

Visual Basic

Using Visual Studio

Programming and Design

Principles
with Visual Studio

Ray O’Connor

1

History of programming languages

A programming language is a formal constructed language designed to communicate instructions to a machine,

particularly a computer. Programming languages can be used to create programs to control the behavior of a machine

or to express algorithms.

Evolution of Programming Language

 http://www.howtogeek.com/94917/the-evolution-of-computer-programming-languages-infographic/

Procedural programming – languages such as Pascal, Fortran, Cobol, etc

Object Oriented Programming – OOP programming languages such as Java, Visual Basic, Python, etc

Scripting languages are programming languages that don't require an explicit compilation step.

For example, in the normal case, you have to compile a C program before you can run it. But in the normal case, you

don't have to compile a JavaScript program before you run it. So JavaScript is sometimes called a "scripting" language.

Syntax of a programming language

Syntax refers to the spelling and grammar of a programming language. Computers are inflexible machines that

understand what you type only if you type it in the exact form that the computer expects. The expected form is called

the syntax.

Programming languages - what they have in common

 e.g. strict syntax rules, data storage, input statements, output statements, branching, looping.

 Planning Phase – Design Phase – Testing Phase

Programming languages - their differences

 e.g. different syntax, different structures, different focus

 procedural versus object oriented (OOP)

Video https://www.youtube.com/watch?v=qmksVfulV0o

Machine code is a computer programming language consisting of binary or hexadecimal instructions which a computer

can respond to directly.

Low-level programming language

In computer science, a low-level programming language is a programming language that provides little or no abstraction

from a computer's instruction set architecture—commands or functions in the language map closely to processor

instructions. Generally this refers to either machine code or assembly language.

http://www.howtogeek.com/94917/the-evolution-of-computer-programming-languages-infographic/
https://www.youtube.com/watch?v=qmksVfulV0o

2

Low-level languages are useful because written in them can be crafted to run very fast and with a very small memory

footprint. However, they are considered more difficult to utilize because they require a deeper knowledge of machine

language.

Languages such as C and C++ are considered "lower-level" — they provide a minimal amount of abstraction at the

smallest possible cost to performance and efficiency. These abstractions, such as classes, lambda functions and macros,

allow programmers to use complex functionality without writing overly complex code. For this reason, lower-level

languages are used in projects where abstractions are necessary to keep code highly readable and maintainable, but

where maximum performance is still paramount. Many operating systems and high-frame rate computer games are a

good example of this.

High level programming languages

A high-level language is a computer programming language that isn't limited by the computer, designed for a specific

job, and is easier to understand. It is more like human language and less like machine language. However, for a

computer to understand and run a program created with a high-level language, it must be compiled into machine

language.

The first high-level languages were introduced in the 1950's. Today, there are many high-level languages in use,

including BASIC, C, C++, Cobol, FORTRAN, Java, Pascal, Perl, PHP, Python, Ruby, and Visual Basic.

Difference between Low-Level & High-Level Language

High-level Language

1. Learning - High-level languages are easy to learn.

2. Understanding – High level languages are near to human languages.

3. Execution - Programs in high-level languages are slow in execution.

4. Modification - Programs in high-level languages are easy to modify.

5. Facility at hardware level - High-level languages do not provide much facility at hardware level.

6. Knowledge of hardware Deep - Knowledge of hardware is not required to write programs.

7. Uses - These languages are normally used to write application programs.

Low-level languages

1. Learning - Low-level languages are difficult to learn.

2 Understanding - Low-level languages are far from human languages.

3. Execution - Programs in low-level languages are fast in execution.

4. Modification - Programs in low-level languages are difficult to modify.

5. Facility at hardware level - Low-level languages provide facility to write programs at hardware level.

6. Knowledge of hardware Deep - Deep knowledge of hardware is required to write programs.

7. Uses - These languages are normally used to write hardware programs.

3

4

Algorithms – Flow charts – Pseudocode

What is an Algorithm?

 A process or set of rules to be followed in calculations or other problem-solving operations, especially
by a computer.

Notes

 0 Program_Algorithms.ppt (Powerpoint file in Software Development - 2_Programming_Design_Principles
folder on hard drive

 10 Algorithms.pdf (in Software Development - 2_Programming_Design_Principles folder on hard drive

 https://www.khanacademy.org/computing/computer-science/algorithms

Creating an algorithm

For example how do we find the biggest number in the list 2,7,8,34,29,11. The biggest number is 34. We need
to apply some logical thinking to solve this.

Sample algorithm

 Store first list item in a variable Biggest

 For each item in the list
o Store item in variable Current
o If Current > Biggest then

 Biggest = Current

Good, logical programming is developed through good pre-code planning and organization. This is assisted by the use of
pseudocode and program flowcharts.

Flowcharts are written with program flow from the top of a page to the bottom. Each command is placed in a box of
the appropriate shape, and arrows are used to direct program flow. The following shapes are often used in flowcharts:

Sample Algorithm

0%20Program_Algorithms.ppt
10%20Algorithms.pdf
https://www.khanacademy.org/computing/computer-science/algorithms

5

 Pseudocode is a method of describing computer algorithms using a combination of natural language and
programming language. It is essentially an intermittent step towards the development of the actual code. It allows the
programmer to formulate their thoughts on the organization and sequence of a computer algorithm without the need
for actually following the exact coding syntax. Although pseudocode is frequently used there are no set of rules for its
exact implementation. In general, here are some rules that are frequently followed when writing pseudocode:

 The usual Fortran symobols are used for arithmetic operations (+, -, *, / , **).
 Symbolic names are used to indicate the quantities being processed.
 Certain Fortran keywords can be used, such as PRINT, WRITE, READ, etc.
 Indentation should be used to indicate branches and loops of instruction.

Here is an example problem, including a flowchart, pseudocode, and the final Fortran 90 program. This problem and
solution are from Nyhoff, pg 206:

For a given value, Limit, what is the smallest positive integer Number for which the sum
 Sum = 1 + 2 + ... + Number
is greater than Limit. What is the value for this Sum?

6

Pseudocode:
 Input: An integer Limit
 Ouput: Two integers: Number and Sum

1. Enter Limit
2. Set Number = 0.
3. Set Sum = 0.
4. Repeat the following:
 a. If Sum > Limit, terminate the repitition, otherwise.
 b. Increment Number by one.
 c. Add Number to Sum and set equal to Sum.
5. Print Number and Sum.

Flowchart:

7

Fortran 90 source code:

 PROGRAM Summation

 ! Program to find the smallest positive integer Number
 ! For which Sum = 1 + 2 + ... + Number
 ! is greater than a user input value Limit.

 IMPLICIT NONE

 ! Declare variable names and types
 INTEGER :: Number, Sum, Limit
 ! Initialize Sum and Number
 Number = 0
 Sum = 0
 ! Ask the user to input Limit

 PRINT *, "Enter the value for which the sum is to exceed:"
 READ *, Limit

 ! Create loop that repeats until the smallest value for Number is found.
 DO
 IF (Sum > Limit) EXIT ! Terminate repetition once Number is found
 ! otherwise increment number by one
 Number = Number + 1
 Sum = Sum + 1
 END DO
 ! Print the results
 PRINT *, "1 + ... + ", Number, "=", Sum, ">", Limit
 END PROGRAM

Sample Flowchart

8

Sample Flowchart

9

Visual Basic https://en.wikipedia.org/wiki/Visual_Basic

Statistics http://www.langpop.com

Resources

 Google

 MOOCs (eg Udacity, Coursera)

 https://www.thenewboston.com/videos.php?cat=39

 https://www.youtube.com/watch?v=kKimJGA2grI&list=PL2Rdg_g4Jx7hdAFPtEC1p9CDlB4-PCDMM

Free eBooks and Additional Resources

 https://mitseu.files.wordpress.com/2014/08/ms-microsoft-visual-basic-2013-step-by-step.pdf

 http://www.onlineprogrammingbooks.com/

Getting started

 Download Visual Studio – An Integrated Development Environment (IDE)

 Install Visual Studio – when you run Visual Studio for the first time be sure you select Visual Basic settings

Beginning New Project

 Sketch your screen layout (planning and design phase is important)

 Begin Visual Studio

https://en.wikipedia.org/wiki/Visual_Basic
http://www.langpop.com/
https://www.thenewboston.com/videos.php?cat=39
https://www.youtube.com/watch?v=kKimJGA2grI&list=PL2Rdg_g4Jx7hdAFPtEC1p9CDlB4-PCDMM
https://mitseu.files.wordpress.com/2014/08/ms-microsoft-visual-basic-2013-step-by-step.pdf
http://www.onlineprogrammingbooks.com/

10

Exercise

Private Sub Calculate_Click(sender As Object, e As RoutedEventArgs) Handles Calculate.Click

'Assign textbox values to variables

firstNum = FirstTextBox.Text

secondNum = SecondTextBox.Text

'Determine checked button and calculate

If Addition.IsChecked Then

Result.Text = firstNum + secondNum

End If

If Subtraction.IsChecked Then

Result.Text = firstNum - secondNum

End If

If Multiplication.IsChecked Then

Result.Text = firstNum * secondNum

End If

If Division.IsChecked Then

Result.Text = firstNum / secondNum

End If

End Sub

11

12

Useful Tutorials

