350–351, 506–509
MediaElement

about, 133
controlling playback, 135–138
in Toolbox tool, 58–60
playing music using, 133–135
playing videos using, 139–141
Source property of, 59, 134
using with CommandBar control, 240–243
using with Flyout control, 245

MenuStrip
about, 169–170
adding access keys to menu commands, 172–

174
changing order of menu items, 175

creating menu, 170–172
processing menu choices, 175–180

OpenFileDialog, 184
PageSetupDialog, 184
PictureBox

creating rectangle above check box, 155
creating rectangle beneath group box

with, 161
drawing square object on form, 184
in Windows Forms Toolbox, 89–90

PrintDialog, 184
PrintDocument, 183
Print-PreviewControl, 183
PrintPreviewDialog, 184
ProgressBar, 416–417
RadioButton, 159–164
RangeValidator, 570
RequiredFieldValidator, 570
SaveFileDialog, 184
server, 552–553
TextBlock

adding text blocks for random numbers, 52–
54

in list app, 425
in phone app, 614–617
using, 50–52

TextBox
adding to website, 561–562
assigning to variable, 118–120
binding control to class using, 517–521
check spelling in, 124–127
holding web address in browser, 142
in Data Sources window, 502–503
in list app, 425
multiline, 120–124
opening and displaying contents of XML

documents, 517–521
receiving input using, 113–118
using loop to fill text box with string

data, 362
ToggleButton, 203–206
ToolStrip, 180–183
understanding, 112–113
webpage validator, 570
WebView, displaying live web content using, 141–

146
conversion functions, 319–320
Convert class, converting data types using, 318–319
Copy method, Array class, 416

 Debug menu, Start Debugging command on

 Index 647

core definition (root) element, in XAML
documents, 198

counter variables, data types for loops using, 362
Count method, 428
crashes, program, 376, 383
CreateArrayButton_Click event handler, 412
CreateButton_Click event handler, 365
Create Directory For Solution check box, 63
“Cryptographic Tasks” (MSDN), 339
CSS (Cascading Style Sheet) information in

websites, 552
curly braces ({ }), indicator for markup extension, 517

D
data access, TwoWay, 517
database app, building in Data Sources

window, 501–505
database objects, 498
databases

about, 490
backward compatibility of, 490
combining, 498
commercial application that uses, 497
displaying records on webpage, 573–580
relationship to datasets, 505
terminology used about, 490–492
using part of, 498
using toolbox controls to display

information, 506–509
data binding

elements for, 516–517
to XAML controls, 516–526

DataBindings property settings, about, 492
data entry, user interface for, 540–541
DataException exception object, 387
data, managing

about, 397
preserving array contents using ReDim

Preserve, 414–416
processing large arrays, 416–422
with LINQ

about, 435–436
debugging strategies, 450
extracting information from arrays, 437–449
using with collections, 450–453
using with XML documents, 454–458

working with arrays of variables, 398–409
working with Collections, 422–432

data navigator, 491–492
Dataset Designer, 500–501
dataset objects, binding masked text box control

to, 506–509
datasets

about, 492
database objects and, 498
disconnected data sources in, 498
displayed in Data Sources window, 501
relationship to databases, 505
typed, 500

Data Source Configuration Wizard
about, 491–492
connecting datasets to, 492
establishing data base connection using, 492–

501
filtering data with, 509
in adding GridView control using, 574–575
writing Windows Forms app in, 492

data sources
binding to Texbox control, 518–520
for Windows Store apps, 516

Data Sources window
about, 23, 501–502
binding datasets to controls, 492
creating database objects on form using, 502–

505
Data Source Configuration Wizard, 493

DataTypeListBox_SelectionChanged event
handler, 303–304

data types
converting, 315–320
ListBox control and, 297–304

data type, syntax element in array declaration, 398
DateButton_Click event handler, 151–152
Date data type

about, 298
ListBox control and, 300–301

DateString property, 177
DateTimePicker control

about, 148
creating, 148–152
running Birthday program, 152–154

DateToolStripMenuItem_Click event handler, 177
debug build executable file, 75, 104
Debugging button, 116–117
debugging counters, 47
Debugging Not Enabled dialog box, 565–566
debugging strategies, LINQ, 450
Debug menu, Start Debugging command on, 30

Debug toolbar, Step Into button on

648 Index

Debug toolbar, Step Into button on, 450
Debug windows, 24
Decimal data type

about, 298
ListBox control and, 300–301
using in loops with counter variables, 362

decision structures, 344
declaring arrays

about, 398–399
assigning initial values, 402–403
setting array size at runtime, 409–414
setting aside memory for, 400–401
using one-dimensional arrays, 404–409
with set elements, 399–400
working with array elements, 401–402

defensive programming logic, 393–394
deploying applications

desktop apps, 105–107
on web server, 569
Windows Store, 75

derived class, 480
derived classes, 467
Designer

about, 23–24
add controls in, 202
buttons, 30
displaying XAML markup in, 25–30
docking as tabbed document, 37
Ellipse tool in, 71–72
Fit All option in, 129
identifying classes in, 460
media element object in, 59
navigating, 48–49

“Designing UX for apps” (MSDN article), 236
design mode, Visual Basic, 87
Design tab (Web Designer)

about, 556
adding text, 557–558, 573
editing text, 581–582

desktop apps
about, 79
building executable file, 104–105
ColorDialog control properties, 187
controls

CheckBox, 155
DateTimePicker, 148–154
GroupBox, 159–164
ListBox, 164–168, 297–304
MenuStrip, 169–183

creating
adding number labels, 88–89
adding .wav file to Resources folder, 92–93
naming objects for clarity, 98
new project for, 83–85
picture box properties, 97–98
setting button properties, 93–94
setting descriptive label properties, 96–97
setting number labels properties, 95–96
setting title bar text of form, 97
SpinButton_Click event handler, 101–103
user interface, 85–87
using PictureBox control, 89–90
writing code, 99–101

database controls for
about, 489
displaying database information using toolbox

controls, 506–509
programming with ADO.NET, 490–505
SQL statements and filtering data, 509–514

dialog box controls, 184–185
event handlers managing common dialog

boxes, 185–190
MaxLength property of TextBox controls, 363
program crashes in, 383
publishing, 105–107
running, 103–105
starting, 80–81
Visual Studio 2013 and, 81–82

Details page, Windows Store, 15
developers

annual registration fee for Windows Phone, 596
getting license for Windows, 18
Windows Phone Store

planning for certification, 595–596
selling apps in, 595

developers, Windows Store
planning for certification, 12
registering as, 11
Windows Store requirements checklist, 12–15

Device charms, 239
device drivers, Visual Basic opportunities for, 6
Device window, 23–24
dialog box controls, 183–185
dialog boxes, managing with event handlers

common, 185–190
Dictionary class, 423
Dim statements

Boolean variables created by, 346
creating generic collection, 427

 event handlers

 Index 649

declaring variables with, 292–294
for data types, 301
in LINQ queries, 436, 439

DirectoryNotFoundException object, 387
disconnected data sources, 498
DisplayArray_Click event handler, 413
DisplayButton_Click event handler, 407
DisplayImageCheckBox_CheckedChanged event

handler, 157–158
DisplayToggleBtn_Click event handler, 206, 208
DivideByZeroException object, 387
division sign

advanced arithmetic operator, 308–312
arithmetic operator, 305
formulas evaluated using, 314
shortcut operator, 313

.dll file format, inheriting form using, 463
docking

Code Editor or Designer as tabbed
documents, 37–38

programming tools manually, 37–38
Document Outline window, 23–24
Do loops

avoiding endless loop, 369
converting temperatures using, 370–372
using Until keyword in, 372–373

Double data type
about, 298
in math program, 307
ListBox control and, 300–301

Do...Until Loop, in Find-The-Number console
application, 276–277

Do...While structure, 549
drive and path name errors, 378–382

E
Ease Of Access Center, displaying underline or small

box for access keys using, 173
Element method, 532–533, 536–537
Ellipse tool, in Designer, 71–72
Else conditional statements, 344
ElseIf conditional statements, 344
encryption, protecting text with, 331–339
End as keyword, in Visual Studio 2013, 100
End Class statements, 477
End If conditional statements, 344
endless loop, avoiding, 369
EndOfStreamException object, 387

End Sub and Sub keywords, 65
End Sub statement, 483–484
EndsWith method, 325
End Try statement, 384
EnterButton_Click event handler, 478
Entity Framework, 490
equal (=) sign

assignment operator, 293
comparison operator, 343
relational operator, 324

error handlers
about, 375
comparing with defensive programming

techniques, 393–394
Exception objects, 387
Exit Try statement, 394
processing errors using Try…Catch

statement, 376–384
specifying retry period, 390–392
using Finally clause to perform cleanup

tasks, 385
using nested Try…Catch blocks, 391–392
writing flash drive error handler, 384–385

error messages
correcting, 66
Unrecognized Database Format, 496

errors (exceptions)
raising your own, 390
unhandled, 377, 382
Windows Store apps built-in handling of, 383

event-driven programming, 342
event handlers

AddButton_Click, 406, 427–428, 451
Application_Activated, 632–633
Application_Deactivated, 632
Button1_Click, 350–351
CalculateButton_Click event handler, 564–565
Calculate_Click, 307
CheckButton_Click, 379, 384, 386, 391
CheckedChanged, 163
CreateArrayButton_Click, 412
CreateButton_Click, 365
creating, 64, 136, 205–208
DataTypeListBox_SelectionChanged, 303–304
DateButton_Click, 151–152
DateToolStripMenuItem_Click, 177
DisplayArray_Click, 413
DisplayImageCheckBox_CheckedChanged, 157–

158
DisplayToggleBtn_Click, 206, 208

events, supported by Visual Basic objects

650 Index

EnterButton_Click, 478
FillButton_Click, 419
Form1_Load, 370–371, 417–418, 422
in Windows Store app, 67–68
managing common dialog boxes with, 185–190
NavigateButton_Click, 143
OpenItem_Click, 333–334, 336
OpenToolStripButton_Click, 185
OpenTool-StripMenuItem_Click, 330
PauseButton_Click, 137
RecordScoreButton_Click, 619, 620
ReverseButton_Click, 421
RunQuery_ Click, 439, 442–444, 446, 448, 451,

455–457
SaveAsItem_Click, 333, 336–337
ShowButton_Click, 428
SortButton_Click, 420–421
SortTextToolStripMenu-Item_Click, 328
SpinButton_Click, 101–103
StopButton_Click, 137
Sub procedure and, 270–271
TestButton_Click, 116, 481–482, 484
TimeToolStripMenuItem_Click, 176–177
ToolStripButton1_Click, 186–187
writing for webpage controls, 563–569
XmlTestButton_Click, 530

events, supported by Visual Basic objects, 342
exception handling, 383
Exception objects, 376, 387–390
exceptions (errors)

about, 311, 313
raising your own, 390
unhandled, 377, 382
Windows Store apps built-in handling of, 383

executable file, building
console applications using release build, 271–275
for destop app, 104–105
for Windows Store app, 74–77

Exit For statement, 367–368
Exit Try statement, 377–378, 394
Expand Pane/Collapse Pane button, 30
explicitly declaring variables, 292–293
exponentiation (raising to a power) operator

advanced arithmetic operator, 308–312
arithmetic operator, 305
shortcut operator, 313

Express for Web, 4
Express for Windows, 4
Express for Windows Desktop, 4
Express for Windows Phone, 4

Extensible Application Markup Language (XAML)
about, 191–192
All XAML Controls category, 59
as root of Windows Store app controls, 112–113
data binding expressed as markup extension, 517
defining list box using, 357–361
elements

about, 194–196
adding using tab of Code Editor, 202–212

examining project files, 196–202
Grid element, 201
introduction to, 192–202
markup to define FlipView control, 129–131
namespaces in, 196, 199
resource dictionary, 218
root element in documents, 198
styles

about, 215–216
building new styles from existing styles, 228–

231
creating, 217–221
IDE shortcuts for applying, 231–232
practicing, 221–227
referencing, 220
StandardStyles.xaml, 216–217
using explicit and implicit, 220–221

tab of Code Editor
about, 23
adding elements using, 202–212
adjusting Background property in, 201–202
displaying markup in Designer window, 25–

30
examining XAML project files, 198–200
setting property for text box object, 196

< tag and /> tag in markup, 195
Toolbox controls

about, 49
AppBar, 236
AppBarButton, 236–238
AppBarToggleButton, 236, 238, 242
binding to data using, 516–526
Canvas, 209–212
CommandBar, 236–238, 240–243
Flyout, 243–248
gesture support using, 259–260
Grid, 201
Image, 205, 612–613
in Windows Phone Store, 600, 603
ListBox, 522–526
ProgressRing, 417

 gathering input, controls for

 Index 651

TextBlock, 425, 614–617
TextBox, 425
ToggleButton, 203–206

WPF and, 26, 82, 112
Extensible Markup Language (XML)

about, 454, 490
documents

about, 515, 526
accessing data in, 526–540
adding node with data to, 538–540
locating child elements in XML

hierarchy, 532–533
modifying element in, 537–538
opening and displaying contents of, 527–530
reading selection of tagged elements, 530–

532
searching for items in file, 533–536

elements
locating in XML hierarchy child, 530–532
modifying, 537–538
reading selection of tagged, 530–532

files
about, 526
reading, 526–533
searching for items in, 533–536
writing to, 536–540

using LINQ with, 454–458
vs. Microsoft Access .mdb format, 454

F
FahrenheitTemp variable, 272
fields (columns), 491
FileNotFoundException object, 387
files, selecting contiguous or noncontiguous, 129
Fill Array button, 419
FillButton_Click event handler, 419
Filter List, using pipe symbol (|) for adding items

to, 186
Finally statement, 377–378, 385–386
FindDiscount method, 481–484
Find method, Array class, 416
Find-The-Number console application, 275–280
firing (triggering) events, 65
Fit All option, in Designer, 129
flash drives, writing error handler for, 384–385
FlipView control, 127–132
Flyout control, 243–248

Focus method, 413, 428
FolderBrowserDialog control, 184
FontDialog control, 184
Font property, in Properties window, 96
Font Size text box, 51
For Each...Next loop, 428, 440–441
ForeColor property, in Properties window, 96–97
ForegroundColor property, 276–277
Foreground property, 51
Form1_Load event handler, 370–371, 417–418, 422
Format function, displaying commas with data types

using, 299
formulas, 304, 314–315
For...Next loop

counter variables, 326, 330
in arrays, 407–410, 420
in simulate rolling dice console application, 280–

281
mastering

about, 361
complex loops, 363–368
Exit For statement, 367–368
using to convert distances, 364–367
using to fill Textbox with string data, 362–363

placing Stop statement for, 450
forward slash (/)

advanced arithmetic operator, 308–312
arithmetic operator, 305
shortcut operator, 313

forward slash and a closing bracket (/>), in XAML
markup, 195

free
offering apps as, 11
versions of Visual Studio 2013 development

suite, 4
From clause, in LINQ queries, 436, 443, 448, 456, 535
FromFile method, 379
FromFile statement, 384
Function procedures, in Visual Basic

application, 270–271
functions, conversion, 319–320

G
gathering input, controls for

CheckBox, 155
GroupBox and RadioButton, 159–164
ListBox, 164–168

generic collections

652 Index

generic collections
about, 423–424
binding to ListBox control, 522–526
declaring, 424–425
LINQ retrieving data from, 451–453

gestures
common, 260–262
on phone app development, 619
support for, 259–260

Get block, 470
GetLowerBound method, 404–409
GetUpperBound method, 404–410, 418
Global.asax files (global web application

information), 551
greater than or equal to (>=) sign

comparison operator, 343
relational operator, 324

greater than (>) sign
comparison operator, 343
relational operator, 324

green type, in Code Editor, 65
Grid element, in XAML, 201
Grid object, 62
GridView control, 574–578
GroupBox control

about, 158–159
gathering input with RadioButton control

and, 160–163
running Radio Button program, 160–163

Group method, 470–472, 475, 478

H
Hashtable class, 423
hexadecimal color value, 51
Horizontal Split button, 30
.htm (HTML page files), 551
HTML

tags, 559
viewing markup for webpage, 559–560

HTML5 and JavaScript programming, 548–550
HTML controls, 553–554
HyperLink control, 578–579

I
IDE (Integrated Development Environment)

about, 5, 17
about development environment, 19–21

component tray displaying non-visible
objects, 171

configuring for step-by-step exercises, 39–42
editing Windows form app with, 460–464
exploring Windows Phone, 609–610
in deploying application, 75
menu commands pertaining to Windows

store, 12
running program from, 67–68
shortcuts for applying styles, 231–232
tools for

important, 22–24
organizing tools, 24

XAML in, 192–193
If...Else structure, 549
If...Then...ElseIf structure, 431
If...Then...Else structure, 407
If...Then structure, 122, 186, 207, 308, 344–353, 393,

413
IIS (Internet Information Services), Microsoft, 544,

569
Image control

about, 55
adding images to program, 56–58
adding to phone app page, 612–614
creating, 205
style set for, 219

Image Editor tool, using to design custom tiles, 251–
253

Image Gallery program, using FlipView control
in, 130–132

image objects
naming in program, 58
setting Visibility property, 61

images
adding to Assets folder, 128–129
adding to Resources folder, 90–92
hiding, 67
splash screen, 70

implicitly declaring variables, 292
IndexOutOfRangeException object, 387
inheritance

about, 460
polymorphism as type of, 480

inheritance picker, 460–466
Inheritance Picker dialog box, 462–463
Inherited Form template, 462
Inherits statement

about, 467
using for inheriting base class, 476–479

 lists

 Index 653

input gestures, on touch-enabled screen, 261
Input Mask dialog box, 347
InputScope property, 616
Integer data type

about, 297
displaying commas with, 299
ListBox control and, 299–301
using in loops with counter variables, 362

integer (whole number) division
arithmetic operator, 305
shortcut operator, 313

Integrated Development Environment (IDE)
about, 5, 17
about development environment, 19–21
component tray displaying non-visible

objects, 171
configuring for step-by-step exercises, 39–42
editing Windows form app with, 460–464
exploring Windows Phone, 609–610
in deploying application, 75
menu commands pertaining to Windows

store, 12
running program from, 67–68
shortcuts for applying styles, 231–232
tools for

important, 22–24
organizing tools, 24

XAML in, 192–193
IntelliSense feature, Code Editor, 500
Internet Explorer, intranet settings are turned off

warning in, 567
Internet Information Services (IIS), Microsoft, 544, 569
intranet settings are turned off warning, 567
IOException object, 388
IsChecked property, 204
IsCompact property, 237
IsEnabled property, 452
IsLooping property, 60, 242
IsMuted property, 137
IsolatedStorageSettings class, 617, 636
IsSpellCheckEnabled property, 124–127
Items Collection Editor (Properties window), 504

J
JavaScript

about, 549
and HTML5 programming, 548–550
Windows Store apps designed with, 549

JPEG file, displaying, 55

K
keyboard shortcuts

displaying Properties window, 34
moving from one zoom setting to another, 49
Open Project dialog box, 20
selecting contiguous or noncontiguous files, 129

L
Label controls

adding to form, 175
in Windows Forms Toolbox, 88–89
setting properties, 95–97

Layout category, AutoSize property in, 95
Length property, using with String data, 116–117
less than or equal to (<=) sign

comparison operator, 343
relational operator, 324

less than (<) sign
comparison operator, 343
relational operator, 324

LINQ (Language Integrated Query). See also queries,
LINQ

about, 435–436
blank lines in code blocks, 439
debugging strategies, 450
extracting information from arrays, 437–438
extracting string data, 443–447
query syntax for, 436
using Code Editor with, 437
using complex Where clause, 441–443
using with collections, 450–458
using with XML documents, 454–458, 526,

530–536
ListBox control

about, 164–165
binding generic collection to, 522–526
creating, 165–168
data types and, 297–304
running ListBox program, 168–169
using with Select Case structure, 355

List class, 423
lists

classes for maintaining, 423
creating collections and generic, 423–424,

451–453
using LINQ with XML document, 454–458

live tiles

654 Index

live tiles
about, 257
in Microsoft Weather application, 251
pinning on Start Page, 590
programming, 257–259
receiving notification, 258

local deployment of apps, 75–77
local machine, running program on, 31
local notification, 258
Lock screen, badge notification appearing in, 250
logical operators, using in conditional

expressions, 349
Long data type

about, 298
displaying commas with, 299
ListBox control and, 300–301
using in loops with counter variables, 362

looping button, 243
Lucky Seven app, Windows desktop

about, 79–80, 82–83
adding number labels, 88–89
adding .wav file to Resources folder, 92–93
building executable file, 104–105
creating user interface, 85–87
naming objects for clarity, 98
new project for creating, 83–85
picture box properties, 97–98
publishing, 105–107
running, 103–105
setting button properties, 93–94
setting descriptive label properties, 96–97
setting number labels properties, 95–96
setting title bar text of form, 97
SpinButton_Click event handler, 101–103
using PictureBox control, 89–90
writing code, 99–101

Lucky Seven app, Windows Store
about, 44–45
building executable file, 74–77
creating splash screen, 70–73
designing user interface

adding button control, 54–55
adding image, 56–58
adding text blocks for random numbers, 49–

50
creating new project, 45–47
navigating Designer, 48–49
opening Toolbox, 49–50
playing audio media, 58–60
using TextBlock control, 50–52

running program, 67–68
setting background color of page, 62
setting Visibility property, 61
SpinButton_Click event handler, 67–68
using Code Editor, 63–66
using Save All command, 62–63

M
MainPage.xaml, edit XAML markup in, 197–200
managed provider (provider), in database

connection string, 496
managing data

about, 397
preserving array contents using ReDim

Preserve, 414–416
processing large arrays, 416–422
with LINQ

about, 435–436
debugging strategies, 450
extracting information from arrays, 437–449
using with collections, 450–453
using with XML documents, 454–458

working with arrays of variables, 398–409
working with Collections, 422–432

Manifest Designer
adjusting tile options in, 254–257
setting options in Windows Phone manifest

file, 637–638
markup extension

XAML data binding expressed as, 517
MaskedTextBox control, 346–348, 350–351,

506–509
Math class, 272
math games, interactive, 275–284
MaxLength property, of TextBox control, 363
MediaElement control

about, 133
controlling playback, 135–138
in Toolbox tool, 58–60
playing music using, 133–135
playing videos using, 139–141
Source property of, 59, 134
using with CommandBar control, 240–243
using with Flyout control, 245

media element object, in Designer, 59
menu commands

Acquire Developer License, 12
adding access keys to, 172–174

 MyBase syntax

 Index 655

Auto Hide, 38
Open Developer Account, 12
Reserve App Name, 12
Start Debugging, 30

menu conventions, 173
menu items, changing order of, 175
MenuStrip control

about, 169–170
adding access keys to menu commands, 172–174
changing order of menu items, 175
creating menu, 170–172
processing menu choices, 175–180

Merry-go-round video file, 139
Message property, Exception object, 387
methods

syntax for overriding, 480–481
system clock, 180
vs. properties, 151

Microsoft Access
establishing data base connection using Data

Source Configuration Wizard, 492–501
working with databases using ADO.NET, 492–505
XML documents vs. .mdb format in, 454

Microsoft Calendar app, 590
Microsoft Developer Network (MSDN), Windows

Phone Development Center, 595
Microsoft IntelliSense feature, Code Editor, 204, 500
Microsoft Internet Information Services (IIS), 544,

569
Microsoft .NET Framework

specify version of, 84
Windows Forms and, 81

Microsoft OLE DB, as database provider, 496
Microsoft Silverlight, Windows Phone 8 and, 112
Microsoft user experience (UX), 236
Microsoft Visual Studio. See Visual Studio
Microsoft Visual Studio 2013. See Visual Studio 2013
Microsoft Visual Studio Express for Web, 4
Microsoft Visual Studio Express for Windows, 4
Microsoft Visual Studio Express for Windows

Desktop, 4
Microsoft Visual Studio Express for Windows

Phone, 4
Microsoft Visual Studio website, 4
Microsoft Weather application, tiles in, 250–251
minus (-) sign

formulas evaluated using, 314
shortcut operator, 313

mobile phone programming
about, 587
app life cycle considerations, 626–636
closing apps, 626–627
creating apps

about, 607
adding Image control, 612–614
adjusting settings in

PhoneApplicationPage, 611
creating new project, 607–608
designing user interface, 614–617
exploring IDE, 609–610
mouse input, 619
writing code, 617–620

deactivating apps, 627
features of Phone 8, 589–592
hardware requirements for, 590
IsolatedStorageSettings class, 636
opportunities in platform, 588
PhoneApplicationService class, 628–635
registering apps, 620–621
setting options in Windows Phone manifest

file, 637–638
testing apps, 620–626

Mod
advanced arithmetic operator, 308
arithmetic operator, 305
formulas evaluated using, 314

Model-View-Controller (MVC) architecture, 546
mouse input, on phone apps, 619
Movie Maker, Windows, 141
MSDN (Microsoft Developer Network), Windows

Phone Development Center, 595
MsgBox statement, 384
multidimensional arrays, declaring, 403
multiline TextBox controls, 120–124
multiplication sign

arithmetic operator, 305
shortcut operator, 313

multiproject solution, opening, 22
multitasking, in phone environment, 627
music

playing using MediaElement control, 133–135,
240–243

using with Flyout control, 245
MustOverride keyword, 481
MVC (Model-View-Controller) architecture, 546
MyBase syntax, 481

Name property, in Properties window

656 Index

N
Name property, in Properties window, 87–88, 98,

115–116
namespaces

in Visual Studio programming terminology, 199
in XAML, 196

NavigateButton_Click event handler, 143
Navigate method, 143
navigation toolbar, 504
.NET Framework

manipulating strings using, 320
Math class of, 272
specify version of, 84
Windows Forms and, 81

New Connection button, 494
New Project dialog box, 45, 83–85, 128–129
New Web Site command, 554
New Web Site dialog box, 547–548, 555
Next method

in Find-The-Number console application, 276–
277

in Lucky Seven app, 67
in simulate rolling dice console application, 280–

281
not equal to (<>) sign

comparison operator, 343
relational operators, 324

notification
live tiles receiving, 258
Start page tile as, 258

Not, logical operator, 349
NotOverridable keyword, 481
number of dimensions, syntax element in array

declaration, 399
number of elements, syntax element in array

declaration, 399

O
Object Browser tool, 23–24
Object data type, 298
Object list, switching between objects using, 94
Object-Oriented Programming (OOP)

about, 459
constructor, 481, 520
create properties statement, 470
creating base classes, 466–476
creating method statement, 471
creating objects statement, 473

inheriting base classes, 476–479
inheriting form using inheritance picker, 460–

466
Inherits statement, 467, 476–479
polymorphism, 480–485

objects, naming for clarity, 98
object terminology, 36
Office applications, Visual Basic opportunities for, 6
OLE DB, Microsoft, as database provider, 496
Open Developer Account command, 12
OpenFileDialog control, 184
OpenItem_Click event handler, 333–334, 338
Open Project dialog box, keyboard shortcut for, 20
OpenToolStripButton_Click event handler, 185
OpenTool-StripMenuItem_Click event handler, 330
operators

arithmetic, 305–313
binary, 350
comparison, 343, 355–361
relational, 324
shortcut, 313

Option Explicit, 41
Option Infer, 41
Option Infer statements, 294, 403
Options dialog box, 39–41
Option Strict, 41
OrElse conditional statements, 352–353
organizing tools

in IDE, 24
moving and docking tools, 37–38

Or, logical operator, 349–350
OutOfMemoryException object, 388
OverflowException object, 388
Overridable keyword, 481
Overrides keyword, 481–482

P
Page element, root element and, 200
page-level resource definition, 217
PageSetupDialog control, 184
panning movement, on touch-enabled screen, 260
parentheses (()), formulas evaluated using, 314
Parse method, converting data types using, 316–318
PasswordChar property, 352
password protection, adding using And

operator, 350–352
path name and drive errors, 378–382
PauseButton_Click event handler, 137

 programming Window Store app

 Index 657

People hub (Windows Phone 8), 590
periodic notification, 258
persistent user interface (“chrome”) features,

presenting users in Windows Store app
with, 236

Phone 8 development, Windows
about, 587
app life cycle considerations, 626–636
closing apps, 626–627
creating apps

about, 607
adding Image control, 612–614
adjusting settings in

PhoneApplicationPage, 611
creating new project, 607–608
designing user interface, 614–617
exploring IDE, 609–610
mouse input, 619
writing code, 617–620

deactivating apps, 627
hardware requirements for, 590
IsolatedStorageSettings class, 636
opportunities in platform, 588
PhoneApplicationService class, 628–635
registering apps, 620–621
setting options in Windows Phone manifest

file, 637–638
testing apps, 620–626

Phone 8, Windows
features of, 589–592
installing apps, 595
Microsoft Silverlight and, 112
Visual Basic opportunities on, 6
website for, 591

PhoneApplicationPage class, 610–611
PhoneApplicationService class, 628–635
Phone apps, Windows, binding datasets to, 492
Phone Emulator, Windows, using, 621–626
Phone Software Development Kit (SDK)

about, 596
on virtual machine environment, 598
working with version 8.0, 596–599

Phone Store, Windows
about, 590
accessing, 591–596
installing Windows Phone app, 595
planning for certification, 595–596
selling apps in, 595
Windows Phone Store vs., 600–604

photos (pictures)
adding to Assets folder, 128–129
adding to Resources folder, 90–92
hiding, 67
splash screen, 70

PictureBox control
creating rectangle above check box, 161
creating rectangle beneath group box with, 161
drawing square object on form, 184
in Windows Forms Toolbox, 89–90

picture box properties, in desktop app, 97–98
pinning live tiles, on Start Page, 590
Pin To Start command, 286
pipe symbol (|), adding items to Filter List using, 186
plus and minus (+ -) signs, formulas evaluated

using, 314
plus (+) sign

arithmetic operator, 305
shortcut operator, 313

Pmt function, 564
PNG (Portable Network Graphics) format

displaying file in, 55
for splash screen, 70

polymorphism, 480–485
portable class libraries, 604
Position property, in Properties window, 60
precedence, changing order of, 315
Preserve keyword, using with ReDim statement, 415
price tier, in Windows Store, 10–11
PrintDialog control, 184
PrintDocument control, 183
Print-PreviewControl, 183
PrintPreviewDialog control, 184
Private and Protected keywords, 65
procedures, 64
program crashes, 376, 383
programmers, Windows Store

planning for certification, 12
registering as, 11
Windows Store requirements checklist, 12–15

programming tools
manually docking, 37–38
organizing, 36–39

programming Window Store app
about, 44–45
building executable file, 74–77
creating splash screen, 70–73
designing user interface

adding button control, 54–55
adding image, 56–58

program statements, in Visual Studio

658 Index

adding text blocks for random numbers, 49–
50

creating new project, 45–47
navigating Designer, 48–49
opening Toolbox, 49–52
playing audio media, 58–60
using TextBlock control, 50–52

running program, 67–68
setting background color of page, 62
setting Visibility property, 61
SpinButton_Click event handler, 67–68
using Code Editor, 63–66
using Save All command, 62–63

program statements, in Visual Studio, 66
ProgressBar control, 416–417
ProgressRing controls, 417
Project menu

Add Class command, 467
Add New Item command, 461–462

Project Properties Designer, opening, 92
projects

about, 22
file extension for, 22

Projects folder, default, 20
properties

attributes as, 196
syntax for overriding, 480–481
system clock, 180
vs. methods, 151

Properties window
about, 23–24
Appearance category in, 61
AutoSize property in, 95
Behavior category of, 98
Brush category, 51, 62
Categorized button in, 93
changing Name property of, 87, 88
changing property settings, 35
Click event in, 64–65
Common category in, 53, 55
displaying, 34
Font property in, 96
ForeColor property in, 96–97
identifying classes in, 460
IsLooping property in, 60
Items Collection Editor in, 504
manually docking, 37–38
Name property in, 87, 88, 98, 115–116
Position property in, 60

setting properties in Windows Phone Store
app, 611

TextAlign property in, 95
Text category in, 51–52
Text property in, 94, 116
Visible property in, 98
working with, 33–36

property terminology, 36
Protected and Private keywords, 65
provider (managed provider), in database

connection string, 496
Public Class statements, 477, 483–484
Public keyword, 295, 470
Public Sub New procedure, 520
publishing console apps, 285
publishing desktop app, using ClickOnce Security

and Deployment, 105–107
Publish Now button, 106
push notification, 258

Q
queries, LINQ

extracting numeric information from array, 438–
441

extracting string data, 443–447
From statements in, 436, 443, 448, 456
reading selection of tagged

XML elements, 530–532
retrieving data from XML document, 455–458
searching for items in XML file, 533–536
Select clause in, 437, 448, 450
syntax for, 436
using complex Where clause, 441–443
Where clause in, 437, 440–443, 448, 456,

534–535
Query Builder, Visual Studio, creating SQL statements

with, 509–514
Queue class, 423

R
RadioButton control

about, 159–160
gathering input with GroupBox control and, 160–

163
running Radio Button program, 160–163

RAD (Rapid Application Development), ASP.NET Web
Forms and, 545

 Server Explorer tool

 Index 659

random number generator, declaring, 67
RangeValidator control, 570
Rapid Application Development (RAD), ASP.NET Web

Forms and, 545
Razor, ASP. NET Web Pages with

about, 547
make up of, 559

ReadAllText method, 330
ReadKey method, 272

in Find-The-Number console application, 276–
277

in simulate rolling dice console application, 280–
281

ReadLine method, 272
RecordScoreButton_Click event handler, 619, 620
records (rows), 491
ReDim statement

preserving size of array using, 414–415
specifying size of array at runtime using, 410–414
using for three-dimensional arrays, 415–416

registering, as Windows Store developer, 11
relational database, 491
relational operators, 324
release build executable file

about, 75
building executable file, 104–105
creating console applications using, 271–275
deploying, 76–77

remainder division operator
advanced arithmetic operator, 308–312
arithmetic operator, 305

remote deployment of apps, 75
Replace method, 325
RequiredFieldValidator control, 570
requirements checklist, Windows Store, 12–15
Reserve App Name command, 12
resource dictionary file, adding XAML, 218
Resources folder

adding photo to, 90–92
adding sound file to, 92–93

Retries variable, 390–392
ReverseButton_Click event handler, 421
Reverse method, Array class, 416, 420–421
Rnd function, VBMath class, 419
Roll-The-Dice console application, 284–287
root (core definition) element

in XAML documents, 198
Page element and, 200

Round method, 272

rows (records), 491
runningTotal variable, 295
RunQuery_ Click event handler, 439, 442–444, 446,

448, 451, 455–457
run-time errors, 311, 313, 378–382, 391–392

S
sales information, in Windows Store, 10–11
Save All command, 62–63
Save As command, 63
SaveAsItem_Click event handler, 333, 336–337
SaveFileDialog control, 184
Save method, 537
Save New Projects option, 40
SByte data type

about, 298
ListBox control and, 301

scheduled notification, 258
ScheduleTileNotification object, 258
SDK (Software Development Kit), Windows Phone

about, 596
on virtual machine environment, 598
working with version 8.0, 596–599

Search charm, 239
Search Criteria Builder dialog box, 510, 512–513
security and permissions settings, 263–266
SecurityException object, 388
security issues

associating web browser with unknown
websites, 146

in deploying desktop apps, 107
Select Case decision structure

evaluating records with, 476
functions using, 471–472
handling group assignments, 474
in Find-The-Number console application, 276–

277
inputing conditions into, 475
mastering, 353–361

Select clause, in LINQ queries, 437, 448
SelectedIndex property, 165, 302
Select Resource dialog box, 91
SELECT statement, SQL, 509
server controls

about, 552–553
adding to website, 561–563

Server Explorer tool, 23–24

Set block

660 Index

Set block, 470
Settings charms, 239
SetValue method, 536–537
Share charm, 239
ShellSort procedure, 326, 329–330
ShellSort Sub procedure, 325–326
shortcut operators, 313
Short data type

about, 297
displaying commas with, 299
ListBox control and, 300–301

ShowButton_Click event handler, 428
ShowDialog method, 185
Silverlight, Windows Phone 8 and, 112
simulate rolling dice console application, 280–284
Single data type

about, 298
ListBox control and, 300–301

site master page title, editing, 581–583
slide gesture, on touch-enabled screen, 260
.sln (solution file extension), 22
Software Development Kit (SDK), Windows Phone

about, 596
on virtual machine environment, 598
working with version 8.0, 596–599

Solid Color Brush button, 51
Solution Explorer

about, 23–24
Assets folder in

about, 56–57
creating splash screen from, 70–73

creating Resources folder, 90–92
displaying, 26
double-clicking files in, 27
opening, 48

solutions
about, 22
file extension for, 22

Sort Array button, 420
SortButton_Click event handler, 420, 421
SortedList class, 423
Sort method, 416, 420, 428, 432
SortTextToolStripMenu-Item_Click event

handler, 328
sound effect

adding to desktop apps, 92–93
adding to program, 58–60

Source property, of MediaElement control, 59, 134

Source tab (Web Designer)
about, 556–557
viewing HTML and ASP.NET markup for

webpage, 559–560
spelling, checking in TextBox controls, 124–127
SpinButton_Click event handler

in desktop app, 101–103
in Windows Store app, 67–68

splash screen, creating, 70–73
Split method, 326, 329
Spotlight area, of Windows Store, 10
SqlException object, 388
SQL Server, as database provider, 496
SQL (Structured Query Language)

filtering data and, 509–514
LINQ and, 436
SELECT statement, 509

standard charms vs. command bars, 239
StandardStyles.xaml, 216–217
Start Debugging button, 103
Start Debugging command, 30
Start Here! Learn Microsoft Visual Basic 2012

(Microsoft Press), 5, 111
Start Page, pinning live tiles on, 590
Start page tile, as notification, 258
StaticResource dictionary, 517
step-by-step exercises, configuring IDE for, 39–42
Step Into button, on Debug toolbar, 450
StopButton_Click event handler, 137
Stop Debugging button, 382
Stop statements, 450
StreamReader class, 325
StreamWriter class, 325
String class, processing strings with

about, 320
common tasks, 320–322
sorting strings in textbox, 325–330
sorting text, 322
Visual Basic equivalents of elements in, 321–322

string concatenation (combination)
advanced arithmetic operator, 308–312
arithmetic operator, 305
shortcut operator, 313
using with String class, 320

String data type
about, 298
Length property using with, 116
ListBox control and, 300–301

string data, using LINQ to extract, 443–447

 ToggleButton control

 Index 661

string keyword, in Dim statement, 293
string variable, using to hold TextBox input, 118–120
structured error handlers, 376
Structured Query Language (SQL)

filtering data and, 509–514
LINQ and, 436
SELECT statement, 509

styles, XAML
about, 215–216
building new styles from existing styles, 228–231
creating, 217–221
IDE shortcuts for applying, 231–232
practicing, 221–227
referencing, 220
StandardStyles.xaml, 216–217
using explicit and implicit, 220–221

Sub and End Sub keywords, 65
Sub Main method, creating console applications

using, 271–275
Sub procedures

adding, 483–484
creating method adding to class, 471
in Visual Basic application, 270–271

Substring method, 325
subtraction sign

advanced arithmetic operator, 308–312
arithmetic operator, 305
formulas evaluated using, 314

system clock, properties and methods, 180
System namespace

classes for maintaining lists in, 423
Collections namespace within, 423

T
tabbed documents

about, 37
docking Code Editor or Designer window as, 37

table adapter, 491–492
tables, 491
tap gesture, on touch-enabled screen, 260
TargetType (control name), assigning styles

matching, 220
temperature conversion console application,

creating, 271–275
TestButton_Click event handler, 116, 481–482, 484
Test Connection button, 495

text
protecting with encryption, 331–339
sorting using String class, 322–323

TextAlign property, in Properties window, 95
TextBlock control

adding text blocks for random numbers, 52–54
in list app, 425
in phone app, 614–617
in Toolbox tool, 50–52

TextBox controls
assigning to variable, 118–120
binding control to class using, 517–521
check spelling in, 124–127
holding web address in browser, 142
in Data Sources window, 502–503
in list app, 425
multiline, 120–124
opening and displaying contents of XML

documents, 517–521
receiving input using, 113–118
using loop to fill text box with string data, 362–

363
text boxes, sorting strings in, 325–330
text box object, XAML setting property for, 196
Text category, in Properties window, 51–52
Text property, in Properties window, 94, 116
ThemeResource, 201
tiles

about, 257
designing for app custom

about, 249
Assets folder for, 249
required tiles for, 249–257

live
about, 257
in Microsoft Weather application, 251
pinning on Start Page, 590
programming, 257–259
receiving notification, 258

programming, 257–259
size of tiles for, 250

“Tiles, badges, and notifications (Windows Store
apps)” (MSDN), 259

TileUpdateManager class, 258
TimeToolStripMenuItem_Click event handler, 176–

177
title bar text, setting, 97
ToggleButton control, 203–206

toggle button object, creating event handler for

662 Index

toggle button object, creating event handler
for, 205–208

tombstoning, 602, 630
Toolbox tool

about, 23–24
adding button control, 54–55
adding controls using, 49–52
All XAML Controls category in, 59
Common Controls tab on, 502, 506
controls as XAML controls, 49
HyperLink control, 578–579
MediaElement control in, 58–60
opening, 49–52
using controls to display database

information, 506–509
using TextBlock control, 50–52

Toolbox, Web Forms
about controls in, 552
Button controls, 562–563
GridView control, 574–578
Label controls, 562–563
RangeValidator control, 570
server controls in, 552–553
TextBox control, 561–562
webpage validator controls, 570

Toolbox, Windows Forms
about, 81
adding button controls, 86–88
adding number labels, 88–89
CheckBox control, 155
Common Controls category of, 149
DateTimePicker control in, 150
dialog box controls, 184–185
displaying, 86
GroupBox control in, 159
Label controls

adding to form, 175
in Windows Forms Toolbox, 88–89
setting properties, 95–97

ListBox control in, 159–164
MaskedTextBox control in, 346–348, 350–351,

506–509
PictureBox control

creating rectangle above check box, 161
creating rectangle beneath group box

with, 161
in Windows Forms Toolbox, 89–90

ProgressBar control in, 416–417
RadioButton control, 160
ToolStrip control, 180–183

Toolbox, Windows Phone
about controls in, 612–614
Button controls, 614, 616
Image control, 612–614
TextBlock control, 614–617

Toolbox, XAML, controls. See also Windows Store
apps, controls

AppBar, 236
AppBarButton, 236–238
AppBarToggleButton, 236, 238, 242
binding to data, 516–521
Canvas, 209–212
CommandBar, 236–238, 240–243
Flyout, 243–248
gesture support using, 259
Grid, 201
Image, 205
in Windows Phone Store, 601, 603
ListBox control, 522–526
ProgressBar control in, 417
ProgressRing, 417
TextBlock, 425
TextBox, 425, 517–521
ToggleButton, 203–206
Toolbox controls

Image, 612–614
TextBlock, 614–617

ToolStripButton1_Click event handler, 186–187
ToolStrip control, 180–183
tool windows, hiding, 38–39
ToString method, 316, 520, 521
touch input

gestures, 260–262
planning for, 259–263

ToUpper method, 321, 445
trapping errors

about, 375
comparing error handlers with defensive

programming techniques, 393–394
Exception objects, 387–390
Exit Try statement, 394
processing errors using Try…Catch

statement, 376–384
specifying retry period, 390–392
using Finally clause to perform cleanup

tasks, 385
using nested Try…Catch blocks, 391–392
writing flash drive error handler, 384–385

triggering (firing) events, 65
TrimEnd method, 428, 445

 Visual Studio

 Index 663

Trim method, 321, 445
Try...Catch statement

comparing error handlers with defensive
programming techniques, 393–394

Exception objects, 387–390
Exit Try statement, 394
nested, 377–378, 392–393
processing errors using, 376–384
specifying retry period, 390–392
writing flash drive error handler, 384–385

TwoWay data access, 517
typed datasets, 500

U
UInteger data type

about, 298
ListBox control and, 301

ULong data type
about, 298
ListBox control and, 301

UnauthorizedAccessException object, 388
uncomment, 530
unhandled errors or exceptions, 377, 382
Unrecognized Database Format message, 496
Until keyword, in Do loop, 372–373
USB flash drives, writing error handler for, 384–385
user experience (UX), Microsoft, 236
user interface, creating for desktop apps, 85–87
user interface, designing

adding button control, 54–55
adding image, 56–58
adding text blocks for random numbers, 49–50
creating console applications

about, 267
in Visual Studio, 268–275

creating new project, 45–47
for data entry, 540–541
for phone apps, 614–617
navigating Designer, 48–49
opening Toolbox, 49–52
playing audio media, 58–60
using TextBlock control, 50–52

users, validate using If...Then decision
structure, 346–349

UShort data type
about, 297
ListBox control and, 301

UX (user experience), Microsoft, 236

V
validate users, using If…Then decision

structure, 346–349
validator controls, 570
variables

about, 118
about declaring, 292
assigning TextBox control to, 118–120
Boolean, 346–348
declaring as constant, 295–296
explicitly declaring, 292–293
guidelines for naming, 295–296
implicitly declaring, 292
measurement of, 297
using assignment operator (=), 293

VBMath class, Rnd function in, 419
.vbproj (project file extension), 22
.vb (website code module files), 551
Vertical Split button, 30
videos, playing using MediaElement control, 139–

141
virtual machine environment, Windows Phone SDK

8.0 on, 598
Visibility property

setting, 61
setting in desktop app, 98
syntax for, 67

Visual Basic
about, 4–7
about upgrade, xvii
advanced arithmetic operator, 308
as event-driven programming language, 64
data types in, 297
design mode, 87
events supported by objects in, 342
formulas, 304, 314–315
multiplatform approach to learning, 7
operators

arithmetic, 305–313
binary, 350
comparison, 343, 355–361
relational, 324
shortcut, 313

running program from IDE, 67–68
Visual Basic Blank App (XAML) template, 196–197
Visual Studio

about, 5
about development environment, 19–21

Visual Studio 2013

664 Index

creating console applications in
about, 268
interactive math games, 275–284
modules and procedures, 270–271
opening Console Application template, 269–

270
Roll-The-Dice application, 271–275
Sub Main() procedure, 271–275
temperature conversion application, 271–275

exiting, 42
gesture support in, 259
menu commands pertaining to Windows

store, 12
namespaces in programming terminology, 199
program statements, 66

Visual Studio 2013
about, 4, 79–80
Blend for

add controls in, 202
XAML in, 193

building executable file, 104–105
creating desktop app

adding number labels, 88–89
adding .wav file to Resources folder, 92–93
naming objects for clarity, 98
new project for, 83–85
picture box properties, 97–98
setting button properties, 93–94
setting descriptive label properties, 96–97
setting number labels properties, 95–96
setting title bar text of form, 97
SpinButton_Click event handler, 101–103
user interface, 85–87
using PictureBox control, 89–90
writing code, 99–101

databases and, 490
desktop apps and, 81–82
End as keyword in, 100
free versions of, 4
publishing desktop app, 105–107
running desktop app, 103–105
starting, 18–19

Visual Studio Code Editor. See Code Editor
Visual Studio Express for Web, 4
Visual Studio Express for Windows, 4
Visual Studio Express for Windows Desktop, 4
Visual Studio Express for Windows Phone, 4
Visual Studio Query Builder, creating SQL statements

with, 509–514
Visual Studio website, 4
volume level, setting for media playback initial, 60

W
.wav file, adding to Resources folder, 92–93
Weather application, tiles in, 250–251
web applications. See also website, application

binding datasets to, 492
creating Windows Store apps with JavaScript

in, 549–550
hosting ASP.NET web applications, 569
using ASP.NET MVC, 546
using ASP.NET Web Forms application, 545
Windows Store apps and, 548–549

web browsers, creating, 142–146
Web.config files, 551
web content, displaying live, 142–146
Web Designer

about, 552, 556–557
Design tab

about, 556
adding text, 557–558, 573
editing text, 581–582

including information and resources using, 570–
572

inserting controls with, 561–563, 573
Source tab (Web Designer)

about, 556–557
viewing HTML and ASP.NET markup for

webpage, 559–560
using, 557–560

web development, Visual Basic opportunities for, 6
Web Forms

ASP.NET
about, 545
building website with, 550–556
Web Pages vs., 552

Web Forms Toolbox
about controls in, 552
Button controls, 562–563
GridView control, 574–578
Label controls, 562–563
RangeValidator control, 570
RequiredFieldValidator control, 570
server controls in, 552–553
TextBox control, 561–562
webpage validator controls, 570

WebMatrix, 547
webpage controls

Button controls, 562–563
GridView control, 574–578
inserting, 561–563, 573

 Windows Forms

 Index 665

Label controls, 562–563
RangeValidator control, 570
TextBox control, 561–562
validator controls, 570
writing event handlers for, 563–569

Web Pages (with Razor), ASP. NET
about, 547
make up of, 559
Windows Forms vs., 552

web servers, Windows Azure applications for, 6
website, application. See also web applications

adding text in Design view (Web Designer), 557–
558

building web forms, 550–556
creating, 554–557
customizing website template, 570–572
deploying application on web server, 569
displaying database records on webpage, 573–

580
editing document and site master

properties, 581–583
validating input fields on webpage, 570
writing event handlers for webpage

controls, 563–569
WebView control, displaying live web content

using, 141–146
Where clause, in LINQ queries, 437, 440–443, 448,

456, 534–535
While keyword, in Do loop, 372–373
Windows 8.1 design

creating command bar to manage tasks, 236–243
designing custom tiles for apps

about, 249
Assets folder for, 249
required tiles for, 249–257

live tiles
about, 257
in Microsoft Weather application, 251
programming, 257–259
receiving notification, 258

Microsoft user experience guidelines for, 236
planning for touch input, 259–263
security and permissions settings, 263–266
using charms, 239

Windows 8.1, Visual Basic opportunities on, 6
Windows 8, Windows 7, and Windows Server, Visual

Basic opportunities on, 6
Windows Azure applications for web servers and

cloud
Visual Basic opportunities for, 6

Windows Common Language Runtime (CLR), 544
Windows desktop apps

about, 79
building executable file, 104–105
ColorDialog control properties, 187
controls

CheckBox, 155–159
DateTimePicker, 148–154
GroupBox, 159–164
ListBox, 164–168, 355
ListBox control, 297–304
MenuStrip, 169–183

creating
adding number labels, 88–89
adding .wav file to Resources folder, 92–93
naming objects for clarity, 98
new project for, 83–85
picture box properties, 97–98
setting button properties, 93–94
setting descriptive label properties, 96–97
setting number labels properties, 95–96
setting title bar text of form, 97
SpinButton_Click event handler, 101–103
user interface, 85–87
using PictureBox control, 89–90
writing code, 99–101

database controls for
about, 489
displaying database information using toolbox

controls, 506–509
programming with ADO.NET, 490–505
SQL statements and fi ltering data, 509–514

dialog box controls, 184–185
event handlers managing common dialog

boxes, 185–190
MaxLength property of TextBox controls, 363
program crashes in, 383
publishing, 105–107
running, 103–105
starting, 80–81
TextBox control, using loop to fill text box with

string data, 362
Visual Studio 2013 and, 81–82

Windows Explorer, 286
Windows Forms

about, 79–80
about Visual Studio and, 81
building executable file, 104–105
ColorDialog control properties, 187

Windows Forms Designer

666 Index

controls
about, 147–154
CheckBox, 155–159
GroupBox, 159–164
ListBox, 164–168, 297–304, 355
MenuStrip, 169–180
ToolStrip, 180–183

creating desktop app
adding number labels, 88–89
adding .wav file to Resources folder, 92–93
naming objects for clarity, 98
new project for, 83–85
picture box properties, 97–98
setting button properties, 93–94
setting descriptive label properties, 96–97
setting number labels properties, 95–96
setting title bar text of form, 97
SpinButton_Click event handler, 101–103
user interface, 85–87
using PictureBox control, 89–90
writing code, 99–101

desktop apps and, 81
dialog box controls, 184–185
editing app with IDE, 460–464
event handlers managing common dialog

boxes, 185–190
limitations of, 107
.NET Framework and, 81
publishing desktop app, 105–107
running desktop app, 103–104, 105
writing apps with Data Source Configuration

Wizard, 492–505
Windows Forms Designer

about, 81
binding masked text box control to dataset

object, 506–509
creating user interface, 85–87
displaying information in dataset with, 501

Windows Forms Toolbox
about, 81
adding button controls, 86–88
adding number labels, 88–89
CheckBox control, 155
Common Controls category of, 149
DateTimePicker control in, 150
dialog box controls, 184–185
displaying, 86
Label controls

adding to form, 175
in Windows Forms Toolbox, 88–89

Label properties, setting, 95–97
ListBox control in, 159–164
MaskedTextBox control in, 346–348, 350–351,

506–509
MenuStrip control, 170
PictureBox control

about, 89–90
creating rectangle above check box, 161
creating rectangle beneath group box

with, 161
drawing square object on form, 184

ProgressBar control in, 416–417
RadioButton control, 160
ToolStrip control, 180–183

Windows, getting license for developers, 18
Windows Library for JavaScript (WinJS), 549
Windows Lock screen, badge notification appearing

in, 250
Windows Movie Maker, 141
Windows Phone 8

features of, 589–592
installing apps, 595
Microsoft Silverlight and, 112
Visual Basic opportunities on, 6
website for, 591

Windows Phone 8 development
about, 587
app life cycle considerations, 626–636
closing apps, 626–627
creating apps

about, 607
adding Image control, 612–614
adjusting settings in

PhoneApplicationPage, 611
creating new project, 607–608
designing user interface, 614–617
exploring IDE, 609–610
mouse input, 619
writing code, 617–620

deactivating apps, 627
hardware requirements for, 590
IsolatedStorageSettings class, 636
opportunities in platform, 588
PhoneApplicationService class, 628–635
registering apps, 620–621
setting options in Windows Phone manifest

file, 637–638
testing apps, 620–626

Windows Phone apps. See also Windows Phone Store
binding datasets to, 492

 Windows Store apps

 Index 667

Windows Phone apps, controls
about, 601
button controls, adding to phone app, 614, 616
Image controls, adding to phone app page, 612–

614
TextBlock control, 614–617

Windows Phone Audio Playback template, 607
Windows Phone Development Center, 595
Windows Phone Emulator, using, 621–626
Windows Phone manifest file, setting options

in, 637–638
Windows Phone Software Development Kit (SDK)

about, 596
on virtual machine environment, 598
working with version 8.0, 596–599

Windows Phone Store
about, 590
accessing, 591–596
installing Windows Phone app, 595
planning for certification, 595–596
selling apps in, 595
setting properties for apps in, 611
Windows Phone Store vs., 600–604
Windows Store vs., 600–604

Windows Presentation Foundation (WPF)
ASP.NET Web Forms and, 545
binding datasets to, 492
controls as root of Windows Store app

controls, 112–113
using for desktop apps in Visual Studio 2013

development suite, 82
XAML markup language and, 26, 82, 112

Windows Push Notifi cation Service (WNS), 258
Windows Server and Windows 7, Visual Basic

opportunities on, 6
Windows Store

about, 8
accessing, 9–10
app listing page, 10
connecting datasets to, 492
Details page, 15
installing apps from, 10
offering free apps, 11
planning for certification, 12
price tier in, 10–11
requirements checklist, 12–15
resources for developers preparing for, 12
sales information, 10–11
Spotlight area of, 10
Windows Phone Store vs., 600–604

Windows Store apps
about, 7
about programming, 44–45
adjusting Background property in, 201–202
binding datasets to, 492
check spelling in, 124–127
creating for web with JavaScript, 549–550
data sources for, 516
designing

custom tiles for, 249–257
live tiles, 257–259
planning for touch input, 259
presenting users with “chrome” features

in, 236
replacing traditional menu bars and

toolbars, 236–243
security and permissions settings, 263–266
size of tiles for, 250

designing custom tiles for
about, 249
Assets folder for, 249
required tiles for, 249–257

edit XAML markup in MainPage.xaml, 200–202
examining App.xaml, 197–200
exception handling, 383
live tiles

about, 257
in Microsoft Weather application, 251
programming, 257–259
receiving notification, 258

planning for touch input, 259
presenting users with “chrome” features in, 236
replacing traditional menu bars and

toolbars, 236–243
running and testing, 30–33
security and permissions settings, 263–266
size of tiles for, 250
TextBox controls, using loop to fill text box with

string data, 362–363
web applications and, 548–549
XAML styles

about, 215–216
building new styles from existing styles, 228–

231
creating, 217–221
IDE shortcuts for applying, 231–232
practicing, 221–227
referencing, 220
StandardStyles.xaml, 216–217
using explicit and implicit, 220–221

Windows Store apps, controls

668 Index

XML documents in
about, 526
locating child elements in XML

hierarchy, 532–533
opening and displaying contents of, 527–530
reading selection of tagged elements, 530–

532
searching for items in file, 533–536

Windows Store apps, controls. See also Toolbox,
XAML, controls

about, 111, 191
about understanding, 112–113
AppBar, 236
AppBarButton, 236–238
AppBarToggleButton, 236, 238, 242
binding to data using XAML, 516–526
Canvas controls, 209
CommandBar, 236–238, 240–243
displaying live web content using WebView

control, 141–146
FlipView control, 127–132
Flyout, 243–248
gesture support using, 259
Image controls

about, 55
adding images to program, 56–58
creating, 205
style set for, 219

Label controls
in Windows Forms Toolbox, 88–89

Label properties, setting, 95–97
ListBox control, 522–526
MediaElement control

about, 133
controlling playback, 135–138
playing music using, 133–135, 240–243
playing videos using, 139–141
using with Flyout control, 245

PictureBox control, drawing square object on
form, 184

TextBlock controls, adding text blocks for random
numbers, 52–54

TextBox controls
assigning to variable, 118–120
binding control to class using, 517–521
check spelling in, 124–127
multiline, 120–124
opening and displaying contents of XML

documents, 517–521
receiving input using, 113–118

ToggleButton control, 203–206
Windows Store apps, creating

building executable file, 74–77
Canvas controls, 209
creating splash screen, 70–73
designing user interface

adding button control, 54–55
adding image, 56–58
adding text blocks for random numbers, 49–

50
creating new project, 45–47
navigating Designer, 48–49
opening Toolbox, 49–50
playing audio media, 58–60
using TextBlock control, 50–52

Image control, 205
new project for, 197–200
running program, 67–68
setting background color of page, 62
setting Visibility property, 61
SpinButton_Click event handler, 67–68
ToggleButton control, 203–206
using Code Editor, 63–66
using Save All command, 62–63

Windows Store developers
planning for certification, 12
registering as, 11
Windows Store requirements checklist, 12–15

WinJS (Windows Library for JavaScript), 549
WNS (Windows Push Notifi cation Service), 258
WPF (Windows Presentation Foundation)

ASP.NET Web Forms and, 545
binding datasets to, 492
controls as root of Windows Store app

controls, 112–113
using for desktop apps in Visual Studio 2013

development suite, 82
XAML markup language and, 26, 82, 112

WriteLine method, 272
in Find-The-Number console application, 276–

277
in simulate rolling dice console application, 280–

281
Write method

in Find-The-Number console application, 276–
277

in simulate rolling dice console application, 280–
281

Xor operator and, 337
writing code. See Code Editor

 Zoom tool, in Designer

 Index 669

X
XAML (Extensible Application Markup Language)

about, 191–192
All XAML Controls category, 59
as root of Windows Store app controls, 112–113
data binding expressed as markup extension, 517
defining list box using, 357–361
elements

about, 194–196
adding using tab of Code Editor, 202–212

examining project files, 196–202
Grid element, 201
introduction to, 192–202
markup to define FlipView control, 129
namespaces in, 196, 199
resource dictionary, 218
root element in documents, 198
styles

about, 215–216
building new styles from existing styles, 228–

231
creating, 217–221
IDE shortcuts for applying, 231–232
practicing, 221–227
referencing, 220
StandardStyles.xaml, 216–217
using explicit and implicit, 220–221

tab of Code Editor
about, 23
adding elements using, 202–212
adjusting Background property in, 201–202
displaying markup in Designer window, 25–

30
examining XAML project files, 198–200
setting property for text box object, 196

< tag and /> tag in markup, 195
Toolbox controls

about, 49
AppBar, 236
AppBarButton, 236–238
AppBarToggleButton, 236, 238, 242
binding to data using, 516–526
Canvas, 209–212
CommandBar, 236–238, 240–243
Flyout, 243–248
gesture support using, 259–260
Grid, 201
Image, 205, 612–614
in Windows Phone Store, 601, 603

ListBox, 522–526
ProgressRing, 417
TextBlock, 425, 614–617
TextBox, 425, 517–526
ToggleButton, 203–206

WPF and, 26, 82, 112
Xbox 360, Visual Basic opportunities for, 6
x: characters, namespaces prefaced by, 196
XDocument class, 526–527, 529, 532–533, 537
XDocument object, 538
XElement class, 527, 532–533
XElement object, 537, 538
XML (Extensible Markup Language)

about, 454, 490
documents

about, 515, 526
accessing data in, 526–540
adding node with data to, 538–540
locating child elements in XML

hierarchy, 532–533
modifying element in, 537–538
opening and displaying contents of, 527–530
reading selection of tagged elements, 530–

532
searching for items in file, 533–536

elements
locating in XML hierarchy child, 530–532
modifying, 537–538
reading selection of tagged, 530–532

files
about, 526
reading, 526–533
searching for items in, 533–536
writing to, 536–540

using LINQ with, 454–458
vs. Microsoft Access .mdb format, 454

XML schema file, 491–492
XmlTestButton_Click event handler, 530
Xor operator, 334–339, 349–350

Z
Zoom control, 115
Zoom drop-down button, 49
zoom in and out, on touch-enabled screen, 261–262
Zoom tool, in Designer, 49

about the author

MICHAEL HALVORSON is the author or co-author of more than 35 books,
including Start Here! Learn Microsoft Visual Basic 2012, Microsoft Visual Basic
2010 Step by Step, Microsoft Office XP Inside Out, and Microsoft Visual Basic
6.0 Professional Step By Step. He has been the recipient of numerous non-
fiction writing awards, including the Computer Press Best How-to Book Award
(Software category) and the Society for Technical Communication Excellence

Award (Writing category). Halvorson earned a bachelor’s degree in Computer Science
from Pacific Lutheran University in Tacoma, Washington, and master’s and doctoral
degrees in History from the University of Washington in Seattle. He was employed at
Microsoft Corporation from 1985 to 1993, and he has been an advocate for Visual Basic
programming since the product’s original debut at Windows World in 1991. Halvorson
is currently an associate professor at Pacific Lutheran University. You can learn more
about his books and ideas at http://michaelhalvorsonbooks.com.

http://michaelhalvorsonbooks.com

SurvPage_Corp_b&w.indd 1 4/24/13 12:45 PM

Now that
you’ve
read the
book...

Tell us what you think!
Was it useful?

Did it teach you what you wanted to learn?

Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

	Contents at a glance
	Contents
	Introduction
	Part I: Introduction to Visual Studio development
	Chapter 1: Visual Basic 2013 development opportunities and the Windows Store
	Visual Basic 2013 products and opportunities
	An impressive range of development opportunities and platforms
	Taking a multiplatform approach to learning Visual Basic

	Evaluating the Windows Store
	What is the Windows Store?
	Accessing the Windows Store
	Sales information and price tiers
	Or your application could be free…
	Planning ahead for certification
	Windows Store requirements checklist
	It’s all in the details

	Summary

	Chapter 2: The Visual Studio Integrated Development Environment
	Getting started
	The Visual Studio development environment
	Important tools in the IDE
	Organizing tools in the IDE
	The Designer and XAML markup
	Running and testing Windows Store apps

	Working with the Properties window
	Organizing the programming tools
	Moving and docking tools
	Hiding tool windows

	Configuring the IDE for step-by-step exercises
	Exiting Visual Studio
	Summary

	Chapter 3: Creating your first Windows Store application
	Lucky Seven: A Visual Basic app for the Windows Store
	Programming step by step
	Designing the user interface
	Final property settings and adjustments
	Writing the code
	A look at the SpinButton_Click event handler
	Running Windows Store apps
	Creating a splash screen for your app
	Building an executable file
	Summary

	Chapter 4: Windows desktop apps: A walkthrough using Windows Forms
	Inside Windows desktop apps
	Visual Basic and Windows desktop apps
	Creating a Windows desktop app
	Setting properties
	The picture box properties
	Naming objects for clarity

	Writing the code
	Behind the scenes in the SpinButton_Click event handler
	Running the Lucky Seven desktop app
	Building an executable file
	Publishing a Windows desktop app
	Summary

	Part II: Designing the user interface
	Chapter 5: Working with Windows Store app controls
	Understanding Windows Store app controls
	Roots in Windows Presentation Foundation and XAML
	Designing for Windows 8.1

	Using the TextBox control to receive input
	Assigning TextBox contents to a variable
	Multiline TextBox controls
	Check spelling in a TextBox control

	Using the FlipView control to display a series of images
	Using the MediaElement control to play entertainment media
	Use the WebView control to display live web content
	Summary

	Chapter 6: Working with Windows Forms controls
	Using the DateTimePicker control
	Controls for gathering input
	Using the CheckBox control
	Using group boxes and radio buttons
	Processing input with list boxes

	Adding menus by using the MenuStrip control
	Menu features
	Adding access keys to menu commands
	Processing menu choices

	Adding toolbars with the ToolStrip control
	Using dialog box controls
	Event handlers that manage common dialog boxes
	Summary

	Chapter 7: XAML markup step by step
	Introduction to XAML
	XAML in the Visual Studio IDE
	XAML in Blend for Visual Studio
	XAML elements
	Namespaces in XAML markup
	Examining XAML project files

	Adding XAML elements using the Code Editor
	Summary

	Chapter 8: Using XAML styles
	Introduction to XAML styles
	Where did StandardStyles.xaml go?
	Creating new XAML styles
	Considering the scope of a style
	Sample markup for a new XAML style
	Referencing a style
	Using explicit and implicit styles

	Practicing XAML styles
	Building new styles from existing styles
	IDE shortcuts for applying styles
	Summary

	Chapter 9: Exploring Windows 8.1 design features: Command bar, flyout, tiles, and touch
	Creating a command bar to manage common tasks
	Command bar features
	Designing your command bar
	Command bar practice step by step

	Using the Flyout control to collect input and display information
	Designing custom tiles for your app
	The Assets folder
	Required tiles and uses
	Programming live tiles

	Planning for touch input
	XAML controls handle touch automatically
	Common gestures
	Usability considerations

	Security and permissions settings
	Summary

	Chapter 10: Creating console applications
	Console applications in Visual Studio
	Creating a console application
	Modules and procedures
	The Sub Main() procedure

	Interactive math games
	Find the number
	Simulating dice

	Building, publishing, and running console apps
	Summary

	Part III: Visual Basic programming techniques
	Chapter 11: Mastering data types, operators, and string processing
	Strategies for declaring variables and constants
	The Dim statement
	Defining constants
	Guidelines for naming variables and constants

	Data types and the ListBox control
	Operators and formulas
	Arithmetic operators
	Advanced arithmetic operators
	Shortcut operators
	How Visual Basic calculates formulas

	Converting data types
	The ToString method
	The Parse method
	The Convert class
	Older type conversion functions and their uses

	Processing strings with the String class
	Common tasks
	Sorting text
	Working with ASCII codes
	Sorting strings in a text box
	Examining the Sort Text program code

	Protecting text with basic encryption
	Using the Xor operator
	Examining the encryption program code

	Summary

	Chapter 12: Creative decision structures and loops
	Event-driven programming
	Using conditional expressions

	If…Then decision structures
	Testing several conditions in an If…Then decision structure
	Using logical operators in conditional expressions
	Short-circuiting by using AndAlso and OrElse

	Mastering Select Case decision structures
	Using comparison operators with a Select Case structure

	Mastering For…Next loops
	Using a loop to fill a TextBox with string data

	Complex For…Next loops
	The Exit For statement

	Writing Do loops
	Avoiding an endless loop
	Converting temperatures
	Using the Until keyword in Do loops

	Summary

	Chapter 13: Trapping errors by using structured error handling
	Processing errors by using the Try…Catch statement
	When to use error handlers
	Setting the trap: the Try…Catch code block
	Path name and drive errors
	Windows Store apps and built-in exception handling

	Writing a flash drive error handler
	Using the Finally clause to perform cleanup tasks
	More complex Try…Catch error handlers
	The Exception object
	Specifying a retry period
	Using nested Try…Catch blocks

	Comparing error handlers with defensive programming techniques
	The Exit Try statement
	Summary

	Chapter 14: Using arrays, collections, and generics to manage data
	Working with arrays of variables
	Creating an array
	Declaring an array with set elements
	Setting aside memory
	Working with array elements
	Declaring an array and assigning initial values
	Creating an array to hold temperatures
	The GetUpperBound and GetLowerBound methods

	Setting an array’s size at runtime
	Preserving array contents by using ReDim Preserve
	Using ReDim for three-dimensional arrays

	Processing large arrays by using methods in the Array class
	The Array class
	Get your sort on

	Working with collections
	Creating collections and generic lists
	Declaring generic collections
	Sample app with generic list and background image

	Summary

	Chapter 15: Innovative data management with LINQ
	LINQ tools and techniques
	Fundamental query syntax

	Extracting information from arrays
	Using LINQ with collections
	Using LINQ with XML documents
	Summary

	Chapter 16: Object-oriented programming techniques
	Inheriting a form by using the Inheritance Picker
	Creating your own base classes
	Adding a new class to your project

	Inheriting a base class
	Polymorphism
	Syntax for overriding methods and properties
	Referring to the base class with MyBase
	Experimenting with polymorphism

	Summary

	Part IV: Database and web programming
	Chapter 17: Database controls for Windows desktop apps
	Database programming with ADO.NET
	Database terminology
	Working with an Access database
	The Data Sources window

	Using toolbox controls to display database information
	SQL statements and filtering data
	Summary

	Chapter 18: Data access for Windows Store apps
	Data binding in XAML
	A variety of data sources
	Binding elements
	Binding a control to a class
	Using a collection as a source of data

	Accessing data in XML documents
	Reading an XML file
	Searching for items in an XML file
	Writing to an XML file
	A user interface for data entry

	Summary

	Chapter 19: Visual Studio web development with ASP.NET
	Inside ASP.NET
	Web Forms
	ASP.NET MVC
	Web Pages (with Razor)
	HTML5 and JavaScript

	Building a Web Forms website with ASP.NET
	Software requirements for ASP.NET development
	Essential steps
	Webpages vs. Windows Forms

	Using the Web Designer
	Adding server controls to a website
	Writing event handlers for webpage controls
	Customizing the website template
	Displaying database records on a webpage
	Editing document and site master properties
	Summary

	Part V: Microsoft Windows Phone programming
	Chapter 20: Introduction to Windows Phone 8 development
	Opportunities in the Windows Phone 8 platform
	Key Windows Phone 8 features
	Hardware requirements
	Integration and collaboration

	The Windows Phone Store
	What is the Windows Phone Store?
	Accessing the Windows Phone Store
	How much money do developers make?
	Planning ahead for certification

	Working with Windows Phone SDK 8.0
	Downloading the SDK

	Comparing Windows Phone 8 and Windows Store platforms
	Differences
	Similarities

	Summary

	Chapter 21: Creating your first Windows Phone 8 application
	Creating a Windows Phone project
	Designing the Golf Caddy user interface
	Writing the code
	Testing Windows Phone apps
	Application life cycle considerations
	Closing or deactivating?
	The PhoneApplicationSerivce class
	Life cycle management with the IsolatedStorageSettings class

	Setting options in the Window Phone manifest file
	Summary

	Index
	About the author

